An Updated Review: Opuntia ficus indica (OFI) Chemistry and Its Diverse Applications
Abstract
:1. Introduction
2. Nutritional and Phytochemicals
2.1. Nutritional Profile
2.1.1. Carbohydrates
2.1.2. Proteins
2.1.3. Fats
2.1.4. Vitamins
2.1.5. Inorganic Minerals
2.2. Phytochemicals
2.2.1. Polyphenolic Compounds
2.2.2. Betalains
2.2.3. Sterols
3. Applications
3.1. Uses of Opunia in the Bioremediation of Wastewaters
3.2. Usage as Forage
3.3. Fuel Fabrication
3.4. Pharamcological Ability
3.4.1. Antioxident Capacity
3.4.2. Anti-Inflammatory Capacity
3.4.3. Antibacterial Effect
3.5. Role of Opuntia Regarding Bodyweight and Bone Health
3.6. Cosmetic Applications
3.7. Application of Opuntia in Building Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osorio-Esquivel, O.; Ortiz-Moreno, A.; Garduño-Siciliano, L.; Álvarez, V.B.; Hernández-Navarro, M.D. Antihyperlipidemic Effect of Methanolic Extract from Opuntia Joconostle Seeds in Mice Fed a Hypercholesterolemic Diet. Plant Foods Hum. Nutr. 2012, 67, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Mounir, B.; Younes, E.G.; Asmaa, M.; Abdeljalil, Z.; Abdellah, A. Physico-Chemical Changes in Cladodes of Opuntia ficus-indica as a Function of the Growth Stage and Harvesting Areas. J. Plant Physiol. 2020, 251, 153196. [Google Scholar] [CrossRef] [PubMed]
- Moßhammer, M.R.; Stintzing, F.C.; Carle, R. Cactus Pear Fruits (Opuntia spp.): A Review of Processing Technologies and Current Uses. J. Prof. Assoc. Cactus Dev. 2006, 8, 1–25. [Google Scholar]
- Anderson, E.F. The Cactus Family. In The Cactus Family; Timber Press: Portland, OR, USA, 2001; pp. 15–72. [Google Scholar]
- Felker, P.; Stintzing, F.C.; Müssig, E.; Leitenberger, M.; Carle, R.; Vogt, T.; Bunch, R. Colour Inheritance in Cactus Pear (Opuntia ficus-indica) Fruits. Ann. Appl. Biol. 2008, 152, 307–318. [Google Scholar] [CrossRef]
- Gebremariam, T.; Melaku, S.; Yami, A. Effect of Different Levels of Cactus (Opuntia ficus-indica) Inclusion on Feed Intake, Digestibility and Body Weight Gain in Tef (Eragrostis Tef) Straw-Based Feeding of Sheep. Anim. Feed. Sci. Technol. 2006, 131, 43–52. [Google Scholar] [CrossRef]
- Kuti, J.O. Antioxidant Compounds from Four Opuntia Cactus Pear Fruit Varieties. Food Chem. 2004, 85, 527–533. [Google Scholar] [CrossRef]
- Turker, N.; Coşkuner, Y.; Ekiz, H.I.; Aksay, S.; Karababa, E. The Effects of Fermentation on the Thermostability of the Yellow-Orange Pigments Extracted from Cactus Pear (Opuntia ficus-indica). Eur. Food Res. Technol. 2001, 212, 213–216. [Google Scholar] [CrossRef]
- Chiteva, R.; Wairagu, N. Chemical and Nutritional Content of Opuntia ficus-indica (L.). Afr. J. Biotechnol. 2016, 12, 3309–3312. [Google Scholar]
- Espino-Manzano, S.O.; León-López, A.; Aguirre-Álvarez, G.; González-Lemus, U.; Prince, L.; Germán Campos-Montiel, R. Molecules Application of Nanoemulsions (W/O) of Extract of Opuntia oligacantha C.F. Först and Orange Oil in Gelatine Films. Molecules 2020, 25, 3487. [Google Scholar] [CrossRef]
- Vigueras, A.L.; Portillo, L. Uses of Opuntia Species and the Potential Impact of Cactoblastis Cactorum (Lepidoptera: Pyralidae) in Mexico. Fla. Entomol. 2001, 84, 493–498. [Google Scholar] [CrossRef]
- Bakar, B.; Çakmak, M.; Ibrahim, M.S.; Özer, D.; Saydam, S.; Karatas, F. Investigation of Amounts of Vitamins, Lycopene, and Elements in the Fruits of Opuntia ficus-indica Subjected to Different Pretreatments. Biol. Trace Elem. Res. 2020, 198, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.K. Opuntia ficus-indica. Edible Med. Non-Med. Plants 2012, 1, 660–682. [Google Scholar] [CrossRef]
- Pritchard, H.N.; Hall, J.A. The Chemical Composition of Glochids from Opuntia. Can. J. Bot. 2011, 54, 173–176. [Google Scholar] [CrossRef]
- Malainine, M.E.; Dufresne, A.; Dupeyre, D.; Mahrouz, M.; Vuong, R.; Vignon, M.R. Structure and Morphology of Cladodes and Spines of Opuntia ficus-indica. Cellulose Extraction and Characterisation. Carbohydr. Polym. 2003, 51, 77–83. [Google Scholar] [CrossRef]
- Vignon, M.R.; Heux, L.; Malainine, M.E.; Mahrouz, M. Arabinan–Cellulose Composite in Opuntia ficus-indica Prickly Pear Spines. Carbohydr. Res. 2004, 339, 123–131. [Google Scholar] [CrossRef]
- Rodriguez-Felix, A.; Cantwell, M. Developmental Changes in Composition and Quality of Prickly Pear Cactus Cladodes (Nopalitos). Plant Foods Hum. Nutr. 1988, 38, 83–93. [Google Scholar] [CrossRef]
