Improving Steerability Detection via an Aggregate Class Distribution Neural Network
Abstract
1. Introduction
2. Preliminaries
2.1. Quantum Steering
2.2. AGGNN Model
Algorithm 1 The AGGNN algorithm. |
Require: batch |
Require: , |
for t in [1, num_epochs] do |
for each minibatch B do |
Update with Adam to minimize Loss |
end for |
end for |
Return: |
3. Detecting the Steerability by AGGNN
3.1. Datasets
3.2. Training and Testing
3.3. Predicting the Steerability Bounds
3.4. Comparing the Classification Models Trained with Different Features
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schrödinger, E. Discussion of probability relations between separated systems. Math. Proc. Camb. 1935, 31, 555–563. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef]
- Wiseman, H.; Jones, S.; Doherty, A. Steering, entanglement, nonlocality, and the Einstein–Podolsky-Rosen paradox. Phys. Rev. Lett. 2007, 98, 140402. [Google Scholar] [CrossRef] [PubMed]
- Gühne, O.; Tóth, G. Entanglement detection. Phys. Rep. 2009, 474, 1–75. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef]
- Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S. Bell nonlocality. Rev. Mod. Phys. 2014, 86, 419–478. [Google Scholar] [CrossRef]
- Jones, S.; Wiseman, H.; Doherty, A. Entanglement, Einstein–Podolsky-Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 2007, 76, 052116. [Google Scholar] [CrossRef]
- Skrzypczyk, P.; Navascués, M.; Cavalcanti, D. Quantifying Einstein–Podolsky-Rosen steering. Phys. Rev. Lett. 2014, 112, 180404. [Google Scholar] [CrossRef]
- Branciard, C.; Cavalcanti, E.; Walborn, S.; Scarani, V.; Wiseman, H. One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering. Phys. Rev. A 2012, 85, 010301(R). [Google Scholar] [CrossRef]
- Gehring, T.; Händchen, V.; Duhme, J.; Furrer, F.; Franz, T.; Pacher, C.; Werner, R.; Schnabel, R. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks. Nat. Commun. 2015, 6, 8795. [Google Scholar] [CrossRef]
- Walk, N.; Hosseini, S.; Geng, J.; Thearle, O.; Haw, J.; Armstrong, S.; Assad, S.; Janousek, J.; Ralph, T.; Symul, T.; et al. Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution. Optica 2016, 3, 634–642. [Google Scholar] [CrossRef]
- Wang, Y.; Bao, W.; Li, H.; Zhou, C.; Li, Y. Finite-key analysis for one-sided device-independent quantum key distribution. Phys. Rev. A 2013, 88, 052322. [Google Scholar] [CrossRef]
- Zhou, C.; Xu, P.; Bao, W.; Wang, Y.; Zhang, Y.; Jiang, M.; Li, H. Finite-key bound for semi-device-independent quantum key distribution. Opt. Express 2017, 25, 16971–16980. [Google Scholar] [CrossRef] [PubMed]
- Kaur, E.; Wilde, M.; Winter, A. Fundamental limits on key rates in device-independent quantum key distribution. New J. Phys. 2020, 22, 023039. [Google Scholar] [CrossRef]
- Piani, M.; Watrous, J. Necessary and sufficient quantum information characterization of Einstein–Podolsky-Rosen steering. Phys. Rev. Lett. 2015, 114, 060404. [Google Scholar] [CrossRef]
- Sun, K.; Ye, X.; Xiao, Y.; Xu, X.; Wu, Y.; Xu, J.; Chen, J.; Li, C.; Guo, G. Demonstration of Einstein–Podolsky-Rosen steering with enhanced subchannel discrimination. NPJ Quantum Inf. 2018, 4, 12. [Google Scholar] [CrossRef]
- Passaro, E.; Cavalcanti, D.; Skrzypczyk, P.; Acín, A. Optimal randomness certification in the quantum steering and prepare-and-measure scenarios. New J. Phys. 2015, 17, 113010. [Google Scholar] [CrossRef]
- Skrzypczyk, P.; Cavalcanti, D. Maximal randomness generation from steering inequality violations using qudits. Phys. Rev. Lett. 2018, 120, 260401. [Google Scholar] [CrossRef]
