Electromagnetic Field Variation of ELF Near-Region Excited by HED in a Homogeneous Half-Space Model
Abstract
:1. Introduction
2. Propagation Model of ELF Near-Field Region Excited by HED
3. Analytical Approximate Expression of the Field Component
3.1. Quasistatic Approximate Propagation Conditions
3.1.1. Approximation of the Propagation Parameter γ2
3.1.2. Approximation When |k2| << |k1|
3.1.3. Approximation d << ρ and z << ρ
3.2. Bessel Integral Solution
3.3. Simplification of Field Component Expression
4. Spatial Distribution of EM Field Intensity in the Near-Field Region
4.1. Spatial Distribution of EM Field Intensity
4.2. Comparative Validation Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ozaki, M.; Yagitani, S.; Nagano, I.; Miyamura, K. Ionospheric penetration characteristics of ELF waves radiated from a current source in the lithosphere related to seismic activity. Radio Sci. 2009, 44, 1–12. [Google Scholar] [CrossRef]
- Zhao, G.Z.; Wang, L.F.; Ji, T.; Chen, X.B.; Zhan, Y.; Xiao, Q.B.; Wang, J.J.; Cai, J.T.; Xu, G.J.; Wan, Z.S.; et al. New experiments of CSELF electromagnetic method for earthquake monitoring. Chin. J. Geophys. 2010, 53, 479–486. [Google Scholar]
- Liu, Y.; Kong, L.; Ding, K.; Zhuo, X.J. Wireless electromagnetic method and its application in discovery of marine rource. Shipbuiding China 2019, 60, 21–27. [Google Scholar]
- Zhang, P. Application of seismic ELF electromagnetic observation in Yunnan, China. Recent Dev. World Seismol. 2019, 8, 158–159. [Google Scholar]
- Sainson, S. Electromagnetic Seabed Logging; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Yusof, A.B.M.; Kabir, S. An overview of sonar and electromagnetic waves for underwater communication. IETE Tech. Rev. 2012, 29, 307–317. [Google Scholar] [CrossRef]
- Banos, A. Dipole Radiation in the Presence of a Conducting Half-Space; Pergamon: Oxford, UK, 1966. [Google Scholar]
- King, R.W.P.; Owens, M.; Wu, T.T. Lateral Electromagnetic Waves; Springer: New York, NY, USA, 1992; pp. 151–170. [Google Scholar]
- Margetis, D.; Wu, T.T. Exactly calculable field components of electric dipoles in planar boundary. J. Math. Phys. 2001, 42, 713–745. [Google Scholar] [CrossRef]
- He, T.; Zhang, X.W.; Pan, W.Y.; Li, K. Near-field of a VLF electric dipole in an anisotropic plasma. IEEE Trans. Antennas Propag. 2019, 67, 4040–4048. [Google Scholar] [CrossRef]
- Zhima, Z.; Huang, J.; Shen, X.; Xia, Z.; Chen, L.; Piersanti, M.; Yang, Y.; Wang, Q.; Zeng, L.; Lei, J.; et al. Simultaneous observations of ELF/VLF Rising-Tone quasiperiodic waves and energetic electron precipitations in the High-Latitude upper ionosphere. JGR Space Phys. 2020, 125, 1–21. [Google Scholar] [CrossRef]
- Ghosal, S.; De, A.; Chakrabarty, A.; Shubair, R.M. Vertical dipole above the lossy dielectric half-space—A Characteristic Mode Analysis. IEEE Trans. Electromagn. Compat. 2020, 62, 2832–2841. [Google Scholar] [CrossRef]
- Sommerfeld, A.N. Propagation of waves in wireless telegraphy. Ann. Phys. 1909, 26, 665–736. [Google Scholar] [CrossRef] [Green Version]
- Margetis, D. Radiation of horizontal electric dipole on large dielectric sphere. J. Math. Phys. 2002, 43, 3162–3201. [Google Scholar] [CrossRef] [Green Version]