- Retamal, N.; Durán, J.M.; Fernández, J. Seasonal Variations of Chemical Composition in Prickly Pear (Opuntia ficus-indica (L.) Miller). J. Sci. Food Agric. 1987, 38, 303–311. [Google Scholar] [CrossRef]
- Batista, A.M.; Mustafa, A.F.; McAllister, T.; Wang, Y.; Soita, H.; McKinnon, J.J. Effects of Variety on Chemical Composition, in Situ Nutrient Disappearance and in Vitro Gas Production of Spineless Cacti. J. Sci. Food Agric. 2003, 83, 440–445. [Google Scholar] [CrossRef]
- Malainine, M.E.; Dufresne, A.; Dupeyre, D.; Vignon, M.R.; Mahrouz, M. First Evidence for the Presence of Weddellite Crystallites in Opuntia ficus indica Parenchyma. Z. Für Nat. C 2003, 58, 812–816. [Google Scholar] [CrossRef]
- Mohamed-Yasseen, Y.; Barringer, S.A.; Splittstoesser, W.E. A Note on the Uses of Opuntia spp. in Central/North America. J. Arid. Env. 1996, 32, 347–353. [Google Scholar] [CrossRef]
- Mizrahi, Y.; Nerd, A. Climbing and Columnar Cacti: New Arid Land Fruit Crops. In Perspectives on New Crops and New Uses; Janick, J., Ed.; ASHS Press: Alexanddria, VA, USA, 1999; pp. 358–366. [Google Scholar]
- Retamal, N.; Durán, J.M.; Fernández, J. Ethanol Production by Fermentation of Fruits and Cladodes of Prickly Pear Cactus [Opuntia ficus-indica (L.) Miller]. J. Sci. Food Agric. 1987, 40, 213–218. [Google Scholar] [CrossRef]
- Nerd, A.; Afflalo, E.; Mizrahi, Y. Introduction of Cacti as Vegetable Crops for Israel. In Combating Desertification with Plants; Springer: Berlin/Heidelberg, Germany, 2001; pp. 249–255. [Google Scholar] [CrossRef]
- Sutton, B.G.; Ting, I.P.; Sutton, R. Carbohydrate Metabolism of Cactus in a Desert Environment. Plant Physiol. 1981, 68, 784–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amador, B.M.; Diéguez, E.T.; Garibay, A.N.; García, M.A. El Nopal: Cultivo Forrajero Sostenible Para El Noroeste de México; Baja, L.P., Ed.; Centro de Investigaciones Biológicas del Noroeste: California Sur, Mexico, 2002; ISBN 9701865820. [Google Scholar]
- di Bella, G.; Vecchio, G.L.; Albergamo, A.; Nava, V.; Bartolomeo, G.; Macrì, A.; Bacchetta, L.; lo Turco, V.; Potortì, A.G. Chemical Characterization of Sicilian Dried Nopal [Opuntia ficus-indica (L.) Mill.]. J. Food Compos. Anal. 2022, 106, 104307. [Google Scholar] [CrossRef]
- Nassar, A.G. Chemical Composition and Functional Properties of Prickly Pear (Opuntia ficus indica) Seeds Flour and Protein Concentrate. World J. Dairy Food Sci. 2008, 3, 11–16. [Google Scholar]
- Uchoa, A.F.; Souza, P.A.S.; Zarate, R.M.L.; Gomes-Filho, E.; Campos, F.A.P. Seed Reserve Protein from O. Ficus-Indica Brazilian. J. Med. Biol. Res. 1998, 31, 757–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zito, P.; Sajeva, M.; Bruno, M.; Rosselli, S.; Maggio, A.; Senatore, F. Essential Oils Composition of Two Sicilian Cultivars of Opuntia ficus-indica (L.) Mill. (Cactaceae) Fruits (Prickly Pear). Nat. Prod Res. 2013, 27, 1305–1314. [Google Scholar] [CrossRef]
- Sawaya, W.N.; Khalil, J.K.; Al-Mohammad, M.M. Nutritive Value of Prickly Pear Seeds, Opuntia ficus-indica. Qual. Plant. Plant Foods Hum. Nutr. 1983, 33, 91–97. [Google Scholar] [CrossRef]
- Feugang, J.M.; Konarski, P.; Zou, D.; Stintzing, F.C.; Zou, C. Nutritional and Medicinal Use of Cactus Pear (Opuntia Spp.) Cladodes and Fruits. Front. Biosci. 2006, 11, 2574–2589. [Google Scholar] [CrossRef]
- Albergamo, A.; Potortí, A.G.; Di Bella, G.; Ben Amor, N.; Vecchio, G.L.; Nava, V.; Rando, R.; Ben Mansour, H.; Turco, V.L. Chemical Characterization of Different Products from the Tunisian Opuntia ficus-indica (L.) Mill. Foods 2022, 11, 155. [Google Scholar] [CrossRef]
- Piga, A. Cactus Pear: A Fruit of Nutraceutical and Functional Importance | Journal of the Professional Association for Cactus Development. J. Prof. Assoc. Cactus Dev. 2004, 6, 9–22. [Google Scholar]
- Tesoriere, L.; Allegra, M.; Butera, D.; Gentile, C.; Livrea, M.A. Kinetics of the Lipoperoxyl Radical-Scavenging Activity of Indicaxanthin in Solution and Unilamellar Liposomes. Free. Radic. Res. 2007, 41, 226–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çakmak, M.; Bakar, B.; Özer, D.; Geckil, H.; Karatas, F.; Saydam, S. Investigation of some biochemical parameters of wild and cultured Myrtus communis L. fruits subjected to different conservation methods. Food Meas. 2021, 15, 983–993. [Google Scholar] [CrossRef]
- Khatabi, O.; Hanine, H.; Elothmani, D.; Hasib, A. Extraction and Determination of Polyphenols and Betalain Pigments in the Moroccan Prickly Pear Fruits (Opuntia ficus indica). Arab. J. Chem. 2016, 9, S278–S281. [Google Scholar] [CrossRef] [Green Version]
