Cognitive Load Approach to Digital Comics Creation: A Student-Centered Learning Case
Abstract
:Featured Application
Abstract
1. Introduction
- The examination of whether comics creation by students can lead to the satisfaction of the principles of effective design of artifacts, which combine text and pictures, and support learning.
2. Cognitive Load Theory, Cognitive Theory of Multimedia Learning, and Cognitive Load Assessment
3. Comics in Education
4. Materials and Methods
5. Results
6. Discussion
6.1. Study Observations and Lessons Learnt
6.2. Limitations and Future Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdulrahaman, M.D.; Faruk, N.; Oloyede, A.A.; Surajudeen-Bakinde, N.T.; Olawoyin, L.A.; Mejabi, O.V.; Imam-Fulani, Y.O.; Fahm, A.O.; Azeez, A.L. Multimedia tools in the teaching and learning processes: A systematic review. Heliyon 2020, 6, e05312. [Google Scholar] [CrossRef] [PubMed]
- Mayer, R.E. The Cambridge Handbook of Multimedia Learning, 2nd ed.; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Kizilcec, R.F.; Bailenson, J.N.; Gomez, C.J. The instructor’s face in video instruction: Evidence from two large-scale field studies. J. Educ. Psychol. 2015, 107, 724–739. [Google Scholar] [CrossRef] [Green Version]
- Harris, D.; Wilson, M.; Vine, S. Development and validation of a simulation workload measure: The simulation task load index (SIM-TLX). Virtual Real. 2020, 24, 557–566. [Google Scholar] [CrossRef] [Green Version]
- Fyfield, M.; Henderson, M.; Phillips, M. Improving instructional video design: A systematic review. Australas. J. Educ. Technol. 2022, 38, 155–183. [Google Scholar] [CrossRef]
- Kirschner, F.; Kester, L.; Corbalan, G. Cognitive load theory and multimedia learning, task characteristics, and learner engagement: The current state of the art. Comput. Hum. Behav. 2011, 27, 1–4. [Google Scholar] [CrossRef]
- Castro-Alonso, J.C.; de Koning, B.B.; Fiorella, L.; Paas, F. Five Strategies for Optimizing Instructional Materials: Instructor- and Learner-Managed Cognitive Load. Educ. Psychol. Rev. 2021, 33, 1379–1407. [Google Scholar] [CrossRef]
- Gjoreski, M.; Kolenik, T.; Knez, T.; Luštrek, M.; Gams, M.; Gjoreski, H.; Pejović, V. Datasets for Cognitive Load Inference Using Wearable Sensors and Psychological Traits. Appl. Sci. 2020, 10, 3843. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Adv. Psychol. 1988, 52, 139–183. [Google Scholar] [CrossRef]
- Nikulin, C.; Lopez, G.; Piñonez, E.; Gonzalez, L.; Zapata, P. NASA-TLX for predictability and measurability of instructional design models: Case study in design methods. Educ. Technol. Res. Dev. 2019, 67, 467–493. [Google Scholar] [CrossRef] [Green Version]
- Umair, M.; Sharafat, A.; Lee, D.-E.; Seo, J. Impact of Virtual Reality-Based Design Review System on User’s Performance and Cognitive Behavior for Building Design Review Tasks. Appl. Sci. 2022, 12, 7249. [Google Scholar] [CrossRef]
- Yum, Y.N.; Cohn, N.; Lau, W.K. Effects of picture-word integration on reading visual narratives in L1 and L2. Learn. Instr. 2021, 71, 101397. [Google Scholar] [CrossRef]
- Dimopoulos, K.; Koulaidis, V.; Sklaveniti, S. Towards an analysis of visual images in school science textbooks and press articles about science and technology. Res. Sci. Educ. 2003, 33, 189–216. [Google Scholar] [CrossRef]
- Tang, K.S. Distribution of visual representations across scientific genres in secondary science textbooks: Analysing multimodal genre pattern of verbal-visual texts. Res. Sci. Educ. 2023, 53, 357–375. [Google Scholar] [CrossRef]
- Lee, V.R. Adaptations and continuities in the use and design of visual representations in US middle school science textbooks. Int. J. Sci. Educ. 2010, 32, 1099–1126. [Google Scholar] [CrossRef]
- Mainali, B. Representation in teaching and learning mathematics. Int. J. Educ. Math. Sci. Technol. 2021, 9, 1–21. [Google Scholar] [CrossRef]
