Development and Evaluation of Topical Formulation Containing Agrimonia pilosa Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of A. pilosa Extract
2.3. Preparation of Formulations
2.4. Sample Preparation for Cream Formulation
2.5. Method Validation
2.6. Short-Term Evaluation of Formulations
2.7. Long-Term Evaluation of Selected Formulation
2.7.1. Physicochemical Stability
2.7.2. Microbial Stability
Total Aerobic Bacterial Count
Total Yeast Count
Pathogen Tests
3. Results
3.1. Summary of Validation
3.2. Short-Term Stability Evaluation of Formulations
3.3. Stability of Cream Formulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tamrakar, B.; Sharma, R.; Rathi, J.C. Pharmacology screening of Scutia myrtina for antipyretic activity. Int. J. Pharm. Sci. Res. 2021, 9, 74–86. [Google Scholar]
- Smith, T.; Majid, F.; Eckl, V.; Reynolds, C.M. Herbal supplement sales in US increase by record-breaking 17.3% in 2020. HerbalGram 2021, 131, 52–65. [Google Scholar]
- Machado, R.D.; de Morais, M.C.; da Conceicão, E.C.; Vaz, B.G.; Chaves, A.R.; Rezende, K.R. Crude plant extract versus single compounds for vitiligo treatment: Ex vivo intestinal permeability assessment on Brosimum gaudichaudii Trécul. J. Pharm. Biomed. Anal. 2020, 191, 113593. [Google Scholar] [CrossRef] [PubMed]
- Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J. 2011, 10 (Suppl. S1), S4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Bernardini, S.; Tiezzi, A.; Laghezza Masci, V.; Ovidi, E. Natural products for human health: An historical overview of the drug discovery approaches. Nat. Prod. Res. 2018, 32, 1926–1950. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [Green Version]
- Gwarzo, I.D.; Mohd Bohari, S.P.; Abdul Wahab, R.; Zia, A. Recent advances and future prospects in topical creams from medicinal plants to expedite wound healing: A review. Biotechnol. Biotechnol. Equip. 2022, 36, 82–94. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.C.; Li, T.S.; Su, H.L.; Lee, P.C.; Wang, H.D. Transdermal delivery systems of natural products applied to skin therapy and care. Molecules 2020, 25, 5051. [Google Scholar] [CrossRef]
- Mohd Zaid, N.A.; Sekar, M.; Bonam, S.R.; Gan, S.H.; Lum, P.T.; Begum, M.Y.; Mat Rani, N.N.I.; Vaijanathappa, J.; Wu, Y.S.; Subramaniyan, V.; et al. Promising natural products in new drug design, development, and therapy for skin disorders: An overview of scientific evidence and understanding their mechanism of action. Drug Des. Dev. Ther. 2022, 16, 23–66. [Google Scholar] [CrossRef] [PubMed]
- Thakur, L.; Ghodasra, U.; Patel, N.; Dabhi, M. Novel approaches for stability improvement in natural medicines. Pharmacogn. Rev. 2011, 5, 48–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Basu, S.; Yang, G.; Deb, A.; Hu, M. Oral bioavailability challenges of natural products used in cancer chemoprevention. Prog. Chem. 2013, 9, 1553–1574. [Google Scholar]
- Chang, H.H.; Chiang, S.Y.; Chen, P.C.; Tsai, C.H.; Yang, R.C.; Tsai, C.L.; Wu, T.H.; Hsieh, Y.W.; Lin, Y.C.; Kuo, Y.T.; et al. A system for reporting and evaluating adverse drug reactions of herbal medicine in Taiwan from 1998 to 2016. Sci. Rep. 2021, 11, 21476. [Google Scholar] [CrossRef] [PubMed]
- Lim, X.Y.; Teh, B.P.; Tan, T.Y.C. Medicinal plants in COVID-19: Potential and limitations. Front. Pharmacol. 2021, 12, 611408. [Google Scholar] [CrossRef]
- Zhang, J.H.; Onakpoya, I.J.; Posadzki, P.; Eddouks, M. The safety of herbal medicine: From prejudice to evidence. Evid.-Based Complement. Altern. Med. 2015, 2015, 316706. [Google Scholar] [CrossRef] [Green Version]
- Monsin, M.; Akhtar, N. Formulation and stability evaluation of Bauhinia veriegata extract topical emulsion. Acta Pol. Pharm. 2017, 74, 945–954. [Google Scholar]
