Potential and Benefit of Green Roof Energy Renovation of Existing Residential Buildings with a Flat Roof in Belgrade
Abstract
:1. Introduction
2. An Overview of the Impacts of Green Roofs
3. Costs and Benefits of Green Roof
4. Application of Green Roof on the Existing Building
Model and Parameters
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Berardi, U. Building Energy Consumption in US, EU, and BRIC Countries. Procedia Eng. 2015, 118, 128–136. [Google Scholar]
- Todorovic, M.; Rajčić, A. Energy Efficiency Manual for Buildings; GIZ—Deutsche Gesellschaft fur Internationale Zusammenarbeit: Belgrade, Serbia, 2017. [Google Scholar]
- United Nations Department of Economic and Social Affairs. World Urbanization Prospects The 2018 Revision; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Manzoor, B.; Othman, I.; Sadowska, B.; Sarosiek, W. Zero-Energy Buildings and Energy Efficiency towards Sustainability: A Bibliometric Review and a Case Study. Appl. Sci. 2022, 12, 2136. [Google Scholar] [CrossRef]
- Felius, L.C.; Dessen, F.; Hrynyszyn, B.D. Retrofitting towards Energy-Efficient Homes in European Cold Climates: A Review. Energy Effic. 2020, 13, 101–125. [Google Scholar] [CrossRef]
- Raji, B.; Tenpierik, M.J.; Van Den Dobbelsteen, A. The Impact of Greening Systems on Building Energy Performance: A Literature Review. Renew. Sustain. Energy Rev. 2015, 45, 610–623. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, K. Green Roofs: A Critical Review on the Role of Components, Benefits, Limitations and Trends. Renew. Sustain. Energy Rev. 2016, 57, 740–752. [Google Scholar] [CrossRef]
- Saadatian, O.; Sopian, K.; Salleh, E.; Lim, C.H.; Riffat, S.; Saadatian, E.; Toudeshki, A.; Sulaiman, M.Y. A Review of Energy Aspects of Green Roofs. Renew. Sustain. Energy Rev. 2013, 23, 155–168. [Google Scholar] [CrossRef]
- Castleton, H.F.; Stovin, V.; Beck, S.B.M.; Davison, J.B. Green Roofs; Building Energy Savings and the Potential for Retrofit. Energy Build. 2010, 42, 1582–1591. [Google Scholar] [CrossRef]
- D’Orazio, M.; Di Perna, C.; Di Giuseppe, E. Green Roof Yearly Performance: A Case Study in a Highly Insulated Building under Temperate Climate. Energy Build. 2012, 55, 439–451. [Google Scholar] [CrossRef]
- Sokołowski, P.; Nawalany, G. Analysis of Energy Exchange with the Ground in a Two-Chamber Vegetable Cold Store, Assuming Different Lengths of Technological Break, with the Use of a Numerical Calculation Method—A Case Study. Energies 2020, 13, 4970. [Google Scholar] [CrossRef]
- Bevilacqua, P. The Effectiveness of Green Roofs in Reducing Building Energy Consumptions across Different Climates. A Summary of Literature Results. Renew. Sustain. Energy Rev. 2021, 151, 111523. [Google Scholar] [CrossRef]
- Bianchini, F.; Hewage, K. Probabilistic Social Cost-Benefit Analysis for Green Roofs: A Lifecycle Approach. Build. Environ. 2012, 58, 152–162. [Google Scholar] [CrossRef]
- Ulubeyli, S.; Arslan, V. Economic Viability of Extensive Green Roofs through Scenario and Sensitivity Analyses: Clients’ Perspective. Energy Build. 2017, 139, 314–325. [Google Scholar] [CrossRef]
- Clark, C.; Adriaens, P.; Talbot, F.B. Green Roof Valuation: A Probabilistic Economic Analysis of Environmental Benefits. Environ. Sci. Technol. 2008, 42, 2155–2161. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.L.S.; Chow, T.T. Energy and Economic Performance of Green Roof System under Future Climatic Conditions in Hong Kong. Energy Build. 2013, 64, 182–198. [Google Scholar] [CrossRef]