- El-Mostafa, K.; el Kharrassi, Y.; Badreddine, A.; Andreoletti, P.; Vamecq, J.; el Kebbaj, M.S.; Latruffe, N.; Lizard, G.; Nasser, B.; Cherkaoui-Malki, M. Nopal Cactus (Opuntia ficus-indica) as a Source of Bioactive Compounds for Nutrition, Health and Disease. Molecules 2014, 19, 14879–14901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.R.; Akash, S.; Jony, M.H.; Nowrin, F.T.; Rahman, M.M.; Rauf, A.; Thiruvengadam, M. Exploring the Potential Function of Trace Elements in Human Health: A Therapeutic Perspective. Mol. Cell. Biochem. 2023, 13, 1–31. [Google Scholar] [CrossRef]
- Dahmardeh, M. The Effect of Polythene Colour Container and Three Spawn Rates on Production of Pleurotus Ostreatus Mushroom. Afr. J. Biotechnol. 2012, 11, 9373–9376. [Google Scholar] [CrossRef]
- Medina, E.M.D.; Rodríguez, E.M.R.; Romero, C.D. Chemical Characterization of Opuntia Dillenii and Opuntia ficus indica Fruits. Food Chem. 2007, 103, 38–45. [Google Scholar] [CrossRef]
- Ö-Zcan, M.M.; Al Juhaimi, F.Y. Nutritive Value and Chemical Composition of Prickly Pear Seeds (Opuntia ficus indica L.) Growing in Turkey. Int. J. Food Sci. Nutr. 2011, 62, 533–536. [Google Scholar] [CrossRef]
- Zou, D.; Brewer, M.; Garcia, F.; Feugang, J.M.; Wang, J.; Zang, R.; Liu, H.; Zou, C. Cactus pear: A natural product in cancer chemoprevention. Nutr. J. 2005, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Padilla, M.; Pérez-Torrero, E.; Hernández-Urbiola, M.I.; Hernández-Quevedo, G.; del Real, A.; Rivera-Muñoz, E.M.; Rodríguez-García, M.E. Evaluation of Oxalates and Calcium in Nopal Pads (Opuntia ficus-indica Var. Redonda) at Different Maturity Stages. J. Food Compos. Anal. 2011, 1, 38–43. [Google Scholar] [CrossRef]
- Ayadi, M.A.; Abdelmaksoud, W.; Ennouri, M.; Attia, H. Cladodes from Opuntia ficus indica as a Source of Dietary Fiber: Effect on Dough Characteristics and Cake Making. Ind. Crops Prod. 2009, 30, 40–47. [Google Scholar] [CrossRef]
- Ghazi, Z.; Ramdani, M.; Tahri, M.; Rmili, R.; Elmsellem, H.; Mahi, B.E.; Fauconnier, M.L. Chemical Composition and Antioxidant Activity of Seeds Oils and Fruit Juice of Opuntia ficus indica and Opuntia Dillenii from Morocco. J. Mater. Environ. Sci. 2015, 6, 2338–2345. [Google Scholar]
- Laughton, M.J.; Evans, P.J.; Moroney, M.A.; Hoult, J.R.S.; Halliwell, B. Inhibition of Mammalian 5-Lipoxygenase and Cyclo-Oxygenase by Flavonoids and Phenolic Dietary Additives. Biochem. Pharm. 1991, 42, 1673–1681. [Google Scholar] [CrossRef]
- Ammar, I.; Ennouri, M.; Khemakhem, B.; Yangui, T.; Attia, H. Variation in Chemical Composition and Biological Activities of Two Species of Opuntia Flowers at Four Stages of Flowering. Ind. Crops Prod. 2012, 37, 34–40. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Tanbouly, N.D.E.; Islam, W.T.; Sleem, A.A.; Senousy, A.S.E. Antiinflammatory Flavonoids from Opuntia Dillenii (Ker-Gawl) Haw. Flowers Growing in Egypt. Phytother. Res. 2005, 19, 807–809. [Google Scholar] [CrossRef] [PubMed]
- de Leo, M.; de Abreu, M.B.; Pawlowska, A.M.; Cioni, P.L.; Braca, A. Profiling the Chemical Content of Opuntia ficus-indica Flowers by HPLC–PDA-ESI-MS and GC/EIMS Analyses. Phytochem. Lett. 2010, 3, 48–52. [Google Scholar] [CrossRef]
- Fernández-López, J.A.; Almela, L.; Obón, J.M.; Castellar, R. Determination of Antioxidant Constituents in Cactus Pear Fruits. Plant Foods Hum. Nutr. 2010, 65, 253–259. [Google Scholar] [CrossRef]
- Tesoriere, L.; Fazzari, M.; Allegra, M.; Livrea, M.A. Biothiols, Taurine, and Lipid-Soluble Antioxidants in the Edible Pulp of Sicilian Cactus Pear (Opuntia ficus-indica) Fruits and Changes of Bioactive Juice Components upon Industrial Processing. J. Agric. Food Chem. 2005, 53, 7851–7855. [Google Scholar] [CrossRef]
- Moussa-Ayoub, T.E.; El-Samahy, S.K.; Kroh, L.W.; Rohn, S. Identification and Quantification of Flavonol Aglycons in Cactus Pear (Opuntia ficus indica) Fruit Using a Commercial Pectinase and Cellulase Preparation. Food Chem. 2011, 124, 1177–1184. [Google Scholar] [CrossRef]
- Salim, N.; Abdelwaheb, C.; Rabah, C.; Ahcene, B. Chemical Composition of Opuntia ficus-indica (L.) Fruit. Afr. J. Biotechnol. 2009, 8, 1623–1624. [Google Scholar]