- Cohn, N. Your brain on comics: A cognitive model of visual narrative comprehension. Top. Cogn. Sci. 2020, 12, 352–386. [Google Scholar] [CrossRef] [Green Version]
- Hughes, R.; Hawkins, M.; Lopez, K. History, Literacy, and Popular Culture. Using Graphic Novels to Teach the Struggle for Racial Justice. In Educating Through Popular Culture. You ’re Not Cool Just Because You Teach with Comics; Janak, E., Sourdot, L.A., Eds.; Lexington Books: Lanham, MD, USA, 2017; pp. 21–40. [Google Scholar]
- Walton, G.; Childs, M.; Jugo, G. The Creation of Digital Artefacts as a Mechanism to Engage Students in Studying Literature. Br. J. Educ. Technol. 2019, 50, 1060–1086. [Google Scholar] [CrossRef]
- Cha, J.; Kim, H.B.; Kan, S.Y.; Foo, W.Y.; Low, X.Y.; Ow, J.Y.; Chandran, P.D.B.; Lee, G.E.; Yong, J.W.H.; Chia, P.W. Integrating organic chemical-based socio-scientific issues comics into chemistry classroom: Expanding chemists’ toolbox. GreenChem. Lett. Rev. 2021, 14, 689–699. [Google Scholar] [CrossRef]
- Hoffman, A. Comics and medicine: Using graphic narratives in pharmacy Education. Am. J. Pharm. Educ. 2023, 87, ajpe8797. [Google Scholar] [CrossRef] [PubMed]
- Grande-de-Prado, M. Quantitative review of articles about comics & education in Ibero-America. J. Graph. Nov. Comics 2022, 13, 287–301. [Google Scholar] [CrossRef]
- Lazarinis, F.; Mazaraki, A.; Verykios, V.S.; Panagiotakopoulos, C. E-comics in teaching: Evaluating and using comic strip creator tools for educational purposes. In Proceedings of the 2015 10th International Conference on Computer Science & Education (ICCSE), Cambridge, UK, 22–24 July 2015; pp. 305–309. [Google Scholar] [CrossRef]
- Hosler, J.; Boomer, K.B. Are comic books an effective way to engage nonmajors in learning and appreciating Science? CBE—Life Sci. Educ. 2011, 10, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Linardatos, G.; Apostolou, D. Investigating high school students’ perception about digital comics creation in the classroom. Educ. Inf. Technol. 2023. [Google Scholar] [CrossRef]
- Virtanen, K.; Mansikka, H.; Kontio, H.; Harris, D. Weight watchers: NASA-TLX weights revisited. Theor. Issues Ergon. Sci. 2022, 23, 725–748. [Google Scholar] [CrossRef]
- Sweller, J.; van Merriënboer, J.J.G.; Paas, F. Cognitive Architecture and Instructional Design: 20 Years Later. Educ. Psychol. Rev. 2019, 31, 261–292. [Google Scholar] [CrossRef] [Green Version]
- Paas, F.; Renkl, A.; Sweller, J. Cognitive load theory: Instructional implications of the interaction between information structures and cognitive architecture. Instr. Sci. 2004, 32, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Skulmowski, A.; Xu, K.M. Understanding cognitive load in digital and online learning: A new perspective on extraneous cognitive load. Educ. Psychol. Rev. 2022, 34, 171–196. [Google Scholar] [CrossRef]
- Sweller, J. Element interactivity and intrinsic, extraneous, and germane cognitive load. Educ. Psychol. Rev. 2010, 22, 123–138. [Google Scholar] [CrossRef]
- Anmarkrud, Ø.; Andresen, A.; Bråten, I. Cognitive load and working memory in multimedia learning: Conceptual and measurement issues. Educ. Psychol. 2019, 54, 61–83. [Google Scholar] [CrossRef]
- Sweller, J.; van Merrienboer, J.J.G.; Paas, F.G.W.C. Cognitive architecture and instructional design. Educ. Psychol. Rev. 1998, 10, 251–296. [Google Scholar] [CrossRef]
- Zu, T.; Hutson, J.; Loschky, L.C.; Rebello, N.S. Using eye movements to measure intrinsic, extraneous, and germane load in a multimedia learning environment. J. Educ. Psychol. 2020, 112, 1338–1352. [Google Scholar] [CrossRef]
- Sorden, S. The cognitive theory of multimedia learning. In The Handbook of Educational Theories; Irby, B.J., Brown, G., Lara-Alecio, R., Jackson, S., Eds.; Information Age Publishing: Charlotte, NC, USA, 2013; pp. 155–167. [Google Scholar]