- Jovanovic, M.; Ignjatovic, D.; Radivojević, A.; Rajcic, A. Atlas of Multifamily Housing in Serbia Energy Efficiency in Public Buildings View Project Creating the Network of Knowledge Labs for Sustainable and Resilient Environments-KLABS View Project; Faculty of Architecture, University of Belgrade, GIZ—Deutsche Gesellschaft für Internationale Zusammenarbeit: Belgrade, Serbia, 2013. [Google Scholar]
- Amoruso, G.; Donevska, N.; Skomedal, G. German and Norwegian Policy Approach to Residential Buildings’ Energy Efficiency—A Comparative Assessment. Energy Effic. 2018, 11, 1375–1395. [Google Scholar] [CrossRef]
- Palm, J.; Reindl, K. Understanding Barriers to Energy-Efficiency Renovations of Multifamily Dwellings. Energy Effic. 2018, 11, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Peck, S.W.; Callaghan, C.; Kuhn, M.E.; Arch, B.; Bass, B. Greenbacks from Green Roofs: Forging a New Industry in Canada; Peck & Associates: Wellesley, MA, USA, 1999. [Google Scholar]
- Crncevic, T.; Sekulic, M. Green Roofs in the Context of Climate Changes—Review of New Experience. Arhit. i Urban. 2012, 36, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Liberalesso, T.; Oliveira Cruz, C.; Matos Silva, C.; Manso, M. Green Infrastructure and Public Policies: An International Review of Green Roofs and Green Walls Incentives. Land Use Policy 2020, 96, 104693. [Google Scholar] [CrossRef]
- Ngan, G. Green Roof Policies: Tools for Encouraging Sustainable Design; British Columbia Society of Landscape Architects: Vancouver, BC, Canada, 2004. [Google Scholar]
- Novikova, A.; Csoknyai, T.; Szalay, Z. Low Carbon Scenarios for Higher Thermal Comfort in the Residential Building Sector of South Eastern Europe. Energy Effic. 2018, 11, 845–875. [Google Scholar] [CrossRef] [Green Version]
- Dehnhardt, A.; Grothmann, T.; Wagner, J. Cost-Benefit Analysis: What Limits Its Use in Policy Making and How to Make It More Usable? A Case Study on Climate Change Adaptation in Germany. Environ. Sci. Policy 2022, 137, 53–60. [Google Scholar] [CrossRef]
- Feng, H.; Hewage, K.N. Economic Benefits and Costs of Green Roofs. In Nature Based Strategies for Urban and Building Sustainability; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 307–318. ISBN 9780128123249. [Google Scholar]
- Manso, M.; Teotónio, I.; Silva, C.M.; Cruz, C.O. Green Roof and Green Wall Benefits and Costs: A Review of the Quantitative Evidence. Renew. Sustain. Energy Rev. 2021, 135, 110111. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.H.; Cheong, D.K.W.; Yan, H.; Soh, J.; Ong, C.L.; Sia, A. The Effects of Rooftop Garden on Energy Consumption of a Commercial Building in Singapore. Energy Build. 2003, 35, 353–364. [Google Scholar] [CrossRef]
- Mahmoud, A.; Asif, M.; Hassanain, M.; Babsail, M.; Sanni-Anibire, M. Energy and Economic Evaluation of Green Roofs for Residential Buildings in Hot-Humid Climates. Buildings 2017, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Coma, J.; Pérez, G.; Castell, A.; Solé, C.; Cabeza, L.F. Green Roofs as Passive System for Energy Savings in Buildings during the Cooling Period: Use of Rubber Crumbs as Drainage Layer. Energy Effic. 2014, 7, 841–849. [Google Scholar] [CrossRef]
