A Percentile Method to Determine Cold Days and Spells in Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Data Quality Control
2.3.2. Calculation of Percentiles and Cold Days
2.3.3. Recalculation of Cold Days and Spells
2.3.4. Trend Analysis of Cold Days and Spells
3. Results
3.1. Primary Estimation of Cold Days
3.2. Final Estimation of Cold Days
Cold Days Category
3.3. Determination of Cold Spells
Cold Spells Category
3.4. Trends in Cold Days and Spells
4. Discussion
- Therefore, it warrants declaring the cold days and spells in Bangladesh using a revised and effective method such as 10P for better preparedness and to save vulnerable lives.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medina-Ramón, M.; Schwartz, J. Temperature, temperature extremes, and mortality: A study of acclimatisation and effect modification in 50 US cities. Occup. Environ. Med. 2007, 64, 827–833. [Google Scholar] [CrossRef] [Green Version]
- Curriero, F.C.; Heiner, K.S.; Samet, J.M.; Zeger, S.L.; Strug, L.; Patz, J.A. Temperature and mortality in 11 cities of the eastern United States. Am. J. Epidemiol. 2002, 155, 80–87. [Google Scholar] [CrossRef]
- Rosselló, J.; Becken, S.; Santana-Gallego, M. The effects of natural disasters on international tourism: A global analysis. Tour. Manag. 2020, 79, 104080. [Google Scholar] [CrossRef]
- Alam, M.M.; Mahtab, A.S.M.; Ahmed, M.R.; Hassan, Q.K. Developing a Cold-Related Mortality Database in Bangladesh. Int. J. Environ. Res. Public Health 2022, 19, 12175. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Jiang, F.; Peng, L.; Zhang, J.; Geng, F.; Xu, J.; Zhen, C.; Shen, X.; Tong, S. The association between cold spells and pediatric outpatient visits for Asthma in Shanghai, China. PLoS ONE 2012, 7, e42232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kysely, J.; Pokorna, L.; Kyncl, J.; Kriz, B. Excess cardiovascular mortality associated with cold spells in the Czech Republic. BMC Public Health 2009, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.W.; Lebow, J.M.; Bierer, M.F.; O’Connell, J.J.; Orav, E.J.; Brennan, T.A. Risk factors for death in homeless adults in Boston. Arch. Intern. Med. 1998, 158, 1454–1460. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Yang, C.; Chu, C.; Li, T.; Tan, J.; Kan, H. The impact of the 2008 cold spell on mortality in Shanghai, China. Int. J. Biometeorol. 2013, 57, 179–184. [Google Scholar] [CrossRef]
- Vuillermoz, C.; Aouba, A.; Grout, L.; Vandentorren, S.; Tassin, F.; Moreno-Betancur, M.; Jougla, É.; Rey, G. Mortality among homeless people in France, 2008–2010. Eur. J. Public Health 2016, 26, 1028–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalkstein, L.S.; Smoyer, K.E. The impact of climate change on human health: Some international implications. Experientia 1993, 49, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Montero, J.C.; Mirón, I.J.; Criado-Álvarez, J.J.; Linares, C.; Díaz, J. Mortality from cold waves in Castile—La Mancha, Spain. Sci. Total Environ. 2010, 408, 5768–5774. [Google Scholar] [CrossRef]
