Impact of Nanoparticles from Ball-Milled Date Palm Biochar on the Hydro-Physical Characteristics of Sandy Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Preparation
2.2. Preparation and Characterization of Biochar
2.3. Biochar–Soil Mixture Preparation
2.4. Soil Column Experiment
2.5. Intermittent Evaporation and Infiltration Measurement
2.6. Saturated Hydraulic Conductivity (KSat)
3. Statistical Analysis
4. Results and Discussion
4.1. Characterization of the Nano Biochar Nanoparticles
4.1.1. FTIR Analysis of Biochar Nanoparticles
4.1.2. Hydrodynamic Size and Zeta Potential
4.2. Intermittent Evaporation
4.3. Soil Moisture Content
4.4. Infiltration
4.5. Saturated Hydraulic Conductivity (KSat)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyu, H.H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Huang, H.; Tang, J.C. Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environ. Pollut. 2018, 233, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Sizmur, T.; Fresno, T.; Akgül, G.; Frost, H.; Moreno-Jiménez, E. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue. Bioresour. Technol. 2020, 246, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Gao, B.; Fang, J. Recent advances in engineered biochar productions and applications. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2158–2207. [Google Scholar] [CrossRef]
- Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y.S.; Jiang, Y.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 2019, 366, 608–621. [Google Scholar] [CrossRef] [PubMed]
- Gorrasi, G.; Sorrentino, A. Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem. 2015, 17, 2610–2625. [Google Scholar] [CrossRef]
- Lyu, H.H.; Gao, B.; He, F.; Ding, C.; Tang, J.C.; Crittenden, J.C. Ball-milled carbon nanomaterials for energy and environmental applications. ACS Sustain. Chem. Eng. 2017, 5, 9568–9585. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Zhao, X.; Li, X.; Xie, X. Magnetic biochar-based manganese oxide composite for enhanced fluoroquinolone antibiotic removal from water. Environ. Sci. Pollut. Res. Int. 2018, 25, 31136–31148. [Google Scholar] [CrossRef]
- Olaitan, S.A.; Girma, T.K.; Dube, S.; Muzi, M.V. Ball-milling synthesis of biochar and biochar–based nanocomposites and prospects for removal of emerging contaminants: A review. J. Water Process Eng. 2021, 41, 101993. [Google Scholar]
- Zheng, Y.; Wan, Y.; Chen, J.; Chen, H.; Gao, B. Modified biochar produced through ball milling: A dual-functional adsorbent for removal of different contaminants. Chemosphere 2020, 243, 125–344. [Google Scholar] [CrossRef]
- Ibrahim, A.; Usman, A.R.A.; Al-Wabel, M.I.; Nadeem, M.; Ok, Y.S.; Al-Omran, A. Efects of conocarpus biochar on hydraulic properties of calcareous sandy soil: Influence of particle size and application depth. Arch. Agron. Soil Sci. 2017, 63, 185–197. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Al-Wabel, M.I.; Usman, A.R.A.; Al-Omran, A. Effect of conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Sci. 2013, 178, 165–173. [Google Scholar] [CrossRef]
- Alkhasha, A.; Al-Omran, A.; Aly, A. Effects of Biochar and Synthetic Polymer on the Hydro-Physical Properties of Sandy Soils. Sustainability 2018, 10, 4642. [Google Scholar] [CrossRef] [Green Version]
- Al-Omran, A.; Ibrahim, A.; Alharbi, A. Evaluating the Impact of Combined Application of Biochar and Compost on Hydro-physical Properties of Loamy Sand Soil. Commun. Soil Sci. Plant Anal. 2019, 50, 2442–2456. [Google Scholar] [CrossRef]
- Khalifa, N.; Yousef, L.F. A Short Report on Changes of Quality Indicators for a Sandy Textured Soil after Treatment with Biochar Produced from Fronds of Date Palm. Energy Procedia 2015, 74, 960–965. [Google Scholar] [CrossRef] [Green Version]
- Mangrich, A.S.; Cardoso, E.M.; Doumer, M.E.; Romão, L.P.; Vidal, M.; Rigol, A.; Novotny, E.H. Improving the water holding capacity of soils of Northeast Brazil by Biochar Augmentation water challenges and solutions on a Global Scale. Am. Chem. Soc. 2015, 1206, 339–354. [Google Scholar]
- Laghari, M.; Hu, Z.; Xiao, B.; Ali, A.; Hu, M. Fast pyrolysis biochar from sawdust improves the quality of desert soils and enhances plant growth. J. Sci. Food Agric. 2016, 96, 199–206. [Google Scholar] [CrossRef]
- Githinji, L. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014, 60, 457–470. [Google Scholar] [CrossRef]
- Baiamonte, G.; De Pasquale, C.; Marsala, V.; Cimò, G.; Alonzo, G.; Crescimanno, G.; Conte, P. Structure alteration of a sandy-clay soil by biochar amendments. J. Soils Sediments 2015, 15, 816–824. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- National Center for Dates and Palms (NCDP). Annual Report; Ministry of Environment, Water and Agriculture: Riyadh, Saudi Arabia, 2020.