- Tian, Z.; Lei, Y.; Gu, X. Building Energy Impacts of Simple Green Roofs in the Hot Summer and Cold Winter Climate Zone: Suzhou as a Study Case. Procedia Eng. 2017, 205, 2918–2924. [Google Scholar] [CrossRef]
- Costanzo, V.; Evola, G.; Marletta, L. Energy Savings in Buildings or UHI Mitigation? Comparison between Green Roofs and Cool Roofs. Energy Build. 2016, 114, 247–255. [Google Scholar] [CrossRef]
- Blackhurst, M.; Hendrickson, C.; Matthews, H.S. Cost-Effectiveness of Green Roofs. J. Archit. Eng. 2010, 16, 136–143. [Google Scholar] [CrossRef]
- Stewart, I.D. Why Should Urban Heat Island Researchers Study History? Urban Clim. 2019, 30, 100484. [Google Scholar] [CrossRef]
- Kokogiannakis, G.; Tietje, A.; Darkwa, J. The Role of Green Roofs on Reducing Heating and Cooling Loads: A Database across Chinese Climates. Procedia Environ. Sci. 2011, 11, 604–610. [Google Scholar]
- Peron, F.; De Maria, M.M.; Spinazzè, F.; Mazzali, U. An Analysis of the Urban Heat Island of Venice Mainland. Sustain. Cities Soc. 2015, 19, 300–309. [Google Scholar] [CrossRef]
- Lalošević, M.D.; Komatina, M.S.; Miloš, M.V.; Rudonja, N.R. Green Roofs and Cool Materials as Retrofitting Strategies for Urban Heat Island Mitigation—Case Study in Belgrade, Serbia. Therm. Sci. 2018, 2018, 2309–2324. [Google Scholar] [CrossRef]
- Kostadinović, D.; Jovanović, M.; Bakić, V.; Stepanić, N.; Todorović, M. Experimental Investigation of Summer Thermal Performance of the Green Roof System with Mineral Wool Substrate. Build. Environ. 2022, 217, 109061. [Google Scholar] [CrossRef]
- Li, W.C.; Yeung, K.K.A. A Comprehensive Study of Green Roof Performance from Environmental Perspective. Int. J. Sustain. Built Environ. 2014, 3, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, B.; Seshadri, S.; Mathewos, E.; Gebreyesus, T. Impact of Green Roofs on Urban Living. Int. J. Curr. Eng. Technol. 2018, 8, 1656–1659. [Google Scholar]
- Kim, K.G. The Application of the Biosphere Reserve Concept to Urban Areas: The Case of Green Rooftops for Habitat Network in Seoul. Ann. N. Y. Acad. Sci. 2004, 1023, 187–214. [Google Scholar] [CrossRef] [PubMed]
- Schrader, S.; Böning, M. Soil Formation on Green Roofs and Its Contribution to Urban Biodiversity with Emphasis on Collembolans. Pedobiologia 2006, 50, 347–356. [Google Scholar] [CrossRef]
- Akther, M.; He, J.; Chu, A.; Huang, J.; van Duin, B. A Review of Green Roof Applications for Managing Urban Stormwater in Different Climatic Zones. Sustainability 2018, 10, 2864. [Google Scholar] [CrossRef] [Green Version]
- Suszanowicz, D.; Kolasa-Wiȩcek, A. The Impact of Green Roofs on the Parameters of the Environment in Urban Areas-Review. Atmosphere 2019, 10, 792. [Google Scholar] [CrossRef] [Green Version]
- Currie, B.A.; Bass, B. Estimates of Air Pollution Mitigation with Green Plants and Green Roofs Using the UFORE Model. Urban Ecosyst. 2008, 11, 409–422. [Google Scholar] [CrossRef]
- Yang, J.; Yu, Q.; Gong, P. Quantifying Air Pollution Removal by Green Roofs in Chicago. Atmos. Environ. 2008, 42, 7266–7273. [Google Scholar] [CrossRef]
- Perišić, M.; Rajšić, S.; Šoštarić, A.; Mijić, Z.; Stojić, A. Levels of PM10-Bound Species in Belgrade, Serbia: Spatio-Temporal Distributions and Related Human Health Risk Estimation. Air Qual. Atmos. Health 2017, 10, 93–103. [Google Scholar] [CrossRef]