- Guo, S.; Yan, D.; Gui, C. The typical hot year and typical cold year for modeling extreme events impacts on indoor environment: A generation method and case study. Build. Simul. 2020, 13, 543–558. [Google Scholar] [CrossRef]
- Hu, Y.; He, Y.; Dong, W. Changes in temperature extremes based on a 6-hourly dataset in China from 1961–2005. Adv. Atmos. Sci. 2009, 26, 1215–1225. [Google Scholar] [CrossRef]
- Staddon, P.L.; Montgomery, H.E.; Depledge, M.H. Climate warming will not decrease winter mortality. Nat. Clim. Chang. 2014, 4, 190–194. [Google Scholar] [CrossRef]
- IPCC AR5 Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: New York, NY, USA, 2013; Volume 9781107057, ISBN 9781107415324. [Google Scholar]
- Donaldson, G.C.; Ermakov, S.P.; Komarov, Y.M.; McDonald, C.P.; Keatinge, W.R. Cold related mortalities and protection against cold in Yakutsk, eastern Siberia: Observation and interview study. Br. Med. J. 1998, 317, 978–982. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Yao, Z.; Zhang, Y.; Xu, Y.; Xu, X.; Liu, T.; Lin, H.; Lao, X.; Rutherford, S.; Chu, C.; et al. Short-term effects of the 2008 cold spell on mortality in three subtropical cities in Guangdong province, China. Environ. Health Perspect. 2013, 121, 210–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domonkos, P.; Kyselý, J.; Piotrowicz, K.; Petrovic, P.; Likso, T. Variability of extreme temperature events in south-central Europe during the 20th century and its relationship with large-scale circulation. Int. J. Climatol. 2003, 23, 987–1010. [Google Scholar] [CrossRef]
- Huynen, M.M.T.E.; Martens, P.; Schram, D.; Weijenberg, M.P.; Kunst, A.E. The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ. Health Perspect. 2001, 109, 463–470. [Google Scholar] [CrossRef]
- Sun, R.; Chen, L. How can urban water bodies be designed for climate adaptation? Landsc. Urban Plan. 2012, 105, 27–33. [Google Scholar] [CrossRef]
- All India Multi-Hazard Winter Weather Warnings Bulletin; Governement of India: New Delhi, India, 2020.
- Chen, J.; Yang, J.; Zhou, M.; Yin, P.; Wang, B.; Liu, J.; Chen, Z.; Song, X.; Ou, C.Q.; Liu, Q. Cold spell and mortality in 31 Chinese capital cities: Definitions, vulnerability and implications. Environ. Int. 2019, 128, 271–278. [Google Scholar] [CrossRef]
- Hassan, Q.K.; Rahman, K.M. Remote sensing-based determination of understory grass greening stage over boreal forest. J. Appl. Remote Sens. 2013, 7, 073578. [Google Scholar] [CrossRef]
- Sekhon, N.S.; Hassan, Q.K.; Sleep, R.W. Evaluating potential of MODIS-based indices in determining “snow gone” stage over forest-dominant regions. Remote Sens. 2010, 2, 1348–1363. [Google Scholar] [CrossRef] [Green Version]
- Vardoulakis, E.; Karamanis, D.; Fotiadi, A.; Mihalakakou, G. The urban heat island effect in a small Mediterranean city of high summer temperatures and cooling energy demands. Sol. Energy 2013, 94, 128–144. [Google Scholar] [CrossRef]
- Karmakar, S. Patterns of climate change and its impacts in Northwestern Bangladesh. J. Eng. Sci. 2019, 10, 33–48. [Google Scholar]
- Khatun, M.A.; Rashid, M.B.; Hygen, H.O. Climate of Bangladesh; no. 08/2016; Norwegian Meteorological Institute, and Bangladesh Meteorological Department: Dhaka, Bangladesh, 2016; 159 p., ISSN 2387-4201.