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Leoppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, G.T.; Sumner, M.E. Methods of soil analysis. Soil Sci. Soc. Am. Madison Wis. USA 1996. [Google Scholar]
- Dane, J.H.; Hopmans, J.W. Hanging water column, in Methods of soil analysis. Soil Sci. Soc. Am. Madison Wis. USA 2002, 4, 680–683. [Google Scholar]
- Reynolds, W.D.; Elrick, D.E.; Youngs, E.G.; Amoozegar, A.; Booltink, H.W.; Bouma, J. Saturated and field-saturated water flow parameters. In Methods of Soil Analysis. Part 4. Physical Methods; Dane, J.H., Topp, G.C., Eds.; SSSA: Madison, WI, USA, 2002. [Google Scholar]
- Nikki, G.; Lauren, F. Influence of synthesis parameters on iron nanoparticle size and zeta potential. J. Nanopart. Res. 2012, 14, 760. [Google Scholar]
- Ai, T.; Jiang, X.; Liu, Q.; Lv, L.; Wu, H. Daptomycin adsorption on magnetic ultra-fine wood-based biochar from water: Kinetics, isotherms, and mechanism studies. Bioresour. Technol. 2019, 15, 27–38. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Al-Omran, A.M.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from Conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef]
- Philip, J.R. The theory of infiltration: The infiltration equation and its solution. Soil Sci. 1957, 83, 345–357. [Google Scholar] [CrossRef]
- SPSS. IBM SPSS Statistics Version 21; International Business Machines Corp: Boston, MA, USA, 2012. [Google Scholar]
- Usman, A.R.; Abduljabbar, A.; Vithanage, M.; Ok Yong, S.; Ahmad, M.; Ahmad, M.; Elfaki, J.; Abdulazeem, S.S.; Al-Wabel, M.I. Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. J. Anal. Appl. Pyrolysis 2015, 115, 392–400. [Google Scholar] [CrossRef]
- Brantly, K.E.; Savin MBrye, K.R.; Longer, D.E. Pine Woodchip Biochar Impact on Soil Nutrient Concentrations and Corn Yield in a Silt Loam in the Mid-Southern U.S. Agriculture 2015, 5, 30–47. [Google Scholar] [CrossRef] [Green Version]
- Glab, T.; Palmowska, J.; Zaleski, T.; Gondek, K. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 2016, 281, 11–20. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biology and Fertility of Soils, in Northern Laos1. Soil physical properties, leaf SPAD and grain yield. Field Crop. Res. 2002, 35, 219–230. [Google Scholar]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 202–203, 183–191. [Google Scholar] [CrossRef]
- Ouyang, L.; Wang, F.; Tang, J.; Yu, L.; Zhang, R. Effects of biochar amendment on soil aggregates and hydraulic properties. J. Soil Sci. Plant Nutr. 2013, 13, 991–1002. [Google Scholar] [CrossRef] [Green Version]
- Downie, A.; Crosky, A.; Munroe, P. Biochar for Environmental Management: Science and Technology; Chapter 2, Physical Properties of Biochar; Earthscan: London, UK, 2009; pp. 13–32. [Google Scholar]
- Novak, J.M.; Cantrell, K.B.; Watts, D.W.; Busscher, W.J.; Johnson, M.G. Designing relevant biochars as soil amendments using ligno cellulosic-based and manure-based feedstocks. J. Soils Sediments 2014, 14, 330–343. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Al-Omran, A.M.; Mustafa, M.A.; Al-Darby, A.M.; Shalaby, A.A. Gel-conditioned barriers for water management of sandy soil. Irrig. Sci. 1991, 12, 273–286. [Google Scholar] [CrossRef]
- Al-Omran, A.M.; Falatah, A.M.; Sheta, A.S.; Al-Harbi, A.R. Clay deposits for water management of sandy soils. Arid Land Res. Manag. 2004, 18, 171–183. [Google Scholar] [CrossRef]