- Francis, L.F.M.; Jensen, M.B. Benefits of Green Roofs: A Systematic Review of the Evidence for Three Ecosystem Services. Urban For. Urban Green. 2017, 28, 167–176. [Google Scholar] [CrossRef]
- Williams, K.J.H.; Lee, K.E.; Sargent, L.; Johnson, K.A.; Rayner, J.; Farrell, C.; Miller, R.E.; Williams, N.S.G. Appraising the Psychological Benefits of Green Roofs for City Residents and Workers. Urban For. Urban Green. 2019, 44, 126399. [Google Scholar] [CrossRef]
- Rahman, S.R.A.; Ahmad, H.; Rosley, M.S.F. Green Roof: Its Awareness Among Professionals and Potential in Malaysian Market. Procedia—Soc. Behav. Sci. 2013, 85, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Sproul, J.; Wan, M.P.; Mandel, B.H.; Rosenfeld, A.H. Economic Comparison of White, Green, and Black Flat Roofs in the United States. Energy Build. 2014, 71, 20–27. [Google Scholar] [CrossRef]
- Ichihara, K.; Cohen, J.P. New York City Property Values: What Is the Impact of Green Roofs on Rental Pricing? Lett. Spat. Resour. Sci. 2011, 4, 21–30. [Google Scholar] [CrossRef]
- Hekrle, M.; Liberalesso, T.; Macháč, J.; Matos Silva, C. The Economic Value of Green Roofs: A Case Study Using Different Cost–Benefit Analysis Approaches. J. Clean. Prod. 2023, 413, 137531. [Google Scholar] [CrossRef]
- Mahdiyar, A.; Tabatabaee, S.; Sadeghifam, A.N.; Mohandes, S.R.; Abdullah, A.; Meynagh, M.M. Probabilistic Private Cost-Benefit Analysis for Green Roof Installation: A Monte Carlo Simulation Approach. Urban For. Urban Green. 2016, 20, 317–327. [Google Scholar] [CrossRef]
- Mahdiyar, A.; Tabatabaee, S.; Yahya, K.; Mohandes, S.R. A Probabilistic Financial Feasibility Study on Green Roof Installation from the Private and Social Perspectives. Urban For. Urban Green. 2020, 58, 126893. [Google Scholar] [CrossRef]
- Nurmi, V.; Votsis, A.; Perrels, A.; Lehvävirta, S. Cost-Benefit Analysis of Green Roofs in Urban Areas: Case Study in Helsinki; Ilmatieteen Laitos: Helsinki, Finland, 2013. [Google Scholar]
- Noor, N.M.; Asmawi, M.Z.; Abdullah, A. Sustainable Urban Regeneration: GIS and Hedonic Pricing Method in Determining the Value of Green Space in Housing Area. Procedia—Soc. Behav. Sci. 2015, 170, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Cascone, S.; Catania, F.; Gagliano, A.; Sciuto, G. A Comprehensive Study on Green Roof Performance for Retrofitting Existing Buildings. Build. Environ. 2018, 136, 227–239. [Google Scholar] [CrossRef]
- Tomalty, R.; Komorowski, B. The Monetary Value of the Soft Benefits of Green Roofs; Smart Cities Research Services: Montreal, QC, Canada, 2010. [Google Scholar]
- Porsche, U.; Köhler, M. Life Cycle Cost of Green Roofs—A Comparison of Germany, USA, and Brazil; Latin American Renewable Energy Fair (LAREF): Rio de Janeiro, Brazil, 2003. [Google Scholar]
- Karteris, M.; Theodoridou, I.; Mallinis, G.; Tsiros, E.; Karteris, A. Towards a Green Sustainable Strategy for Mediterranean Cities: Assessing the Benefits of Large-Scale Green Roofs Implementation in Thessaloniki, Northern Greece, Using Environmental Modelling, GIS and Very High Spatial Resolution Remote Sensing Data. Renew. Sustain. Energy Rev. 2016, 58, 510–525. [Google Scholar] [CrossRef]
- EN 1991-1-1; Eurocode 1: Actions on Structures—Part 1-1: General Actions—Densities, Self-Weight, Imposed Loads for Buildings. British Standards Institution: London, UK, 1991.
