Application of Positive Matrix Factorization for Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAH) in the Adriatic Sea, and the Evaluation of PAH-Related Carcinogenic Risks
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Determination of Polycyclic Aromatic Hydrocarbon in Sediment Samples
2.3. PAH Source Apportionment by Positive Matrix Factorization
2.4. Calculation of PAH-Related Toxic Equivalent-TEQ
3. Results and Discussion
3.1. PAH Concentrations in the Sediments
3.2. PAH Sources in the Adriatic Sea
3.3. Benzo[a]pyrene Equivalent Toxicity of PAH Mixtures in the Adriatic Sea
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vollhardt, K.P.C.; Schore, N.E. Organic Chemistry, 3rd ed.; W. H. Freeman and Company: New York, NY, USA, 1999. [Google Scholar]
- Neff, J.M. Polycyclic Aromatic Hydrocarbons in the Aquatic Environment, Sources, Fates and Biological Effect; Applied Science Publishers Ltd.: Essex, UK, 1979. [Google Scholar]
- Tsapakis, M.; Stephanou, E.G.; Karakassis, I. Evaluation of atmospheric transport as a nonpoint source of polycyclic aromatic hydrocarbons in marine sediments of the Eastern Mediterranean. Mar. Chem. 2003, 80, 283–298. [Google Scholar] [CrossRef]
- Duodu, G.O.; Ogogo, N.K.; Nanayakkara, M.; Sandya, W.; Harden, F.; Goonetilleke, A.; Ayoko, G. Source apportionment and risk assessment of PAHs in Brisbane River sediment, Australia. Ecol. Indic. 2017, 73, 784–799. [Google Scholar] [CrossRef]
- Guo, J.; Wu, F.; Luo, X.; Liang, Z.; Liao, H.; Zhang, R.; Mai, B. Anthropogenic input of polycyclic aromatic hydrocarbons into five lakes in Western China. Environ. Pollut. 2010, 158, 2175–2180. [Google Scholar] [CrossRef] [PubMed]
- Gschwend, P.M.; Hites, R.A. Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochim. Cosmochim. Acta 1981, 45, 2359–2367. [Google Scholar] [CrossRef]
- Sicre, M.A.; Marty, J.C.; Saliot, A.; Aparicio, X.; Grimalt, J.; Albaiges, J. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin. Atmos. Environ. 1987, 21, 2247–2259. [Google Scholar] [CrossRef]
- Budzinski, H.; Jones, I.; Bellocq, J.; Pierard, C.; Garrigues, P. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar. Chem. 1997, 58, 85–97. [Google Scholar] [CrossRef]
- Yunker, M.; MacDonald, R.; Vingarzan, R.; Mitchell, R.; Goyette, D.; Sylvestre, S. PAHs in the Fraser Rive Basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Namiesnik, J. PAH diagnostic ratios for identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs); Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 1995. [Google Scholar]
- Santodonato, J.; Howard, P.; Basu, D. Health and Ecological Assessment of Polynuclear Aromatic Hydrocarbons. J. Environ. Pathol. Toxicol. 1981, 5, 100–368. [Google Scholar]
- IARC (International Agency for Research on Cancer). Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs Volumes 1 to 42; IARC Monographs on the Evaluation of Carcinogenic Risk to Humans Suppl. 7; IARC: Lyon, France, 1987. [Google Scholar]
- USEPA (U.S. Environmental Protection Agency). Ambient Water Quality Criteria for Polynuclear Aromatic Hydrocarbons; EPA 440/5-80-069. US NTIS PB81-117806; USEPA: Washington, DC, USA, 1980. [Google Scholar]
- McGrath, J.A.; Joshua, N.; Bess, A.S.; Parkerton, T.F. Review of Polycyclic Aromatic Hydrocarbons (PAHs) Sediment Quality Guidelines for the Protection of Benthic Life. Integr. Environ. Assess. Manag. 2019, 15, 505–518. [Google Scholar] [CrossRef] [Green Version]
- Bihari, N.; Najdek, M.; Floris, R.; Batel, R.; Zahn, R.K. Sediment toxicity assessment using bacterial bioluminescence: Effect of an unusual phytoplankton bloom. Mar. Ecol. Prog. Ser. 1989, 57, 307–310. [Google Scholar] [CrossRef]
- USEPA. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors; OSWER Directive 9200; USEPA: Washington, DC, USA, 2014; pp. 1–120. Available online: https://www.epa.gov/sites/default/files/2015-11/documents/oswer_directive_9200.1120_exposurefactors_corrected2.pdf (accessed on 8 March 2023).