- Sharma, P.; Abrol, V.; Sharma, V.; Chaddha, S.; Rao, C.S.; Ganie, A.Q.; Hefft, D.I.; El-Sheikh, M.A.; Mansoor, S. Effectiveness of biochar and compost on improving soil hydro-physical properties, crop yield and monetary returns in inceptisol subtropics. Saudi J. Biol. Sci. 2021, 28, 7539–7549. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.; Bezdicek, D.; Fauci, M. Effects of compost, coal ash, and straw amendments on restoring the quality of eroded Palouse soil. Biol. Fertil. Soils 2001, 33, 365–372. [Google Scholar] [CrossRef]
- Cogger, C.G. Potential compost benefits for restoration of soils disturbed by urban development. Compost. Sci. Util. 2005, 13, 243–251. [Google Scholar] [CrossRef]
- Kalu, S.; Simojoki, A.; Karhu, K.; Tammeorg, P. Long-term effects of softwood biochar on soil physical properties, greenhouse gas emissions and crop nutrient uptake in two contrasting boreal soils. Agric. Ecosyst. Environ. 2021, 316, 107454. [Google Scholar] [CrossRef]
- Carter, M.R.; Sanderson, J.B.; MacLeod, J.A. Influence of compost on the physical properties and organic matter fractions of a fine sandy loam throughout the cycle of a potato rotation. Can. J. Soil Sci. 2004, 84, 211–218. [Google Scholar] [CrossRef]
- Singh, H.; Northup, B.K.; Rice, C.W.; Prasad, P.V. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar 2022, 4, 8. [Google Scholar] [CrossRef]
Measurement | Unit | Value |
---|---|---|
Sand | % | 98.8 |
Silt | % | 0.8 |
Clay | % | 0.4 |
Hydraulic conductivity | cm s−1 | 0.0184 |
Zeta potential | mV | −16.8 |
pH | - | 8.82 |
Electrical conductivity | µS cm−1 | 146.9 |
Calcium | ppm | 28.4 |
Magnesium | ppm | 37.2 |
Sodium | ppm | 7.9 |
Potassium | ppm | 4.3 |
Bicarbonate | ppm | 1.1 |
Chloride | ppm | 12.6 |
Treatment (macro) | Water Added (mm) | Evaporation (mm) | Cumulative Evaporation (mm) | Water Retained (mm) | Recovery * % | |||
---|---|---|---|---|---|---|---|---|
Week 1 | Week 2 | Week 3 | Week 4 | |||||
Control | 50.94 | 8.76b | 6.13c | 11.51 | 6.88a | 33.28b | 10.27c | 85.50 |
0–5 cm | 50.94 | 7.79a | 5.59b | 11.51 | 7.79a | 32.69a | 9.20b | 82.22 |
5–10 cm | 50.94 | 7.74a | 5.37a | 11.24 | 9.78b | 34.13b | 9.78b | 86.20 |
10–15 cm | 50.94 | 8.90b | 5.62b | 11.16 | 6.88a | 32.55a | 7.79a | 79.20 |
LSD (0.05) | ------- | 0.143 | 0.027 | 0.72 | 0.196 | 0.13 | 0.16 | |
Treatment (Nano) control | 50.94 | 9.19c | 5.65c | 12.38d | 7.18c | 34.40c | 6.96a | 81.20 |
0–5 cm | 50.94 | 9.61d | 6.74d | 12.02c | 9.48d | 37.85d | 11.65b | 97.17 |
5–10 cm | 50.94 | 5.21a | 4.96a | 10.07b | 4.43b | 24.67a | 14.30c | 76.51 |
10–15 cm | 50.94 | 7.93b | 5.18b | 9.49a | 3.21a | 25.81b | 11.66b | 73.56 |
LSD (0.05) | -------- | 0.019 | 0.191 | 0.002 | 0.002 | 0.02 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Omran, A.M.; Mousa, M.A.; Alghamdi, A.G.; Alkhasha, A. Impact of Nanoparticles from Ball-Milled Date Palm Biochar on the Hydro-Physical Characteristics of Sandy Soils. Appl. Sci. 2023, 13, 7781. https://doi.org/10.3390/app13137781
Al-Omran AM, Mousa MA, Alghamdi AG, Alkhasha A. Impact of Nanoparticles from Ball-Milled Date Palm Biochar on the Hydro-Physical Characteristics of Sandy Soils. Applied Sciences. 2023; 13(13):7781. https://doi.org/10.3390/app13137781
Chicago/Turabian StyleAl-Omran, Abdulrasoul M., Mohammed Awad Mousa, Abdulaziz G. Alghamdi, and Arafat Alkhasha. 2023. "Impact of Nanoparticles from Ball-Milled Date Palm Biochar on the Hydro-Physical Characteristics of Sandy Soils" Applied Sciences 13, no. 13: 7781. https://doi.org/10.3390/app13137781
APA StyleAl-Omran, A. M., Mousa, M. A., Alghamdi, A. G., & Alkhasha, A. (2023). Impact of Nanoparticles from Ball-Milled Date Palm Biochar on the Hydro-Physical Characteristics of Sandy Soils. Applied Sciences, 13(13), 7781. https://doi.org/10.3390/app13137781