- Bensadón, S.; Hervert-Hernández, D.; Sáyago-Ayerdi, S.G.; Goñi, I. By-Products of Opuntia ficus-indica as a Source of Antioxidant Dietary Fiber. Plant Foods Hum. Nutr. 2010, 65, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Chougui, N.; Tamendjari, A.; Hamidj, W.; Hallal, S.; Barras, A.; Richard, T.; Larbat, R. Oil Composition and Characterisation of Phenolic Compounds of Opuntia ficus-indica Seeds. Food Chem. 2013, 139, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Jorge, A.J.; de La Garza, T.H.; Alejandro, Z.C.; Ruth, B.C.; Noé, A.C. The Optimization of Phenolic Compounds Extraction from Cactus Pear (Opuntia ficus-indica) Skin in a Reflux System Using Response Surface Methodology. Asian Pac. J. Trop. Biomed. 2013, 3, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valente, L.M.M.; da Paixão, D.; do Nascimento, A.C.; dos Santos, P.F.P.; Scheinvar, L.A.; Moura, M.R.L.; Tinoco, L.W.; Gomes, L.N.F.; da Silva, J.F.M. Antiradical Activity, Nutritional Potential and Flavonoids of the Cladodes of Opuntia monacantha (Cactaceae). Food Chem 2010, 123, 1127–1131. [Google Scholar] [CrossRef]
- Guevara-Figueroa, T.; Jiménez-Islas, H.; Reyes-Escogido, M.L.; Mortensen, A.G.; Laursen, B.B.; Lin, L.W.; de León-Rodríguez, A.; Fomsgaard, I.S.; Barba de la Rosa, A.P. Proximate Composition, Phenolic Acids, and Flavonoids Characterization of Commercial and Wild Nopal (Opuntia spp.). J. Food Compos. Anal. 2010, 23, 525–532. [Google Scholar] [CrossRef]
- Ginestra, G.; Parker, M.L.; Bennett, R.N.; Robertson, J.; Mandalari, G.; Narbad, A.; lo Curto, R.B.; Bisignano, G.; Faulds, C.B.; Waldron, K.W. Anatomical, Chemical, and Biochemical Characterization of Cladodes from Prickly Pear [Opuntia ficus-indica (L.) Mill.]. J. Agric. Food Chem. 2009, 57, 10323–10330. [Google Scholar] [CrossRef]
- Clark, W.D.; Brown, G.K.; Mays, R.L. Flower Flavonoids of Opuntia Subgenus Cylindr Opuntia. Phytochemistry 1980, 19, 2042–2043. [Google Scholar] [CrossRef]
- Galati, E.M.; Mondello, M.R.; Giuffrida, D.; Dugo, G.; Miceli, N.; Pergolizzi, S.; Taviano, M.F. Chemical Characterization and Biological Effects of Sicilian Opuntia ficus indica (L.) Mill. Fruit Juice: Antioxidant and Antiulcerogenic Activity. J. Agric. Food Chem. 2003, 51, 4903–4908. [Google Scholar] [CrossRef]
- Calva-Estrada, S.J.; Jiménez-Fernández, M.; Lugo-Cervantes, E. Betalains and Their Applications in Food: The Current State of Processing, Stability and Future Opportunities in the Industry. Food Chem. Mol. Sci. 2022, 4, 100089. [Google Scholar] [CrossRef]
- Piattelli, M.; Minale, L. Pigments of Centrospermae—I.: Betacyanins from Phyllocactus Hybridus Hort. And Opuntia ficus-indica Mill. Phytochemistry 1964, 3, 307–311. [Google Scholar] [CrossRef]
- Minale, L.; Piattelli, M.; Nicolaus, R.A. Pigments of Centrospermae—IV: On the Biogenesis of Indicaxanthin and Betanin in Opuntia ficus-indica Mill. Phytochemistry 1965, 4, 593–597. [Google Scholar] [CrossRef]
- Yeddes, N.; Chérif, J.K.; Guyot, S.; Sotin, H.; Ayadi, M.T. Comparative Study of Antioxidant Power, Polyphenols, Flavonoids and Betacyanins of the Peel and Pulp of Three Tunisian Opuntia Forms. Antioxidants 2013, 2, 37–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strack, D.; Vogt, T.; Schliemann, W. Recent Advances in Betalain Research. Phytochemistry 2003, 62, 247–269. [Google Scholar] [CrossRef]
- Castellanos-Santiago, E.; Yahia, E.M. Identification and Quantification of Betalains from the Fruits of 10 Mexican Prickly Pear Cultivars by High-Performance Liquid Chromatography and Electrospray Ionization Mass Spectrometry. J. Agric. Food Chem. 2008, 56, 5758–5764. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Schieber, A.; Carle, R.; Stintzing, F.C.; Schieber, A.; Carle, R. Phytochemical and Nutritional Significance of Cactus Pear. Eur. Food Res. Technol. 2001, 212, 396–407. [Google Scholar] [CrossRef]
- Taira, J.; Tsuchida, E.; Katoh, M.C.; Uehara, M.; Ogi, T. Antioxidant Capacity of Betacyanins as Radical Scavengers for Peroxyl Radical and Nitric Oxide. Food Chem. 2015, 166, 531–536. [Google Scholar] [CrossRef]
- Gandía-Herrero, F.; Escribano, J.; García-Carmona, F. Purification and Antiradical Properties of the Structural Unit of Betalains. J. Nat. Prod 2012, 75, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.F.; Mörsel, J.T. Recovered Lipids from Prickly Pear [Opuntia ficus-indica (L.) Mill] Peel: A Good Source of Polyunsaturated Fatty Acids, Natural Antioxidant Vitamins and Sterols. Food Chem. 2003, 83, 447–456. [Google Scholar] [CrossRef]