- Deelaman, W.; Choochuay, C.; Pongpiachan, S.; Han, Y. Ecological and health risks of polycyclic aromatic hydrocarbons in the sediment core of Phayao Lake, Thailand. J. Environ. Expo. Assess. 2023, 2, 3. [Google Scholar] [CrossRef]
- Cao, Y.; Lin, C.; Zhang, X.; Liu, X.; He, M.; Ouyang, W. Distribution, source, and ecological risks of polycyclic aromatic hydrocarbons in Lake Qinghai, China. Environ. Pollut. 2020, 266, 115401. [Google Scholar] [CrossRef] [PubMed]
- Delistraty, D. Toxic equivalency factor approach for risk assessment of polycyclic aromatic hydrocarbons. Toxicol. Environ. Chem. 1997, 64, 81–108. [Google Scholar] [CrossRef]
- Lin, T.; Qin, Y.; Zhen, B.; Li, Y.; Chen, Y.; Guo, Z. Source apportionment of polycyclic aromatic hydrocarbons in the Dahuofang Reservoir, Northeast China. Environ. Monit. Assess. 2013, 185, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Mandić, J.; Tronczynski, J.; Kušpilić, G. Polycyclic aromatic hydrocarbons in surface sediments of the mid- Adriatic and along the Croatian coast: Levels, distributions and Sources. Environ. Pollut. 2018, 242, 519–527. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Positive Matrix Factorization (PMF) 5.0 Fundamentals & User Guide; USEPA: Washington, DC, USA, 2014. Available online: http://www.epa.gov/heasd/research/pmf.html (accessed on 14 February 2023).
- Joint Research Centre, Institute for Environment and Sustainability; Comero, S.; Gawlik, B.; Capitani, L. Positive Matrix Factorisation (PMF)—An Introduction to the Chemometric Evaluation of Environmental Monitoring Data Using PMF; Publications Office: Tokyo, Japan, 2011; Available online: https://data.europa.eu/doi/10.2788/2497 (accessed on 8 March 2023).
- Tronczyński, J.; Munschy, C.; Moisan, K.; Guiot, N.; Truquet, I.; Olivier, N.; Men, S.; Furaut, A. Contamination of the Bay of Biscay by polycyclic aromatic hydrocarbons (PAHs) following the T/V “Erika” oil spill. Aquat. Living Resour. 2004, 17, 243–259. [Google Scholar] [CrossRef] [Green Version]
- Lipiatou, E.; Tolosa, I.; Simo, R.; Bouloubassi, I.; Dachs, J.; Marti, S.; Sicre, M.A.; Bayona, J.M.; Grimalt, J.O.; Salliot, A.; et al. Mass budget and dynamics of polycyclic aromatic hydrocarbons in the Mediterranean sea. Deep-Sea Res. 1997, 44, 881–905. [Google Scholar] [CrossRef]
- Wakeham, S.G. Aliphatic and polycyclic aromatic hydrocarbons in Black Sea sediments. Mar. Chem. 1996, 53, 187–205. [Google Scholar] [CrossRef]
- Soclo, H.H.; Garrigues, P.H.; Ewald, M. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal and marine sediments: Case studies in Cotonou (Benin) and Aquitane (France) Areas. Mar. Pollut. Bull. 2000, 40, 387–396. [Google Scholar] [CrossRef]
- Witt, G. Occurrence and transport of polycyclic aromatic hydrocarbons in the water bodies of the Baltic Sea. Mar. Chem. 2002, 79, 49–66. [Google Scholar] [CrossRef]
- De Luca, G.; Furesi, A.; Leardi, R.; Micera, G.; Panzanelli, A.; Piu, P.C.; Sanna, G. Polycyclic aromatic hydrocarbons assessment in the sediments of the Porto Tores Harbor (Northern Sardinia, Italy). Mar. Chem. 2004, 86, 15–32. [Google Scholar] [CrossRef]
- Ponce-Vélez, G.; Botello, A.V.; Díaz-González, G. Organic and inorganic pollutants in marine sediments from northern and southern continental shelf of the Gulf of Mexico. Inter. J. Environ. Pollut. 2006, 26, 295–311. [Google Scholar] [CrossRef]