- Coyle, B.; Hoban, M.; Kashefi, E. One-sided device-independent certification of unbounded random numbers. EPTCS 2018, 273, 14–26. [Google Scholar] [CrossRef]
- He, Q.; Rosales-Zárate, L.; Adesso, G.; Reid, M. Secure continuous variable teleportation and Einstein–Podolsky-Rosen steering. Phys. Rev. Lett. 2015, 115, 180502. [Google Scholar] [CrossRef]
- Reid, M. Demonstration of the Einstein–Podolsky-Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 1989, 40, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.; Drummond, P.; Bowen, W.; Cavalcanti, E.; Lam, P.; Bachor, H.; Andersen, U.; Leuchs, G. Colloquium: The Einstein–Podolsky-Rosen paradox: From concepts to applications. Rev. Mod. Phys. 2009, 81, 1727–1751. [Google Scholar] [CrossRef]
- Cavalcanti, E.; Jones, S.; Wiseman, H.; Reid, M. Experimental criteria for steering and the Einstein–Podolsky-Rosen paradox. Phys. Rev. A 2009, 80, 032112. [Google Scholar] [CrossRef]
- Walborn, S.; Salles, A.; Gomes, R.; Toscano, F.; Souto-Ribeiro, P. Revealing hidden Einstein–Podolsky-Rosen nonlocality. Phys. Rev. Lett. 2011, 106, 130402. [Google Scholar] [CrossRef]
- Schneeloch, J.; Broadbent, C.; Walborn, S.; Cavalcanti, E.; Howell, J. Einstein–Podolsky-Rosen steering inequalities from entropic uncertainty relations. Phys. Rev. A 2013, 87, 062103. [Google Scholar] [CrossRef]
- Pusey, M. Negativity and steering: A stronger Peres conjecture. Phys. Rev. A 2013, 88, 032313. [Google Scholar] [CrossRef]
- Pramanik, T.; Kaplan, M.; Majumdar, A. Fine-grained Einstein–Podolsky-Rosen-steering inequalities. Phys. Rev. A 2014, 90, 050305(R). [Google Scholar] [CrossRef]
- Kogias, I.; Skrzypczyk, P.; Cavalcanti, D.; Acín, A.; Adesso, G. Hierarchy of steering criteria based on moments for all bipartite quantum systems. Phys. Rev. Lett. 2015, 115, 210401. [Google Scholar] [CrossRef]
- Cavalcanti, E.; Foster, C.; Fuwa, M.; Wiseman, H. Analog of the Clauser-Horne-Shimony-Holt inequality for steering. J. Opt. Soc. Am. B 2015, 32, A74–A81. [Google Scholar] [CrossRef]
- Kogias, I.; Lee, A.; Ragy, S.; Adesso, G. Quantification of Gaussian quantum steering. Phys. Rev. Lett. 2015, 114, 060403. [Google Scholar] [CrossRef]
- Zhu, H.; Hayashi, M.; Chen, L. Universal steering criteria. Phys. Rev. Lett. 2016, 116, 070403. [Google Scholar] [CrossRef]
- Nguyen, H.; Vu, T. Necessary and sufficient condition for steerability of two-qubit states by the geometry of steering outcomes. Europhys. Lett. 2016, 115, 10003. [Google Scholar] [CrossRef]
- Costa, A.C.S.; Angelo, R.M. Quantification of Einstein–Podolsky-Rosen steering for two-qubit states. Phys. Rev. A 2019, 100, 039901. [Google Scholar] [CrossRef]
- Ming, F.; Song, X.K.; Ling, J.; Ye, L.; Wang, D. Quantification of quantumness in neutrino oscillations. Eur. Phys. J. C 2020, 80, 275. [Google Scholar] [CrossRef]
- Vandenberghe, L.; Boyd, S. Semidefinite programming. SIAM Rev. 1996, 38, 49–95. [Google Scholar] [CrossRef]
- Cavalcanti, D.; Skrzypczyk, P. Quantum steering: A review with focus on semidefinite programming. Rep. Prog. Phys. 2016, 80, 024001. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Huang, S.; Li, K.; Li, J.; Chen, J.; Lu, D.; Ji, Z.; Shen, Y.; Zhou, D.; Zeng, B. Separability-entanglement classifier via machine learning. Phys. Rev. A 2018, 98, 012315. [Google Scholar] [CrossRef]
- Canabarro, A.; Brito, S.; Chaves, R. Machine learning nonlocal correlations. Phys. Rev. Lett. 2019, 122, 200401. [Google Scholar] [CrossRef]
