Determination of Hydrogen’s Thermophysical Properties Using a Statistical Thermodynamic Method
Abstract
:1. Introduction
2. Theoretical Model and Implementation
2.1. Statistical Thermodynamic Model for Hydrogen
2.1.1. Equilibrium Ortho-H2 Fraction
2.1.2. Para-Ortho H2 Conversion Heat
2.1.3. Isobaric Heat Capacity
2.1.4. Fundamental EOSs for Hydrogen
2.2. Implementation of Different Methods for Hydrogen’s Thermophysical Properties
2.3. Analytical Model for VCS-MLI Combined Structure
2.3.1. Physical Model for VCS-MLI
2.3.2. VCS-MLI Heat Transfer Model and Its Verification
3. Results and Discussion
3.1. Accuracy of Statistical Thermodynamic Method
3.1.1. Ortho-H2 Fraction and Conversion Heat
3.1.2. Isobaric Heat Capacity and Enthalpy
3.2. Convenience of the Statistical Thermodynamic Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jacobsen, R.T.; Leachman, J.W.; Penoncello, S.G.; Lemmon, E.W. Current status of thermodynamic properties of hydrogen. Int. J. Thermophys. J. Thermophys. Prop. Thermophys. Its Appl. 2007, 28, 758–772. [Google Scholar] [CrossRef]
- Barthelemy, H.; Weber, M.; Barbier, F. Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrogen Energy 2017, 42, 7254–7262. [Google Scholar] [CrossRef]
- Aziz, M. Liquid Hydrogen: A review on liquefaction, storage, transportation, and safety. Energies 2021, 14, 5917. [Google Scholar] [CrossRef]
- Petitpas, G.; Aceves, S.M.; Matthews, M.J.; Smith, J.R. Para-H2 to ortho-H2 conversion in a full-scale automotive cryogenic pressurized hydrogen storage up to 345 bar. Int. J. Hydrogen Energy 2014, 39, 6533–6547. [Google Scholar] [CrossRef]
- Leachman, J.W.; Jacobsen, R.T.; Penoncello, S.G.; Lemmon, E.W. Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J. Phys. Chem. Ref. Data 2009, 38, 721–748. [Google Scholar] [CrossRef]
- Nasrifar, K. Comparative study of eleven equations of state in predicting the thermodynamic properties of hydrogen. Int. J. Hydrogen Energy 2010, 35, 3802–3811. [Google Scholar] [CrossRef]
- Sakoda, N.; Shindo, K.; Shinzato, K.; Kohno, M.; Takata, Y.; Fujii, M. Review of the thermodynamic properties of hydrogen based on existing equations of state. Int. J. Thermophys. J. Thermophys. Prop. Thermophys. Its Appl. 2010, 31, 276–296. [Google Scholar] [CrossRef]
- Redlich, O.; Kwong, J.N. On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Chem. Rev. 1949, 44, 233–244. [Google Scholar] [CrossRef]
- Goodwin, R.D.; Diller, D.E.; Roder, H.M.; Weber, L.A. Second and third virial coefficients for hydrogen. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 1964, 68, 121. [Google Scholar] [CrossRef]
- Goodwin, R.D.; Diller, D.E.; Roder, H.M.; Weber, L.A. Pressure-density-temperature relations of fluid para hydrogen from 15 to 100 K at pressures to 350 atmospheres. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 1963, 67, 173–192. [Google Scholar] [CrossRef]
- Goodwin, R.D. An equation of state for fluid parahydrogen from the triple-point to 100 °K at pressures to 350 atmospheres. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 1967, 71A, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Mccarty, R.D.; Weber, L.A. Thermophysical Properties of Parahydrogen from the Freezing Liquid Line to 5000 R for Pressures to 10,000 psia; NASA Center for Aerospace Information (CASI): Hanover, MD, USA, 1972.
- McCarty, R.D. A Modified Benedict-Webb-Rubin Equation of State for Parahydrogen; National Bureau of Standards: Gaithersburg, MD, USA, 1974.
- Younglove, B.A. Thermophysical Properties of Fluids. I. Argon, Ethylene, Parahydrogen, Nitrogen, Nitrogen Trifluoride, and Oxygen; National Standard Reference Data System: Boulder, CO, USA, 1982.