- Gharby, S.; Harhar, H.; Guillaume, D.; Haddad, A.; Matthäus, B.; Charrouf, Z. Oxidative Stability of Edible Argan Oil: A Two-Year Study. LWT-Food Sci. Technol. 2011, 44, 1–8. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Mörsel, J.T. Oil Cactus Pear (Opuntia ficus-indica L.). Food Chem. 2003, 82, 339–345. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Hadadi, A.; Imessaoudene, A.; Bollinger, J.C.; Assadi, A.A.; Amrane, A.; Mouni, L. Comparison of Four Plant-Based Bio-Coagulants Performances against Alum and Ferric Chloride in the Turbidity Improvement of Bentonite Synthetic Water. Water 2022, 14, 3324. [Google Scholar] [CrossRef]
- Nharingo, T.; Moyo, M. Application of Opuntia ficus-indica in Bioremediation of Wastewaters. A Critical Review. J. Environ. Manag. 2016, 166, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Nharingo, T.; Zivurawa, M.T.; Guyo, U. Exploring the Use of Cactus Opuntia ficus indica in the Biocoagulation–Flocculation of Pb(II) Ions from Wastewaters. Int. J. Environ. Sci. Technol. 2015, 12, 3791–3802. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Palsaniya, D.R.; Kumar, T.K.; Misra, A.K.; Ahmad, S.; Rai, A.K.; Sarker, A.; Louhaichi, M.; Hassan, S.; Liguori, G.; et al. Survival, Morphological Variability, and Performance of Opuntia ficus-indica in a Semi-Arid Region of India. Arch. Agron. Soil Sci. 2022, 69, 708–725. [Google Scholar] [CrossRef]
- Licona Galeano, V.J.; Monteiro, C.C.F.; Carvalho, F.F.R.; Souza, A.F.; Souza, F.G.; Corrêa, A.M.N.; Vasconcelos, E.Q.L.; Mesquita, F.L.T.; Gama, M.A.S.; Ferreira, M.A. Productive Responses of Dairy Goats Fed on Diets Containing Elephant Grass (Pennisetum purpureum) Associated or Not with Cactus (Opuntia stricta) Cladodes, and Extra-Fat Whole Corn Germ as a Substitute for Corn. Small Rumin. Res. 2022, 207, 106609. [Google Scholar] [CrossRef]
- Sánchez, B.M.S.; Véras, A.S.C.; Freitas, E.V.; Farias, L.R.; Albuquerque, J.G.S.S.; Almeida, G.A.P.; Mora-Luna, R.E.; Monteiro, C.C.F.; Gama, M.A.S.; Ferreira, M.A.; et al. Partial Replacement of Sugarcane with Cactus (Opuntia stricta) Cladodes Improves Milk Yield and Composition in Holstein Dairy Cows. Anim. Prod Sci. 2022, 62, 691–699. [Google Scholar] [CrossRef]
- da Silva, C.S.; Gama, M.A.S.; Silva, E.A.M.; Ribeiro, E.F.; Souza, F.G.; Monteiro, C.C.F.; Mora-Luna, R.E.; Oliveira, J.C.V.; Santos, D.C.; Ferreira, M. de A. Nutritional Quality of Milk Fat from Cows Fed Full-Fat Corn Germ in Diets Containing Cactus Opuntia and Sugarcane Bagasse as Forage Sources. Animals 2023, 13, 568. [Google Scholar] [CrossRef]
- Samir, M.; Raul, B.; López, S. Potential of Opuntia ficus-indica Cladodes In M’sila (North ALGERIA) as Feed for Ruminants: Chemical Composition and in Vitro Assessment. Acta Agric. Scand. A Anim. Sci. 2023, 7, 1–7. [Google Scholar] [CrossRef]
- Comparetti, A.; Febo, P.; Greco, C.; Mammano, M.M.; Comparetti, A.; Mammano, M.M.; Orlando, S. Potential Production of Biogas from Prinkly Pear (Opuntia ficus-indica L.) in Sicilian Uncultivated Areas. Chem. Eng. Trans. 2017, 58, 559–564. [Google Scholar] [CrossRef]
- Apollon, W.; Kamaraj, S.K.; Silos-Espino, H.; Perales-Segovia, C.; Valera-Montero, L.L.; Maldonado-Ruelas, V.A.; Vázquez-Gutiérrez, M.A.; Ortiz-Medina, R.A.; Flores-Benítez, S.; Gómez-Leyva, J.F. Impact of Opuntia Species Plant Bio-Battery in a Semi-Arid Environment: Demonstration of Their Applications. Appl. Energy 2020, 279, 115788. [Google Scholar] [CrossRef]
- Dalila, M.; Soltane, R.; Chrouda, A.; Dhahri, A.; Pashameah, R.A.; Almulla, N.; Soltane, R.; Chrouda, A.; Dhahri, A.; Pashameah, R.A.; et al. Opuntia spp.: Chemistry, Bioactivity and Industrial Applications; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Godard, M.P.; Ewing, B.A.; Pischel, I.; Ziegler, A.; Benedek, B.; Feistel, B. Acute Blood Glucose Lowering Effects and Long-Term Safety of OpunDia Supplementation in Pre-Diabetic Males and Females. J. Ethnopharmacol. 2010, 130, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Abid, F.; Saleem, M.; Muller, C.D.; Asim, M.H.; Arshad, S.; Maqbool, T.; Hadi, F. Anti-Proliferative and Apoptosis-Inducing Activity of Acacia Modesta and Opuntia Monocantha Extracts on HeLa Cells. Asian Pac. J. Cancer Prev. 2020, 21, 3125. [Google Scholar] [CrossRef] [PubMed]
- Giglio, R.V.; Carruba, G.; Cicero, A.F.G.; Banach, M.; Patti, A.M.; Nikolic, D.; Cocciadiferro, L.; Zarcone, M.; Montalto, G.; Stoian, A.P.; et al. Pasta Supplemented with Opuntia ficus-indica Extract Improves Metabolic Parameters and Reduces Atherogenic Small Dense Low-Density Lipoproteins in Patients with Risk Factors for the Metabolic Syndrome: A Four-Week Intervention Study. Metabolites 2020, 10, 428. [Google Scholar] [CrossRef] [PubMed]