- Deng, D. Machine learning detection of Bell nonlocality in quantum many-body systems. Phys. Rev. Lett. 2018, 120, 240402. [Google Scholar] [CrossRef] [PubMed]
- Ch’ng, K.; Carrasquilla, J.; Melko, R.; Khatamis, E. Machine learning phases of strongly correlated fermions. Phys. Rev. X 2017, 7, 031038. [Google Scholar] [CrossRef]
- Yoshioka, N.; Akagi, Y.; Katsura, H. Learning disordered topological phases by statistical recovery of symmetry. Phys. Rev. B 2018, 97, 205110. [Google Scholar] [CrossRef]
- Neugebauer, M.; Fischer, L.; Jäger, A.; Czischek, S.; Jochim, S.; Weidemüller, M.; Gärttner, M. Neural-network quantum state tomography in a two-qubit experiment. Phys. Rev. A 2020, 102, 042604. [Google Scholar] [CrossRef]
- Fanchini, F.; Karpat, G.; Rossatto, D.; Norambuena, A.; Coto, R. Estimating the degree of non-Markovianity using machine learning. Phys. Rev. A 2021, 103, 022425. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; He, Q.; Chen, L. Machine learning on quantifying quantum steerability. Quantum Inf. Process. 2020, 19, 263. [Google Scholar] [CrossRef]
- Ren, C.; Chen, C. Steerability detection of an arbitrary two-qubit state via machine learning. Phys. Rev. A 2019, 100, 022314. [Google Scholar] [CrossRef]
- Yang, M.; Ren, C.; Ma, Y.; Xiao, Y.; Ye, X.; Song, L.; Xu, J.; Yung, M.; Li, C.; Guo, G. Experimental simultaneous learning of multiple nonclassical correlations. Phys. Rev. Lett. 2019, 123, 190401. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Fei, S. Einstein–Podolsky-Rosen steering based on semisupervised machine learning. Phys. Rev. A 2021, 104, 052427. [Google Scholar] [CrossRef]
- Zhang, J.; He, K.; Zhang, Y.; Hao, Y.; Hou, J.; Lan, F.; Niu, B. Detecting the steerability bounds of generalized Werner states via a backpropagation neural network. Phys. Rev. A 2022, 105, 032408. [Google Scholar] [CrossRef]
- Kim, J.; Ryoo, K.; Lee, G.; Cho, S.; Seo, J.; Kim, D.; Cho, H.; Kim, S. AggMatch: Aggregating pseudo labels for semi-supervised learning. arXiv 2022, arXiv:2201.10444v1. [Google Scholar] [CrossRef]
- Bowles, J.; Hirsch, F.; Quintino, M.; Brunner, N. Sufficient criterion for guaranteeing that a two-qubit state is unsteerable. Phys. Rev. A 2016, 93, 022121. [Google Scholar] [CrossRef]
- Rumelhart, D.; Hinton, G.; Williams, R. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Jevtic, S.; Hall, M.J.W.; Anderson, M.R.; Zwierz, M.; Wiseman, H.M. Einstein–Podolsky–Rosen steering and the steering ellipsoid. J. Opt. Soc. Am. B 2015, 32, A40–A49. [Google Scholar] [CrossRef]
Feature | The Number of Hidden Layers | The Number of Neurons in Each Layer | ||
---|---|---|---|---|
Feature Extraction Layer | Classification Layer | |||
F1 | 2 | 1 | 1000 | 1000 |
F2 | 2 | 1 | 500 | 500 |
F3 | 2 | 1 | 500 | 500 |
F4 | 2 | 1 | 200 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; He, K.; Zhang, Y. Improving Steerability Detection via an Aggregate Class Distribution Neural Network. Appl. Sci. 2023, 13, 7874. https://doi.org/10.3390/app13137874
Hao Y, He K, Zhang Y. Improving Steerability Detection via an Aggregate Class Distribution Neural Network. Applied Sciences. 2023; 13(13):7874. https://doi.org/10.3390/app13137874
Chicago/Turabian StyleHao, Yuyang, Kan He, and Ying Zhang. 2023. "Improving Steerability Detection via an Aggregate Class Distribution Neural Network" Applied Sciences 13, no. 13: 7874. https://doi.org/10.3390/app13137874
APA StyleHao, Y., He, K., & Zhang, Y. (2023). Improving Steerability Detection via an Aggregate Class Distribution Neural Network. Applied Sciences, 13(13), 7874. https://doi.org/10.3390/app13137874