- Jacobsen, R.T.; Stewart, R.B.; Jahangiri, M.; Penoncello, S.G. A New Fundamental Equation for Thermodynamic Property Correlations; Springer: Boston, MA, USA, 1986. [Google Scholar]
- Jacobsen, R.T.; Penoncello, S.G.; Lemmon, E.W. Current status of thermodynamic properties of cryogenic fluids. Adv. Cryog. Eng. 1998, 43, 1273–1280. [Google Scholar]
- Kunz, O.; Klimeck, R.; Wagner, W.; Jaeschke, M. The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2007.
- Kunz, O.; Wagner, W. The GERG-2008 wide-range equation of state for natural gases and other mixtures: An expansion of GERG-2004. J. Chem. Eng. Data 2012, 57, 3032–3091. [Google Scholar] [CrossRef]
- Leachman, J.W.; Jacobsen, R.T.; Lemmon, E.W.; Penoncello, S.G. Thermodynamic Properties of Cryogenic Fluids; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Bliesner, R.M. Parahydrogen-Orthohydrogen Conversion for Boil-Off Reduction from Space Stage Fuel Systems. Ph.D. Thesis, Washington State University, Pullman, WA, USA, 2013. [Google Scholar]
- Meng, C.J.; Zhang, L.; Huang, Y.H. Analysis of cooling effect of para-ortho hydrogen conversion in vapor cooling shield. Vac. Cryog. 2022, 28, 279–284. [Google Scholar] [CrossRef]
- Jiang, W.B.; Zuo, Z.Q.; Huang, Y.H.; Wang, B.; Sun, P.J.; Li, P. Coupling optimization of composite insulation and vapor-cooled shield for on-orbit cryogenic storage tank. Cryogenics 2018, 96, 90–98. [Google Scholar] [CrossRef]
- Jiang, W.B.; Sun, P.J.; Li, P.; Zuo, Z.; Huang, Y. Transient thermal behavior of multi-layer insulation coupled with vapor cooled shield used for liquid hydrogen storage tank. Energy 2021, 231, 120859. [Google Scholar] [CrossRef]
- Wang, B.; Huang, Y.H.; Li, P.; Sun, P.J.; Chen, Z.C.; Wu, J.Y. Optimization of variable density multilayer insulation for cryogenic application and experimental validation. Cryogenics 2016, 80, 154–163. [Google Scholar] [CrossRef]
- Shi, C.Y.; Zhu, S.L.; Wan, C.C.; Bao, S.; Zhi, X.; Qiu, L.; Wang, K. Performance analysis of vapor-cooled shield insulation integrated with para-ortho hydrogen conversion for liquid hydrogen tanks. Int. J. Hydrogen Energy 2023, 48, 3078–3090. [Google Scholar] [CrossRef]
- Zheng, J.P.; Chen, L.B.; Wang, J.; Xi, X.; Zhu, H.; Zhou, Y.; Wang, J. Thermodynamic analysis and comparison of four insulation schemes for liquid hydrogen storage tank. Energy Convers. Manag. 2019, 186, 526–534. [Google Scholar] [CrossRef]
- Brown, T.M.; Hastings, L.J.; Hedayat, A. Analytical Modeling and Test Correlation of Variable Density Multilayer Insulation for Cryogenic Storage; NASA Center for Aerospace Information (CASI): Hanover, MD, USA, 2004.