- Dvorak, B. Comparative Analysis of Green Roof Guidelines and Standards in Europe and North America. J. Green Build. 2011, 6, 170–191. [Google Scholar] [CrossRef]
- Novikova, A.; Szalay, Z.; Feiler, J.; Jovanović, M. The Typology of the Residential Building Stock in Serbia and Modelling Its Low-Carbon Transformation. In Support for Low-Emission Development in South Eastern Europe (SLED); Regional Environmental Center: Skopje, Macedonia, 2015. [Google Scholar]
- Carter, T.; Keeler, A. Life-Cycle Cost-Benefit Analysis of Extensive Vegetated Roof Systems. J. Environ. Manag. 2008, 87, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Munby, B. Feasibility Study for the Retrofitting of Green Roofs. In Civil and Structural Engineering; University of Sheffield: Sheffield, UK, 2005. [Google Scholar]
- Eksi, M.; Rowe, D.B.; Wichman, I.S.; Andresen, J.A. Effect of Substrate Depth, Vegetation Type, and Season on Green Roof Thermal Properties. Energy Build. 2017, 145, 174–187. [Google Scholar] [CrossRef] [Green Version]
- Pianella, A.; Aye, L.; Chen, Z.; Williams, N.S.G. Substrate Depth, Vegetation and Irrigation Affect Green Roof Thermal Performance in a Mediterranean Type Climate. Sustainability 2017, 9, 1451. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Yang, Z.; Yang, J.; Tang, M.; Feng, C. An Experimental Study on the Thermal and Energy Performance of Self-Sustaining Green Roofs under Severe Drought Conditions in Summer. Energy Build. 2022, 261, 111953. [Google Scholar] [CrossRef]
- Wei, T.; Jim, C.Y.; Chen, A.; Li, X. A Random Effects Model to Optimize Soil Thickness for Green-Roof Thermal Benefits in Winter. Energy Build. 2021, 237, 111953. [Google Scholar] [CrossRef]
- Rapf, O.; Antoniou, T.; D’angiolella, R. Renovating Belgrade—A Framework for Exploring the Potential to Renovate the City of Belgrade; APO: Hawthorn, Australia, 2018. [Google Scholar]
- Firestone, M.; Fenner-Crisp, P.; Barry, T.; Bennett, D.; Chang, S.; Callahan, M.; Burke, A.; Barnes, D.; Wood, W.P.; Knott, S.M. Guiding Principles for Monte Carlo Analysis Technical Panel Office of Prevention, Pesticides, and Toxic Substances Risk Assessment Forum Staff; US Environmental Protection Agency: Washington, DC, USA, 1997. [Google Scholar]
- Saiz, S.; Kennedy, C.; Bass, B.; Pressnail, K. Comparative Life Cycle Assessment of Standard and Green Roofs. Environ. Sci. Technol. 2006, 40, 4312–4316. [Google Scholar] [CrossRef]
- Ulubeyli, S.; Arslan, V.; Kazaz, A. Comparative Life Cycle Costing Analysis of Green Roofs: The Regional Aspect. Period. Eng. Nat. Sci. 2017, 5, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Sailor, D.J. A Green Roof Model for Building Energy Simulation Programs. Energy Build. 2008, 40, 1466–1478. [Google Scholar] [CrossRef]
- Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity Index. Comput. Phys. Commun. 2010, 181, 259–270. [Google Scholar] [CrossRef]
- Iwanaga, T.; Usher, W.; Herman, J. Toward SALib 2.0: Advancing the Accessibility and Interpretability of Global Sensitivity Analyses. Socio-Environ. Syst. Model. 2022, 4, 18155. [Google Scholar] [CrossRef]
- The Committee of European Securities Regulators (CESR). Guidelines on Impact Assessment for EU Lamfalussy Level 3 Committees; ESMA: Paris, France, 2008. [Google Scholar]
Type 1—Layers | d [cm] | ρ [kg/m3] | Weight [kN/m2] | Weight [kN/m2] |
concrete or stone tiles | 3–5 | 200–2400 | above concrete laid to fall layer | above roof plate |
sand (or without) | 3 | 1800 | ||
hydro-insulation | 1–2 | 900 | q = 1.02–2.51 | q = 1.56–3.01 |
cement screed (or without) | 2–3 | 2100 | Whole roof structure Typical U [W/(m2K)] | |
thermal insulation (or without) | 3–6 | 100 | ||
concrete laid to fall (or without) | 3–5 | 2400 | 0.5, 0.85, 1.04, 1.4 | |
roof plate structure | ||||
Type 2—Layers | d [cm] | ρ [kg/m3] | Weight [kN/m2] | Weight [kN/m2] |
asphalt or gravel | 2–5 | 1800–2000 | above concrete laid to fall layer | above roof plate |
hydro-insulation | 1–2 | 900 | ||
cement screed (or without) | 2–3 | 2100 | q = 0.90–1.25 | q = 1.71–2.56 |
thermal insulation (or without) | 3–6 | 100 | Whole roof structure Typical U [W/(m2K)] | |
concrete laid to fall (or without) | 3–5 | 2400 | ||
bitumen layer (or without) | 0.5 | 900 | 0.45, 0.7, 0.85, 1.07, 1.4 | |
roof plate structure |
EGR and IGR Green Roof Layers | d [cm] | ρ [kg/m3] | c [J/kg∙K] | λ [W/mK] |
---|---|---|---|---|
Plants—LAI = 1–4 | 10–30 | - | - | - |
Vegetative substrate | 8–20 | 900 | 1000 | 0.2 |
Filter layer | 0.5 | 160 | 2500 | 0.06 |
Drainage layer | 4–6 | 800 | 920 | 0.08 |
Waterproof membrane | 0.7 | 1200 | 920 | 0.17 |
Thermal insulation | 5–10 | 90 | 990 | 0.035 |
Vapor control layer | 0.3 | 2500 | 840 | 0.055 |
Effect on Residential Unit | Current State Reference Scenario | |
---|---|---|
RU under green roof (property value increase excluded) | EGR | 1 EGR |
IGR | 1 IGR | |
Other RU (property value increase excluded) | EGR | 2 EGR |
IGR | 2 IGR | |
RU under green roof (property value increase included) | EGR | 3 EGR |
IGR | 3 IGR | |
Other RU (property value increase included) | EGR | 4 EGR |
IGR | 4 IGR |
Type | EGR [EUR/m2] | IGR [EUR/m2] | Function | Type | Time Frame |
---|---|---|---|---|---|
* Old roof removal | 10–20 | 20–35 | triangular | cost | one time |
* Installation | 80–140 | 120–170 | uniform | cost | one time |
Property value | 30–80 | 60–120 | uniform | benefit | one time |