- Bjørseth, A.; Ramdahl, T. Handbook of Polycyclic Aromatic Hydrocarbons; Bjorseth, A., Ed.; Marcel Dekker: New York, NY, USA, 1985; Volume 2, p. 416. [Google Scholar]
- Lima, A.L.; Farrington, W.J.; Reddy, C.M. Combustion-derived polycyclic aromatic hydrocarbons in the environment—A review. Environ. Forensics 2005, 6, 109–131. [Google Scholar] [CrossRef]
- Khalili, N.R.; Scheff, P.A.; Holsen, T.M. PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels and wood combustion emissions. Atmos. Environ. 1995, 29, 533–542. [Google Scholar] [CrossRef]
- Mifka, B.; Vučetić, V. Weather analysis during extreme forest fire on island of Brač from 14 to 17 July 2011. Vatrog. I Upravlj. Požarima 2012, 1, 13–25. Available online: https://hrcak.srce.hr/103617 (accessed on 22 May 2023).
- Stout, S.A.; Uhler, A.D.; Emsbo-Mattingly, S.D. Comparative evaluation of background anthropogenic hydrocarbons in surficial sediments from Nine urban waterways. Environ. Sci. Technol. 2004, 38, 2987–2994. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fingas, M.; Blenkinsopp, S.; Sergy, G.; Landriault, M.; Sigouin, L. Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J. Chromatogr. A 1998, 809, 89–107. [Google Scholar] [CrossRef]
- Mandić, J.; Veža, J.; Kušpilić, G. Assessment of environmental risk related to the polycyclic aromatic hydrocarbons (PAH) in the sediments along the eastern Adriatic coast. Acta Adriat. 2022, 63, 135–150. [Google Scholar] [CrossRef]
PAH Compound | Toxic Equivalent Factor—TEF |
---|---|
Naphtalene * | 0.001 |
Acenaphtene * | 0.001 |
Acenaphtylene | 0.001 |
Fluorene | 0.001 |
Phenanthrene * | 0.001 |
Anthracene | 0.001 |
Fluoranthene * | 0.001 |
Pyrene | 0.001 |
Benzo[a]anthracene * | 0.1 |
Chrysene * | 0.001 |
Benzo[b]fluoranthene | 0.1 |
Benzo[k]fluoranthene * | 0.1 |
Benzo[a]pyrene * | 1 |
Indeno [1,2,3-cd]pyrene | 0.1 |
Dibenzo[a,h]pyrene | 1 |
Benzo[ghi]perylene * | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandić, J.; Veža, J.; Kušpilić, G. Application of Positive Matrix Factorization for Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAH) in the Adriatic Sea, and the Evaluation of PAH-Related Carcinogenic Risks. Appl. Sci. 2023, 13, 6992. https://doi.org/10.3390/app13126992
Mandić J, Veža J, Kušpilić G. Application of Positive Matrix Factorization for Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAH) in the Adriatic Sea, and the Evaluation of PAH-Related Carcinogenic Risks. Applied Sciences. 2023; 13(12):6992. https://doi.org/10.3390/app13126992
Chicago/Turabian StyleMandić, Jelena, Jere Veža, and Grozdan Kušpilić. 2023. "Application of Positive Matrix Factorization for Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAH) in the Adriatic Sea, and the Evaluation of PAH-Related Carcinogenic Risks" Applied Sciences 13, no. 12: 6992. https://doi.org/10.3390/app13126992
APA StyleMandić, J., Veža, J., & Kušpilić, G. (2023). Application of Positive Matrix Factorization for Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAH) in the Adriatic Sea, and the Evaluation of PAH-Related Carcinogenic Risks. Applied Sciences, 13(12), 6992. https://doi.org/10.3390/app13126992