- Molzi, S.H.; Amongoyo, J.A.; ChaCha, M.N. In vitro evaluation of the herbal cream formulation from methanolic leaf extracts of Tephrosia vogelii Hook.f for topical application. Clin. Phytosci. 2023, 9, 3. [Google Scholar] [CrossRef]
- Azmin, S.M.; Halim, A.A.; Nor, M.M. Physicochemical analysis of natural herbal medicated ointment enriched with Cymbopogon nardus and virgin coconut oil. IOP Conf. Ser. Earth Environ. 2021, 765, 012040. [Google Scholar] [CrossRef]
- Hwang, J.H.; Nam, J.H.; Kim, W.K.; Bae, H.S. Effects of Agrimoniae herba 30% ethanol extract on LPS-induced inflammatory responses in RAW264.7 macrophage cells. Korea J. Herbol. 2016, 31, 63–69. [Google Scholar] [CrossRef]
- Kim, C.Y.; Yu, Q.M.; Kong, H.J.; Lee, J.Y.; Yang, K.M.; Seo, J.S. Antioxidant and anti-inflammatory activities of Agrimonia pilosa Ledeb. extract. Evid.-Based Complement. Altern. Med. 2020, 2020, 8571207. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Jiang, J.; Shim, D.W.; Kwon, S.C.; Kim, T.J.; Ye, S.K.; Kim, M.K.; Shin, Y.K.; Koppula, S.; Kang, T.B.; et al. Anti-inflammatory and anti-allergic effects of Agrimonia pilosa Ledeb extract on murine cell lines and OVA-induced airway inflammation. J. Ethnopharmacol. 2012, 140, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.Y.; Kim, G.J.; Ko, S. Antiinflammatory and antioxidative effects of Agrimonia pilosa Ledeb. Orient. Pharm. Exp. Med. 2007, 7, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Nam, Y.R.; Kim, H.J.; Kim, Y.M.; Chin, Y.W.; Bae, H.S.; Kim, W.K.; Nam, J.H. Agrimonia pilosa leaf extract accelerates skin barrier restoration by activation of transient receptor potential vanilloid 3. J. Dermatol. Sci. 2017, 86, 255–258. [Google Scholar] [CrossRef] [Green Version]
- Marrassini, C.; Cogoi, L.; Sülsen, V.; Anesini, C. Apigenin-7-glucuronide from Urera aurantiaca inhibits tumor necrosis factor alpha and total nitrite release in lipopolysaccharide-activated macrophages. Evid.-Based Complement. Altern. Med. 2020, 2020, 6638764. [Google Scholar] [CrossRef]
- Jin, T.; Chi, L.; Ma, C. Agrimonia pilosa: A phytochemical and pharmacological review. Evid.-Based Complement. Altern. Med. 2022, 2022, 3742208. [Google Scholar] [CrossRef]
- Hu, W.; Wang, X.; Wu, L.; Shen, T.; Ji, L.; Zhao, X.; Si, C.L.; Jiang, Y.; Wang, G. Apigenin-7-O-β-D-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock. Food Funct. 2016, 7, 1002–1013. [Google Scholar] [CrossRef]
- Lee, K.H.; Yoon, W.H.; Cho, C.H. Anti-ulcer effect of apigenin-7-O-β-D-glucuronide isolated from Chrysanthemum morifolium Ramataelle. Korean J. Pharmacogn. 2005, 36, 171–176. [Google Scholar]
- Ma, Q.; Zhang, X.M.; Jiang, J.G.; Zhu, W. Apigenin-7-O-β-D-glucuronide inhibits modified low-density lipoprotein uptake and foam cell formation in macrophages. Food Funct. 2017, 35, 615–621. [Google Scholar] [CrossRef]
- Sharadha, M.; Gowda, D.V.; Vishal Gupta, N.; Akhila, A.R. An overview on topical drug delivery system-updated review. Int. J. Res. Pharm. 2020, 11, 368–385. [Google Scholar] [CrossRef]
- Lee, J.S.; Nam, Y.R.; Kim, H.J.; Kim, W.K. Quantification and validation of an HPLC method for low concentrations of apigenin-7-O-glucuronide in Agrimonia pilosa aqueous ethanol extract topical cream by liquid–liquid extraction. Molecules 2023, 28, 713. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. AOAC Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals (Gaithersburg). 2002. Available online: www.aoac.org/dietsupp6/Dietary-Supplement-web-site/slv_guidelines.pdf (accessed on 5 October 2021).
- CPMP/ICH/2736/99; ICH Topic Q1A(R2). Stability Testing of New Drug Substances and Products. European Medicines Agency: Amsterdam, The Netherlands, 2003.