- Amrane-Abider, M.; Nerín, C.; Tamendjari, A.; Serralheiro, M.L.M. Phenolic Composition, Antioxidant and Antiacetylcholinesterase Activities of Opuntia ficus-indica Peel and Flower Teas after in Vitro Gastrointestinal Digestion. J. Sci. Food Agric. 2022, 102, 4401–4409. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Moreno, E.; Cariño-Cortés, R.; Cruz-Cansino, N.D.S.; Delgado-Olivares, L.; Ariza-Ortega, J.A.; Montañez-Izquierdo, V.Y.; Hernández-Herrero, M.M.; Filardo-Kerstupp, T. Antioxidant and Antimicrobial Properties of Cactus Pear (Opuntia) Seed Oils. J. Food Qual. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tsiailanis, A.D.; Chatzigiannis, C.M.; Papaemmanouil, C.D.; Chatziathanasiadou, M.V.; Chaloulos, P.; Riba, I.; Mullard, G.; Wiczkowski, W.; Koutinas, A.; Mandala, I.; et al. Exploration of Betalains and Determination of the Antioxidant and Cytotoxicity Profile of Orange and Purple Opuntia Spp. Cultivars in Greece. Plant Foods Hum. Nutr. 2022, 77, 198–205. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira e Silva, A.M.; Vidal-Novoa, A.; Batista-González, A.E.; Pinto, J.R.; Mancini, D.A.P.; Reina-Urquijo, W.; Mancini-Filho, J. In Vivo and in Vitro Antioxidant Activity and Hepatoprotective Properties of Polyphenols from Halimeda Opuntia (Linnaeus) Lamouroux. Commun. Free Radic. Res. 2013, 17, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouazizi, S.; Montevecchi, G.; Masino, F.; Antonelli, A.; Hamdi, M. Tunisian Opuntia ficus-indica fruit peels: Biochemical and microbiological characterization and possible applications. Ann. Univ. Dunarea Jos Galati Fascicle VI Food Technol. 2022, 46, 67–78. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P.; You, S.; Zhao, D.; An, Q.; Wang, D.; Zhang, J.; Li, M.; Wang, C. Anti-Inflammatory Effects of Opuntia Milpa Alta Polysaccharides Fermented by Lactic Acid Bacteria in Human Keratinocyte HaCaT Cells. Chem. Biodivers. 2022, 19, e202100923. [Google Scholar] [CrossRef]
- el Hachimi, F.; Hajjaj, G.; Bendriss, A.; Cherrah, Y.; Alaoui, K. Anti-Inflammatory Activity of Seed Oils of Opuntia ficus-indica L. and Punica granatum L. from Morocco. World J. Pharm. Res. 2015, 4, 284–294. [Google Scholar]
- Smeriglio, A.; de Francesco, C.; Denaro, M.; Trombetta, D. Prickly Pear Betalain-Rich Extracts as New Promising Strategy for Intestinal Inflammation: Plant Complex vs. Main Isolated Bioactive Compounds. Front. Pharm. 2021, 12, 2067. [Google Scholar] [CrossRef]
- Giraldo-Silva, L.; Ferreira, B.; Rosa, E.; Dias, A.C.P. Opuntia ficus-indica Fruit: A Systematic Review of Its Phytochemicals and Pharmacological Activities. Plants 2023, 12, 543. [Google Scholar] [CrossRef] [PubMed]
- Aruwa, C.E.; Amoo, S.O.; Kudanga, T. Extractable and Macromolecular Antioxidants of Opuntia ficus-indica Cladodes: Phytochemical Profiling, Antioxidant and Antibacterial Activities. S. Afr. J. Bot. 2019, 125, 402–410. [Google Scholar] [CrossRef]
- Ortega-Ortega, M.D.L.A.; Cruz-Cansino, N.D.S.; Alanís-García, E.; Delgado-Olivares, L.; Ariza-Ortega, J.A.; Ramírez-Moreno, E.; Manríquez-Torres, J.D.J. Optimization of Ultrasound Extraction of Cactus Pear (Opuntia ficus indica) Seed Oil Based on Antioxidant Activity and Evaluation of Its Antimicrobial Activity. J. Food Qual. 2017, 72, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Drira, M.; Ghanmi, S.; Zaidi, I.; Brini, F.; Miled, N.; Hanin, M. The Heat-Stable Protein Fraction from Opuntia ficus-indica Seeds Exhibits an Enzyme Protective Effect against Thermal Denaturation and an Antibacterial Activity. Biotechnol. Appl. Biochem. 2022, 70, 593–602. [Google Scholar] [CrossRef]
- Berraaouan, A.; Ziyyat, A.; Mekhfi, H.; Legssyer, A.; Sindic, M.; Aziz, M.; Bnouham, M. Evaluation of Antidiabetic Properties of Cactus Pear Seed Oil in Rats. Pharm. Biol. 2014, 52, 1286–1290. [Google Scholar] [CrossRef] [PubMed]
- Ennouri, M.; Fetoui, H.; Hammami, M.; Bourret, E.; Attia, H.; Zeghal, N. Effects of Diet Supplementation with Cactus Pear Seeds and Oil on Serum and Liver Lipid Parameters in Rats. Food Chem. 2007, 101, 248–253. [Google Scholar] [CrossRef]
- Bouhrim, M.; Ouassou, H.; Choukri, M.; Mekhfi, H.; Ziyyat, A.; Legssyer, A.; Aziz, M.; Bnouham, M. Hepatoprotective Effect of Opuntia Dillenii Seed Oil on CCl4 Induced Acute Liver Damage in Rat. Asian Pac. J. Trop. Biomed. 2018, 8, 260. [Google Scholar] [CrossRef]