- Wait, J.R. Electromagnetic Waves in Stratified Media, 2nd ed.; Pergamon: New York, NY, USA, 1970. [Google Scholar]
- Pan, W.Y.; Li, K. Propagation of SLF/ELF Electromagnetic Waves, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 161–219. [Google Scholar]
- Xu, H.L.; Gu, T.T.; Li, K. Approximated solutions for ELF Near-Field propagation due to a horizontal electric dipole excitation near the Sea-rock boundary. IEEE Trans. Antennas Propag. 2018, 66, 2471–2480. [Google Scholar] [CrossRef]
- Tasic, M.S.; Kolundzija, B.M. Method of Moment weighted domain decomposition method for scattering from large platforms. IEEE Trans. Antennas Propag. 2018, 66, 3577–3589. [Google Scholar] [CrossRef]
- Xu, L.Y.; Yang, H.; Shen, R.J. Scattering analysis of multiobject electromagnetic systems using stepwise Method of Moment. IEEE Trans. Antennas Propag. 2018, 11, 1–8. [Google Scholar] [CrossRef]
- Xu, X.; Xie, H.; Luo, Z.; Wan, L. Analysis of the electrical performance of multituned VLF thirteen-tower umbrella antenna. Int. J. Antennas Propag. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Cai, H.Z.; Xiong, B.; Zhdanov, M. Three-dimensional marine controlled-source electromagnetic modelling in anisotropic medium using finite element method. Chin. J. Geophys. 2015, 58, 557–563. [Google Scholar]
- Cao, X.Y.; Yin, C.C.; Zhang, B. A goal-oriented adaptive finite-element method for 3D MT anisotropic modeling with topography. Chin. J. Geophys. 2018, 61, 2618–2628. [Google Scholar]
- Gao, J.; Wang, J.; Yi, Z. Simulation of detecting small underwater insulative target through electromagnetic field based on finite element method. Spaceraft Environ. Eng. 2022, 39, 293–297. [Google Scholar]
- Marshall, R.A.; Wallace, T.; Turbe, M. Finite-Difference Modeling of Very-Low-Frequency Propagation in the Earth-Ionosphere Waveguide. IEEE Trans. Antennas Propag. 2017, 65, 7185–7197. [Google Scholar] [CrossRef]
- Berenger, J.-P. FDTD propagation of VLF-LF waves in the presence of ions in the earth-ionosphere waveduide. Ann. Telecommun 2020, 75, 437–446. [Google Scholar] [CrossRef]
- Shahmohamadi, B.; Sarraf Shirazi, R.; Moradi, G. Analysis of dipole plasma antenna using kinetic method and FDTD numerical approach. J. Electron. Commun. 2022, 145, 154006. [Google Scholar] [CrossRef]
- Pan, W.Y. LF VLF ELF Wave Propagation; The University of Electronic Science and Technology Press: Chengdu, China, 2004; pp. 46–48. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Xie, H.; Ding, T. Electromagnetic Field Variation of ELF Near-Region Excited by HED in a Homogeneous Half-Space Model. Appl. Sci. 2023, 13, 7499. https://doi.org/10.3390/app13137499
Hu S, Xie H, Ding T. Electromagnetic Field Variation of ELF Near-Region Excited by HED in a Homogeneous Half-Space Model. Applied Sciences. 2023; 13(13):7499. https://doi.org/10.3390/app13137499
Chicago/Turabian StyleHu, Sumou, Hui Xie, and Tao Ding. 2023. "Electromagnetic Field Variation of ELF Near-Region Excited by HED in a Homogeneous Half-Space Model" Applied Sciences 13, no. 13: 7499. https://doi.org/10.3390/app13137499
APA StyleHu, S., Xie, H., & Ding, T. (2023). Electromagnetic Field Variation of ELF Near-Region Excited by HED in a Homogeneous Half-Space Model. Applied Sciences, 13(13), 7499. https://doi.org/10.3390/app13137499