- United States Pharmacopeial Convention. The United States Pharmacopeia, 20th Revision: The National Formulary, 15th ed.; Mac Pub. Co., Ltd.: Wetherby, UK, 1979. [Google Scholar]
- Klein-Junior, L.C.; de Souza, M.R.; Viaene, J.; Bresolin, T.M.; de Gasper, A.L.; Henriques, A.T.; Vander Heyden, Y. Quality control of herbal medicines: From traditional techniques to state-of-the-art approaches. Planta Med. 2021, 87, 964–988. [Google Scholar] [CrossRef] [PubMed]
- Bani, K.S.; Bhardwaj, K. Topical Drug Delivery Therapeutics, Drug Absorption and penetration enhancement techniques. J. Drug Deliv. Ther. 2021, 11, 105–110. [Google Scholar] [CrossRef]
- Cui, C.; Gao, M.; Jia, X.; Ma, B.; Li, T.; Tian, S.; Xu, C. The effect of propylene glycol addition on the flavour compounds retention of peppermint powders. Flavour Fragr. J. 2023, 38, 336–346. [Google Scholar]
- Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. Handbook of Pharmaceutical Excipients, 6th ed.; Pharmaceutical Press: London, UK, 2009. [Google Scholar]
No. | Constituent | Cream | Lotion | Ointment |
---|---|---|---|---|
1 | A. pilosa extract | 0.1% | 0.1% | 0.1% |
2 | liquid paraffin | 6.8% | 6.8% | 17.0% |
3 | propylene glycol | 15.0% | 3.0% | 4.0% |
4 | cetanol | 5.0% | - | 4.0% |
5 | stearyl alcohol | 5.0% | 5.0% | 2.0% |
6 | span 60 | 2.0% | 2.0% | 2.0% |
7 | benzyl alcohol | 0.5% | 0.5% | 0.5% |
8 | citric acid hydrate | 0.01% | - | - |
9 | white petrolatum | - | - | 65.4% |
10 | white wax | - | - | 4.0% |
11 | stearic acid | - | - | 1.0% |
12 | water | q.s | q.s | q.s |
q.s: Sufficient quantity |
Parameter | Result | Acceptance Criteria | |
---|---|---|---|
System Suitability | 0.6% | %RSD ≤ 10% | |
Specificity | Yes | No interference | |
Linearity (μg/mL) | 6.0–14.0 | ||
Slope | 36,641 | ||
Intercept | −10300 | ||
Regression coefficient (R2) | 0.9998 | R2 ≥ 0.995 | |
%Recovery | 60% | 106.4 ± 2.2% | Between 90% and 110% |
100% | 101.2 ± 2.8% | ||
140% | 96.4 ± 1.8% | ||
Precision (%RSD) | 1.7% | %RSD ≤ 10% | |
Intermediate Precision (%RSD) | 3.0% | %RSD ≤ 10% | |
LOD (μg/mL) | 0.9 | S/N > 10 | |
LOQ (μg/mL) | 2.9 | S/N > 3 |
Criteria | 0 Months | 3 Months | 6 Months | ||
---|---|---|---|---|---|
Physicochemical stability | Sensory | Light yellow, odorless, and homogeneous | Conforms | Conforms | Conforms |
A7OG (μg/g) | - | 12.2 ± 0.1 | 12.4 ± 0.2 | 12.7 ± 0.0 | |
L7OG (μg/g) | 8.1 ± 0.1 | 8.2 ± 0.1 | 8.3 ± 0.1 | ||
pH | 4.5–5.5 | 5.0 | 5.1 | 4.9 | |
Microbial stability | Total aerobic bacterial count | <105 CFU/g | <1 CFU/g | - | <1 CFU/g |
Total yeast count | <102 CFU/g | <1 CFU/g | - | <1 CFU/g | |
Pathogens | Not detected | Not detected | - | Not detected |
Criteria | 0 Months | 3 Months | 6 Months | 9 Months | 12 Months | ||
---|---|---|---|---|---|---|---|
Physicochemical stability | Sensory | Light yellow, odorless, homogeneous | Conforms | Conforms | Conforms | Conforms | Conforms |
A7OG (μg/g) | - | 12.2 ± 0.1 | 12.4 ± 0.2 | 12.2 ± 0.1 | 12.2 ± 0.0 | 12.5 ± 0.2 | |
L7OG (μg/g) | - | 8.1 ± 0.1 | 8.2 ± 0.1 | 8.2 ± 0.1 | 8.1 ± 0.1 | 8.2 ± 0.1 | |
pH | 4.5–5.5 | 5.0 | 5.1 | 4.9 | 4.8 | 4.8 | |
Microbial stability | Total aerobic bacterial count | <105 CFU/g | <1 CFU/g | - | <1 CFU/g | - | <1 CFU/g |
Total yeast count | <102 CFU/g | <1 CFU/g | - | <1 CFU/g | - | <1 CFU/g | |
Pathogens | Negative | Not detected | - | Not detected | - | Not detected |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.S.; Nam, Y.R.; Park, S.J.; Lee, J.M.; Kim, H.J.; Kim, W.K. Development and Evaluation of Topical Formulation Containing Agrimonia pilosa Extract. Appl. Sci. 2023, 13, 7672. https://doi.org/10.3390/app13137672
Lee JS, Nam YR, Park SJ, Lee JM, Kim HJ, Kim WK. Development and Evaluation of Topical Formulation Containing Agrimonia pilosa Extract. Applied Sciences. 2023; 13(13):7672. https://doi.org/10.3390/app13137672
Chicago/Turabian StyleLee, Jin Seok, Yu Ran Nam, Su Jin Park, Ji Min Lee, Hyun Jong Kim, and Woo Kyung Kim. 2023. "Development and Evaluation of Topical Formulation Containing Agrimonia pilosa Extract" Applied Sciences 13, no. 13: 7672. https://doi.org/10.3390/app13137672
APA StyleLee, J. S., Nam, Y. R., Park, S. J., Lee, J. M., Kim, H. J., & Kim, W. K. (2023). Development and Evaluation of Topical Formulation Containing Agrimonia pilosa Extract. Applied Sciences, 13(13), 7672. https://doi.org/10.3390/app13137672