- de Azevedo Ribeiro, R.C.; Barreto, S.M.A.G.; Ostrosky, E.A.; da Rocha-Filho, P.A.; Veríssimo, L.M.; Ferrari, M. Production and Characterization of Cosmetic Nanoemulsions Containing Opuntia ficus-indica (L.) Mill Extract as Moisturizing Agent. Molecules 2015, 20, 2492–2509. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.Y.; Ngoc, L.T.N.; Chae, M.; van Tran, V.; Lee, Y.C. Effects of Microwave-Assisted Opuntia humifusa Extract in Inhibiting the Impacts of Particulate Matter on Human Keratinocyte Skin Cell. Antioxidants 2020, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Neopolean, P.; Karuppasamy, K. Characterization of Silane Treated Opuntia Short Fibre and Bagasse Biosilica Toughened Epoxy Resin Composite. Silicon 2022, 14, 9331–9340. [Google Scholar] [CrossRef]
- Ait Benhamou, A.; Boussetta, A.; Nadifiyine, M.; Moubarik, A. Effect of Alkali Treatment and Coupling Agent on Thermal and Mechanical Properties of Opuntia ficus-indica Cladodes Fibers Reinforced HDPE Composites. Polym. Bull. 2022, 79, 2089–2111. [Google Scholar] [CrossRef]
- Martínez-Molina, W.; Torres-Acosta, A.A.; Celis-Mendoza, C.E.; Alonso-Guzman, E. Physical Properties of Cement-Based Paste and Mortar with Dehydrated Cacti Additions. Int. J. Archit. Herit. 2015, 9, 443–452. [Google Scholar] [CrossRef]
- Martinez-Molina, W.; Torres-Acosta, A.A.; Martínez-Peña, G.E.I.; Guzmán, E.A.; Mendoza-Pérez, I.N. Cement-Based, Materials-Enhanced Durability from Opuntia ficus indica Mucilage Additions. ACI Mater. J. 2015, 112, 165–172. [Google Scholar] [CrossRef]
- Torres-Acosta, A.A.; Alejandra Díaz-Cruz, L. Concrete Durability Enhancement from Nopal (Opuntia ficus-indica) Additions. Constr. Build. Mater. 2020, 243, 118170. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Permatasari, D.; Umar, W.K.; Sharma, S.K. Sugarcane Bagasse as an Environmentally Friendly Composite Material to Face the Sustainable Development Era. In Biomass Conversion and Biorefinery; Springer Science: Berlin/Heidelberg, Germany; Business Media Deutschland GmbH: Berlin, Germany, 2023; pp. 2190–6823. [Google Scholar] [CrossRef]
- Lu, J.; Yanan Jiang, S.; Chen, J.; Lee, C.-H.; Cai, Z.; Daniel Ruan, H. Fabrication of Superhydrophobic Soil Stabilizers Derived from Solid Wastes Applied for Road Construction: A Review. Transp. Geotech. 2023, 4, 100974. [Google Scholar] [CrossRef]
- Chandra, S.; Eklund, L.; Villarreal, R.R. Use of Cactus in Mortars and Concrete. Cem. Concr. Res. 1998, 28, 41–51. [Google Scholar] [CrossRef]
Fresh Weight | Dry Weight | References | |
---|---|---|---|
Water | 88–95 | ---- | [14,17,19,21,22,23] |
Ash | 1–2 | 19–23 | |
Protein | 0.5–1 | 4–10 | |
Lipids | 0.2 | 1–4 | |
Carbohydrate | 3–7 | 64–71 |
Amino Acids | Cladodes | Seeds | Fruits | References |
---|---|---|---|---|
Glutamine | 36.12 | Trace | 12.59 | [31,32] |
Glutamic acid | 5.43 | 21.68 | 2.40 | |
Arginine | 5.01 | 6.63 | 1.11 | |
Leucine | 2.71 | 9.94 | 0.74 | |
Lysine | 5.22 | 6.79 | 0.63 | |
Isoleucine | 3.97 | 6.20 | 1.13 | |
Phenylalanine | 3.55 | 5.25 | 0.85 | |
Valine | 7.72 | 6.02 | 1.43 | |
Proline | Trace | Trace | 46 | |
Taurine | Trace | Trace | 15.79 | |
Citrulline | Trace | Trace | 0.59 | |
Glycine | Trace | Trace | 5.06 | |
Ornithine | Trace | Trace | Trace |
F.A. | Seed | Pulp | Skin | Reference |
---|---|---|---|---|
Arachidic acid | 0.32 | 0.15 | 0.01 | [33] |
Stearic acid | 3.45 | 4.96 | 2.65 | |
Palmitic acid | 10.35 | 16.83 | 20.76 | |
SFA | 14.2 | 21.94 | 23.42 | |
Eicosenoic acid | 0.42 | 0.25 | 1.05 | |
Oleic acid | 20.86 | 23.26 | 13.56 | |
Heptadecanoic acid | 0.12 | 0.57 | 0.50 | |
Palmitoleic acid | 1.02 | 0.97 | 1.09 | |
MUFA | 22.42 | 25.05 | 16.21 | |
Arachidonic acid | 0.32 | 0.75 | 0.92 | |
α-Linolenic acid | 0.29 | 3.26 | 11.44 | |
Linoleic acid | 61.11 | 48.97 | 47.85 | |
PUFA | 61.71 | 52.93 | 60.21 |
Fruit Pulp | Skin | Cladode | References | |
---|---|---|---|---|
Alpha Tocopherol | 84.9 | 1760 | 1.76 | [34,35,36,37] |
Beta Tocopherol | 12.6 | 222 | ----- | |
Gamma Tocopherol | 7.9 | 174 | ----- | |
σ-Tocopherol | 422 | 26 | ----- | |
Ascorbic acid | 478.72 | 59.82 | 7–22 | |
Vitamin K1 | 53.2 | 109 | ----- | |
Total tocopherols | 527.40 | 2182.00 | 2.180 | |
Thiamine | 0.008 | ----- | 0.14 | |
Riboflavin | 0.006 | ----- | 0.60 | |
Niacin | 0.307 | ----- | 0.46 | |
Folic acid | 0.782 | ----- | ----- | |
Pyridoxine | 0.021 | ----- | ----- | |
Lycopene | 0.026 | ----- | ----- |
Mineral | Cladode | Fruit | Peel | Seed | References | |