- Alam, M.M.; Mahtab, A.S.M.; Ahmed, M.R.; Hassan, Q.K. Characterizing Cold Days and Spells and Their Relationship with Cold-Related Mortality in Bangladesh. Sensors 2023, 23, 2832. [Google Scholar] [CrossRef] [PubMed]
- Burić, D.; Doderović, M. Trend of Percentile Climate Indices in Montenegro in the Period 1961–2020. Sustainability 2022, 14, 12519. [Google Scholar] [CrossRef]
- Fu, D.; Ding, Y. The study of changing characteristics of the winter temperature and extreme cold events in China over the past six decades. Int. J. Climatol. 2021, 41, 2480–2494. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Chen, C. Substantial decrease in concurrent meteorological droughts and consecutive cold events in Huai River Basin, China. Int. J. Climatol. 2021, 41, 6065–6083. [Google Scholar] [CrossRef]
- Ceccherini, G.; Russo, S.; Ameztoy, I.; Patricia Romero, C.; Carmona-Moreno, C. Magnitude and frequency of heat and cold waves in recent decades: The case of South America. Nat. Hazards Earth Syst. Sci. 2016, 16, 821–831. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, T.; Hu, M.; Zeng, W.; Zhang, Y.; Rutherford, S.; Lin, H.; Xiao, J.; Yin, P.; Liu, J.; et al. The impact of cold spells on mortality and effect modification by cold spell characteristics. Sci. Rep. 2016, 6, 38380. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Barnett, A.G.; Wang, X.; Tong, S. Effects of extreme temperatures on years of life lost for cardiovascular deaths: A time series study in Brisbane, Australia. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 609–614. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.K.; Ho, T.J.; Wang, Y.C. Mortality risk associated with temperature and prolonged temperature extremes in elderly populations in Taiwan. Environ. Res. 2011, 111, 1156–1163. [Google Scholar] [CrossRef]
- Revich, B.A.; Shaposhnikov, D.A. Extreme temperature episodes and mortality in Yakutsk, East Siberia. Rural Remote Health 2010, 10, 1338. [Google Scholar] [CrossRef] [PubMed]
- Revich, B.; Shaposhnikov, D. Excess mortality during heat waves and cold spells in Moscow, Russia. Occup. Environ. Med. 2008, 65, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Barnett, A.G.; Hajat, S.; Gasparrini, A.; Rocklöv, J. Cold and heat waves in the United States. Environ. Res. 2012, 112, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shi, L.; Zanobetti, A.; Schwartz, J.D. Estimating and projecting the effect of cold waves on mortality in 209 US cities. Environ. Int. 2016, 94, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Choi, H.M.; Lee, J.Y.; Kim, D.H.; Honda, Y.; Kim, H. Temporal changes in mortality impacts of heat wave and cold spell in Korea and Japan. Environ. Int. 2018, 116, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Lavaysse, C.; Naumann, G.; Alfieri, L.; Salamon, P.; Vogt, J. Predictability of the European heat and cold waves. Clim. Dyn. 2019, 52, 2481–2495. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Statistical Year Book Bangladesh 2020; Bangladesh Bureau of Statistics: Dhaka, Bangladesh, 2021.
- Islam, M.N.; Uyeda, H. Comparison of TRMM 3B42 products with surface rainfall over Bangladesh. In Proceedings of the IEEE 2005 International Geoscience and Remote Sensing Symposium (IGARSS’05), Seoul, Republic of Korea, 29 July 2005; Institute of Electrical and Electronics Engineers Inc.: Seoul, Republic of Korea, 2005; Volume 6, pp. 4112–4115. [Google Scholar]
- Banglapedia National Encyclopedia of Bangladesh. Bangladesh Geography. Available online: https://en.banglapedia.org/index.php?title=Bangladesh_Geography (accessed on 5 August 2021).
- Shahid, S.; Khairulmaini, O.S. Spatio-Temporal Variability of Rainfall over Bangladesh During the Time Period 1969–2003. Asia-Pacific J. Atmos. Sci. 2009, 45, 375–389. [Google Scholar]
- Alamgir, M.; Ahmed, K.; Homsi, R.; Dewan, A.; Wang, J.J.; Shahid, S. Downscaling and Projection of Spatiotemporal Changes in Temperature of Bangladesh. Earth Syst. Environ. 2019, 3, 381–398. [Google Scholar] [CrossRef]
- Rashid, H.E. Geography of Bangladesh; Routledge: New York, NY, USA; Oxon, UK, 2019; ISBN 978-0-367-01823-8. [Google Scholar]
- OCHA Bangladesh—Subnational Administrative Boundaries. Available online: https://data.humdata.org/dataset/cod-ab-bgd (accessed on 3 April 2023).
- Climpact. Available online: https://climpact-sci.org/ (accessed on 5 April 2023).