Cooling | 0.25 | 0.65 | constant | benefit | annual |
Heating | 2 | 2.5 | constant | benefit | annual |
* Membrane longevity | 30–50 | 30–50 | uniform | benefit | one or two times |
* Operation & Maintenance | 3–8 | 5–12 | uniform | cost | annual |
Model | Energy [kWh/m2]/% Heating | Energy [kWh/m2]/% Cooling | Min | NPV [EUR/m2] Most. Prob. | Max |
---|---|---|---|---|---|
1 EGR | 25 kWh/m2/16% | 3 kWh/m2/ 8% | −16 | −7 | 3 |
1 IGR | 34 kWh/m2/22% | 8 kWh/m2/ 21% | −12 | −2 | 10 |
2 EGR | - | - | −34 | −27 | −20 |
2 IGR | - | - | −48 | −38 | −29 |
3 EGR | 25 kWh/m2/16% | 3 kWh/m2/8% | 17 | 42 | 83 |
3 IGR | 34 kWh/m2/22% | 8 kWh/m2/21% | 53 | 83 | 132 |
4 EGR | - | - | −19 | 6 | 26 |
4 IGR | - | - | −16 | 9 | 23 |
Type | 1 EGR | 1 IGR | 2 EGR | 2 IGR | 3 EGR | 3 IGR | 4 EGR | 4 IGR | |
---|---|---|---|---|---|---|---|---|---|
S1 [%] | Old roof removal | 0.136 | 0.2478 | 0.313 | 0.49 | 0.065 | 0.095 | 0.19 | 0.28 |
S2 [%] | Installation | 7.14 | 6.7 | 16.9 | 13.55 | 3.49 | 2.57 | 10.5 | 7.7 |
S3 [%] | Operation and Maintenance | 4.9 | 6.5 | 11.8 | 12.9 | 2.5 | 2.5 | 7.3 | 7.4 |
S4 [%] | Property value | 0 | 0 | 0 | 0 | 50.4 | 59.3 | 39.1 | 44.4 |
S5 [%] | Membrane longevity | 0.0833 | 0.042 | 0.24 | 0.113 | 0.053 | 0.015 | 0.14 | 0.063 |
S6 [%] | Heating | 39.7 | 34 | 0 | 0 | 19.14 | 12.9 | 0 | 0 |
S7 [%] | Cooling | 0.6 | 2.29 | 0 | 0 | 0.3 | 0.88 | 0 | 0 |
S8 [%] | Number of RU. | 26.7 | 31.7 | 63 | 63.6 | 12.85 | 12.2 | 39.2 | 36.26 |
S9 [%] | Discount rate | 18.2 | 16.7 | 5.7 | 7.46 | 11.6 | 8.7 | 2.33 | 2.85 |
S10 [%] | Gr. roof lifespan [years] | 0.5 | 0.43 | 0.0417 | 0.062 | 0.3 | 0.16 | 0.0248 | 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perovic, Z.; Coric, S.; Isakovic, S.; Sumarac, D. Potential and Benefit of Green Roof Energy Renovation of Existing Residential Buildings with a Flat Roof in Belgrade. Appl. Sci. 2023, 13, 7348. https://doi.org/10.3390/app13137348
Perovic Z, Coric S, Isakovic S, Sumarac D. Potential and Benefit of Green Roof Energy Renovation of Existing Residential Buildings with a Flat Roof in Belgrade. Applied Sciences. 2023; 13(13):7348. https://doi.org/10.3390/app13137348
Chicago/Turabian StylePerovic, Zoran, Stanko Coric, Snezana Isakovic, and Dragoslav Sumarac. 2023. "Potential and Benefit of Green Roof Energy Renovation of Existing Residential Buildings with a Flat Roof in Belgrade" Applied Sciences 13, no. 13: 7348. https://doi.org/10.3390/app13137348
APA StylePerovic, Z., Coric, S., Isakovic, S., & Sumarac, D. (2023). Potential and Benefit of Green Roof Energy Renovation of Existing Residential Buildings with a Flat Roof in Belgrade. Applied Sciences, 13(13), 7348. https://doi.org/10.3390/app13137348