---|---|---|---|---|---|---|
Macro Elements | Mg | 63.4 | 16.1–98.4 | 195.76 | 316.59 | [31,33,38,39,40,41,42,43] |
Na | 18.7 | 1.1 | 183.42 | 48.33 | ||
K | 108.8 | 90–220 | 63.45 | 304.51 | ||
Ca | 316.5 | 12.8–59 | 188.58 | 480.93 | ||
Trace Elements | P | 0.05 | 15–32.8 | ----- | 1471.5 | |
Mn | 37.8 | 0.78 | 18 | 4.35 | ||
Fe | 25.9 | 1.5 | 25.58 | 11.7 | ||
Zn | 12.6 | 5.05 | 17.58 | 70.77 | ||
Cu | 0.01 | 0.21 | 9.47 | 2.1 |
Compounds | Contents | Sources | References |
---|---|---|---|
Gallic acid | 0.64–2.37 | Cladode | [55,58,59,60] |
3,4-dihydroxybenzoic | 0.06–5.02 | ||
4-hydroxybenzoic | 0.5–4.72 | ||
Coumaric | 14.08–16.18 | ||
Narcissin | 14.69–137.1 | ||
Rutin | 2.36–26.17 | ||
Nicotiflorin | 2.89–146.5 | ||
Isorhamnetin-3-O-glucoside | 4.59–32.21 | ||
Isoquercetin | 2.29–39.67 | ||
Salicylicacid | 0.58–3.54 | ||
Ferulicacid | 0.56–34.77 | ||
Total phenolic acid | 48–89 | Seed | [56] |
Total Flavonoids | 1.5–2.6 | ||
Sinapoyl-diglucoside | 12.6–23.4 | ||
Total Tannins | 4.1–6.6 | ||
Feruloyl-Saccharose 1 | 7.36–17.62 | ||
Feruloyl-Saccharose 2 | 2.9–17.1 | ||
Gallic acid | 1630–4900 | Flower | [48,49,50,61] |
Kaempferol-3-O-Rutinoside | 400 | ||
Isoquercitrin | 447 | ||
Isorhamnetin-3-O-Robinobioside | 4269 | ||
Isorhamnetin-3-o-b-d-glucopyranoside | 979 | ||
Isorhamnetin-3-O-Glucoside | 723 | ||
Kaempferol-3-O-Arabinoside | 324 | ||
Quercetin-3-O-Rutinoside | 709 | ||
Total Flavonoid | 6.95 | Skin | [7,53,57] |
Total phenolic acid | 45,700 | ||
Isorhamnetin | 2.41–91 | ||
Quercetin | 4.32 | ||
Kaempferol | 0.22 | ||
All phenolic acid | 218.8 | Pulp | [37,51,52,54,55,62] |
Enisorhamnetin glycosides | 50.6 | ||
Kaempferol | 2.7 | ||
Quercetin | 9 | ||
Isorhamnetin | 4.94 | ||
Luteolin | 0.84 |
Sterols | Pulp | Peel | Seed | Cladode | References |
---|---|---|---|---|---|
Δ7-Avenasterol | 1.43 | 2.71 | 0.29 | ----- | [72,74] |
Stigmasterol | 0.73 | 2.12 | 0.30 | ----- | |
Lanosterol | 0.76 | 1.66 | 0.28 | ----- | |
Ergosterol | ----- | 0.68 | ----- | ----- | |
β-Sitosterol | 11.2 | 21.1 | 6.75 | ----- | |
Campesterol | 8.74 | 8.76 | 1.66 | ----- |
Opuntia ficus indica | Applications | Properties and Benefits | References |
---|---|---|---|
Cladodes | Human nutrition Medical applications Building material Cosmetic industry Fuel production Wastewater treatment As forage | Gastric ulcer treatment, hypoglycemic, antioxidant and antimicrobial activities, anticancer, antitumor, moisturizing, wound healing, wall panels, bio-composites, insulations, natural adhesive, joining adobe bricks, erosion control, bgodyweight, bone health, biosorption, flotation, coagulation, food. | [14,21,31,35,58,60,62,83,85,92,94,97,98,106,109,112,114] |
Fruits and flowers | Human nutrition Animal food Medical applications Cosmetic industry | Anti-inflammatory, analgesic, antioxidant, hypoglycemic and antiproliferative effects, healthy food preparation, nutritional supplement, stabilize hormones, improve cognitive function, lower joint pain, tissue development, skincare. | [21,33,35,60,62,72,75,78,83,85,87,92,94,106] |
Seed | Medical applications Human nutrition | Hypocholesterolemic activity, triglycerides reduction effect, antioxidant, anticancer, cardiovascular benefits, colon cancer treatment. | [7,19,21,31,35,59,61,62,72,74,75,87,92,94,97] |
Skin and mucilage | Medical applications Vitamin supplement Food industries | Anti-inflammatory and antiulcerogenic activities, interactions with drugs and intestinal homeostasis, construction materials, stabilizes vision and nerve function. | [9,14,28,35,41,55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoukat, R.; Cappai, M.; Pia, G.; Pilia, L. An Updated Review: Opuntia ficus indica (OFI) Chemistry and Its Diverse Applications. Appl. Sci. 2023, 13, 7724. https://doi.org/10.3390/app13137724
Shoukat R, Cappai M, Pia G, Pilia L. An Updated Review: Opuntia ficus indica (OFI) Chemistry and Its Diverse Applications. Applied Sciences. 2023; 13(13):7724. https://doi.org/10.3390/app13137724
Chicago/Turabian StyleShoukat, Rizwan, Marta Cappai, Giorgio Pia, and Luca Pilia. 2023. "An Updated Review: Opuntia ficus indica (OFI) Chemistry and Its Diverse Applications" Applied Sciences 13, no. 13: 7724. https://doi.org/10.3390/app13137724
APA StyleShoukat, R., Cappai, M., Pia, G., & Pilia, L. (2023). An Updated Review: Opuntia ficus indica (OFI) Chemistry and Its Diverse Applications. Applied Sciences, 13(13), 7724. https://doi.org/10.3390/app13137724