- World Meteorological Organization (WMO). Guidelines on the Defintion and Characterization of Extreme Weather and Climate Events; WMO-No. 13: Publications Board, WMO: Geneva, Switzerland, 2023; ISBN 978-92-63-11310-8. [Google Scholar]
- Baten, N.; Hossain, M.A.; Rahman, M.H.; Rahman, M.A. Cold wave condition over Bangladesh for the period of 1988-2017. Dew Drop 2022, 8, 141–151. [Google Scholar]
- The Daily Ittefaq Lowest Temperature Recorded in Chuadanga. Available online: https://en.ittefaq.com.bd/3806/Lowest-temperature-recorded-in-Chuadanga (accessed on 17 April 2023).
Reference | Period | Region/Country | Temperature | Percentile | Data Used | Defining a Cold Spell |
---|---|---|---|---|---|---|
[17] | 2006–2009 | Guangdong, China | Tmin | 5th | 3 cities | Cold days continue for ≥5 consecutive days. |
[11] | 1975–2003 | Castile—La Mancha, Spain | 5th | 5 weather stations | Tmin < 5th percentile, differs from station to station. | |
[30] | 1961–2018 | China | 5th | 1629 weather stations | Cold days continue for more than 3 days. | |
[31] | 1961–2018 | Huai River Basin, China | 10th | 134 weather stations | Cold days continue for at least 3 consecutive days. | |
[32] | 1981–2014 | South America | 10th | 851 GSOD station data | Cold days continue for 3 consecutive days. | |
[12] | 2007–2009 | Shanghai, China | Tavg | 5th | 1 weather station | Cold days continue for at least 4 consecutive days. |
[33] | 2006–2011 | China | 5th | 66 communities | Cold days continue for 2 consecutive days. | |
[22] | 2007–2013 | China | 5th | 31 provincial capitals | Cold days continue at least 2 consecutive days. | |
[34] | 1996–2004 | Brisbane, Australia | 1st | 1 weather station | Cold days continue for 2–4 consecutive days. | |
[35] | 1994–2007 | Taiwan | 1st or 5th or 10th | 4 cities | Cold days for 2–3 and >3 days for 1st percentile; and 3–8 days and >8 days for 5th and 10th percentiles. | |
[8] | 2001–2009 | Shanghai, China | 3rd | 1 weather station | Two categories: cold days continue for at least 5 and 7 consecutive days. | |
[36] | 1999–2007 | Yakutsk, East Siberia | 1st and 3rd | 1 weather station | Cold days continue for ≥9 and ≥3 consecutive days with 3rd and 1st percentiles. | |
[37] | 2000–2006 | Moscow, Russia | 1st and 3rd | 1 weather station | Cold days continue for ≥9 and ≥6 consecutive days with 3rd and 1st percentiles. | |
[38] | 1987–2000 | USA | 1st to 5th | 99 cities | Cold days continue for 2 or more consecutive days. | |
[39] | 1962–2006 | USA | 3rd and 5th | 209 cities in 9 climatic regions | Cold days continue for 2, 3, or at least 4 consecutive days. | |
[40] | 1992–2015 | Korea and Japan | 1st or 3rd or 5th | 47 prefectures (Japan) and 6 cities (Korea) | Cold days for 2 or more consecutive days. | |
[22] | 2007–2013 | China | Tmin or Tavg | 3rd or 5th | 31 capital cities | Cold days for 2–5 consecutive days; 5th percentile and 2 consecutive days were more suitable. |