- Huang, Y.H.; Wang, B.; Zhou, S.H.; Wu, J.; Lei, G.; Li, P.; Sun, P. Modeling and experimental study on combination of foam and variable density multilayer insulation for cryogen storage. Energy 2017, 123, 487–498. [Google Scholar] [CrossRef]
- Zhang, L.L.; Sun, Q.G.; Gao, X.; Liu, Y.Y.; Jiang, Y.M. Statistical thermodynamics analysis of hydrogen ortho-para conversion matters. Chin. J. Low Temp. Phys. 2016, 38, 81–84. [Google Scholar]
- Chen, G.B.; Huang, Y.H.; Bao, R. Thermophysical Properties of Cryogenic Fluids; National Defense Industry Press: Beijing, China, 2006. [Google Scholar]
Physical Parameters of VDMLI | Value |
---|---|
Material of Radiation Shields | Double-Aluminized Mylar |
Residual Gas Pressure, p | 0.001 Pa |
Accomodation Coefficient of Residual Gas, α | 0.9 |
Material of Spacers | Dacron Net |
Empirical Coefficient of Spacers, C2 | 0.008 |
Relative Density of Spacers, f | 0.02 |
Total Number of Radiation Shields, m | 43 |
Total Number of Spacers, n | 126 |
Total Thickness | 33.2 mm |
Warm Boundary Temperature, Th | 300 K |
Cold Boundary Temperature, Tc | 20 K |
Configuration Parameters of VDMLI | Value | |
---|---|---|
Layer Number of Radiation Shields | Low-Layer-Density Zone, m1 | 8 |
Medium-Layer-Density Zone, m2 | 14 | |
High-Layer-Density Zone, m3 | 21 | |
Layer Density | Low-Layer-Density Zone, d1 | 6.35 N·cm−1 |
Medium-Layer-Density Zone, d2 | 12.70 N·cm−1 | |
High-Layer-Density Zone, d3 | 19.35 N·cm−1 |
Pressure/Mpa | Maximum Deviation/% |
---|---|
0.5 | 0.0006 |
1 | 0.0021 |
2 | 0.0051 |
5 | 0.0271 |
10 | 0.2454 |
20 | 2.3129 |
Method | Average Running Time/s (14,001 Circulations) | Average Running Time/s (28,001 Circulations) |
---|---|---|
Spline Interpolation | 0.1735 | 0.3356 |
REFPROP Data | 1.6971 | 3.3626 |
Statistical Thermodynamic Calculation | 0.0716 | 0.1463 |
Case | Method | Average Running Time/s (10,001 Circulations) | Average Running Time/s (20,001 Circulations) |
---|---|---|---|
With Para-ortho Conversion | Spline Interpolation (1.1) | 0.3253 | 0.6562 |
REFPROP Data (1.2) | 56.8849 | 113.5774 | |
Statistical Thermodynamic Calculation (1.3) | 0.1077 | 0.2124 | |
Without Para-ortho Conversion | Spline Interpolation (2.1) | 0.1731 | 0.3384 |
REFPROP Data (2.2) | 1.2122 | 2.3988 | |
Integral of cp with Temperature (2.3) | 81.5196 | 163.1697 | |
Statistical Thermodynamic Calculation (2.4) | 0.0518 | 0.1039 |
Case | Method | Average Running Time/s | Number of Iterations |
---|---|---|---|
With Para-ortho Conversion | Spline Interpolation (1.1) | 0.2668 | 5198 |
REFPROP Data (1.2) | 37.0464 | 5224 | |
Statistical Thermodynamic Calculation (1.3) | 0.1030 | 5182 | |
Without Para-ortho Conversion | Spline Interpolation (2.1) | 0.1947 | 6108 |
REFPROP Data (2.2) | 1.0806 | 6137 | |
Integral of cp with Temperature (2.3) | 15.3030 | 6102 | |
Statistical Thermodynamic Calculation (2.4) | 0.0859 | 6090 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Tan, H.; Wu, H. Determination of Hydrogen’s Thermophysical Properties Using a Statistical Thermodynamic Method. Appl. Sci. 2023, 13, 7466. https://doi.org/10.3390/app13137466
Xu Z, Tan H, Wu H. Determination of Hydrogen’s Thermophysical Properties Using a Statistical Thermodynamic Method. Applied Sciences. 2023; 13(13):7466. https://doi.org/10.3390/app13137466
Chicago/Turabian StyleXu, Zhangliang, Hongbo Tan, and Hao Wu. 2023. "Determination of Hydrogen’s Thermophysical Properties Using a Statistical Thermodynamic Method" Applied Sciences 13, no. 13: 7466. https://doi.org/10.3390/app13137466
APA StyleXu, Z., Tan, H., & Wu, H. (2023). Determination of Hydrogen’s Thermophysical Properties Using a Statistical Thermodynamic Method. Applied Sciences, 13(13), 7466. https://doi.org/10.3390/app13137466