[41] | 1995–2015 | Europe | Tmin and Tmax | 10th | Extended ensemblesystem of ECMWF; model resolution 32 km (T639). | Cold days continue for at least 3 consecutive days. |
Period | Station | Days/Decade | CL | Period | Station | Days/Decade | CL |
---|---|---|---|---|---|---|---|
11–20 December | Dinajpur | 1.88 | 99 | December | Dinajpur | 2.86 | 95 |
Rangpur | 0.45 | 95 | Rangpur | 2.86 | 90 | ||
Rajshahi | 1.14 | 90 | Rajshahi | 3.33 | 90 | ||
Bogura | 0.57 | 95 | Jessore | 2.68 | 90 | ||
Ishwardi | 1.43 | 95 | Khulna | 0.91 | 90 | ||
Mymensingh | 1.18 | 99 | Satkhira | 2.40 | 90 | ||
21–31 December | Madaripur | 1.60 | 90 | Madaripur | 3.33 | 95 | |
Bhola | 1.85 | 95 | Mymensingh | 3.25 | 95 | ||
Feni | 1.43 | 90 | Barisal | 1.72 | 90 | ||
1–10 January | Satkhira | −0.67 | 90 | Bhola | 3.04 | 95 | |
Chandpur | −1.03 | 90 | Khepupara | 1.34 | 90 | ||
M. Court | −0.29 | 90 | Feni | 2.00 | 95 | ||
Sitakunda | 1.21 | 90 |
Station Name | 5 January | 6 January | 7 January | ||||||
---|---|---|---|---|---|---|---|---|---|
SD | 10P | BMD | SD | 10P | BMD | SD | 10P | BMD | |
Dinajpur | Mi | Mi | Mi | ||||||
Rangpur | |||||||||
Bogura | Ve | Mi | Mo | Ve | Mo | ||||
Rajshahi | Mo | Mo | Mi | Ve | Ve | Ve | Ve | Mi | |
Ishurdi | Ve | Ve | Mi | Mo | Mo | Ve | Ve | Mi | |
Mymensingh | Mi | Mi | Mo | Mo | Ve | Ve | Mi | ||
Sylhet | |||||||||
Sreemangal | Mi | Mi | |||||||
Dhaka | Mi | Mo | Se | Se | |||||
Faridpur | Mi | Ve | Ve | Ex | Ex | Mi | |||
Madaripur | Ve | Ve | Se | Se | Ex | Ex | Mi | ||
Jessore | Mo | Mo | Mi | Mi | Mi | Mi | Ex | Ex | Mi |
Khulna | Mi | Mi | Mi | Mi | Se | Se | |||
Satkhira | Mi | Mi | Mi | Mi | Se | Se | Mi | ||
Barisal | Mo | Mi | Mo | Ve | Mi | ||||
Bhola | Mi | Mi | Ve | Ve | |||||
Patuakhali | |||||||||
Khepupara | |||||||||
Comilla | Mo | Mo | Ve | Ve | Ve | Ve | |||
Chandpur | Mi | Mi | Ve | Ve | Ve | Ve | |||
Feni | Mi | Mi | Mo | Mo | Mi | Mi | |||
M. Court | Mi | Mi | Mi | Mi | |||||
Hatiya | |||||||||
Sandwip | |||||||||
Sitakunda | |||||||||
Chattogram | |||||||||
Rangamati | |||||||||
Cox’s Bazaar | |||||||||
Teknaf |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.M.; Mahtab, A.S.M.; Ahmed, M.R.; Hassan, Q.K. A Percentile Method to Determine Cold Days and Spells in Bangladesh. Appl. Sci. 2023, 13, 7030. https://doi.org/10.3390/app13127030
Alam MM, Mahtab ASM, Ahmed MR, Hassan QK. A Percentile Method to Determine Cold Days and Spells in Bangladesh. Applied Sciences. 2023; 13(12):7030. https://doi.org/10.3390/app13127030
Chicago/Turabian StyleAlam, Md. Mahbub, A. S. M. Mahtab, M. Razu Ahmed, and Quazi K. Hassan. 2023. "A Percentile Method to Determine Cold Days and Spells in Bangladesh" Applied Sciences 13, no. 12: 7030. https://doi.org/10.3390/app13127030
APA StyleAlam, M. M., Mahtab, A. S. M., Ahmed, M. R., & Hassan, Q. K. (2023). A Percentile Method to Determine Cold Days and Spells in Bangladesh. Applied Sciences, 13(12), 7030. https://doi.org/10.3390/app13127030