- Ruan, L.; Xiong, Z.; Jiang, L.; Zhou, X. Comparison between digital and paper note-taking based on NASA-TLX. In Proceedings of the 2015 IEEE International Conference on Progress in Informatics and Computing (PIC), Nanjing, China, 18–20 December 2015; pp. 221–225. [Google Scholar] [CrossRef]
- LaBara, L.M.A.; Meloni, L.; Giusino, D.; Pietrantoni, L. Assessment Methods of Usability and Cognitive Workload of Rehabilitative Exoskeletons: A Systematic Review. Appl. Sci. 2021, 11, 7146. [Google Scholar] [CrossRef]
- Ro, H.; Byun, J.-H.; Park, Y.J.; Lee, N.K.; Han, T.-D. AR pointer: Advanced ray-casting interface using laser pointer metaphor for object manipulation in 3D augmented reality environment. Appl. Sci. 2019, 9, 3078. [Google Scholar] [CrossRef] [Green Version]
- Emerson, L.; MacKay, B. A comparison between paper-based and online learning in higher education. Br. J. Educ. Technol. 2011, 42, 727–735. [Google Scholar] [CrossRef]
- Buchner, J.; Buntins, K.; Kerres, M. A systematic map of research characteristics in studies on augmented reality and cognitive load. Comput. Educ. Open 2021, 2, 100036. [Google Scholar] [CrossRef]
- Mingardi, M.; Pluchino, P.; Bacchin, D.; Rossato, C.; Gamberini, L. Assessment of implicit and explicit measures of mental workload in working situations: Implications for industry 4.0. Appl. Sci. 2020, 10, 6416. [Google Scholar] [CrossRef]
- Galy, E.; Paxion, J.; Berthelon, C. Measuring mental workload with the NASA-TLX needs to examine each dimension rather than relying on the global score: An example with driving. Ergonomics 2018, 61, 517–527. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Smith, B.E.; Shen, J. Examining How Different Modes Mediate Adolescents’ Interactions During Their Collaborative Multimodal Composing Processes. Interact. Learn. Environ. 2021, 29, 807–820. [Google Scholar] [CrossRef]
- Morrison, T.G.; Bryan, G.; Chilcoat, G.W. Using student-generated comic books in the classroom. J. Adolesc. Adult Lit. 2002, 45, 758–767. [Google Scholar]
- McCloud, S. Understanding Comics: The Invisible Art; HarperCollins: NewYork, NY, USA, 1993. [Google Scholar]
- Tsene, L. Using comics as a media literacy tool for marginalized groups: The case of Athens comics library. Media Commun. 2022, 10, 289–293. [Google Scholar] [CrossRef]
- Nagata, R. Learning biochemistry through manga—Helping students learn and remember, and making lectures more exciting. Biochem. Educ. 1999, 27, 200–203. [Google Scholar] [CrossRef]
- Suh, S.; Lee, M.; Xia, G.; Law, E. Coding strip: A pedagogical tool for teaching and learning programming concepts through comics. In Proceedings of the 2020 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Dunedin, New Zeeland, 10–14 August 2020; pp. 1–10. [Google Scholar] [CrossRef]
- Lin, S.-F.; Lin, H.-S.; Lee, L.; Yore, L.D. Are science comics a good medium for science communication? The case for public learning of nanotechnology. Int. J. Sci. Educ. Part B 2015, 5, 276–294. [Google Scholar] [CrossRef]
- Kirtley, S.E.; Garcia, A.; Carlson, P.E. A Once and Future Pedagogy. In With Great Power Comes Great Pedadogy; Kirtley, S.E., Garcia, A., Carlson, P.E., Eds.; University Press of Mississippi: Jackson, MI, USA, 2020; pp. 3–19. [Google Scholar]
- Wiegerova, A.; Navratilova, H. Let’s Not Be Scared of Comics (Researching Possibilities of Using Conceptual Comics in Teaching Nature Study in Kindergarden). Procedia-Soc. Behav. Sci. 2017, 237, 1576–1581. [Google Scholar] [CrossRef]
- Krieglstein, F.; Beege, M.; Rey, G.D.; Ginns, P.; Krell, M.; Schneider, S. A systematic meta-analysis of the reliability and validity of subjective cognitive load questionnaires in experimental multimedia learning research. Educ. Psychol. Rev. 2022, 34, 2485–2541. [Google Scholar] [CrossRef]
- Schwamborn, A.; Thillmann, H.; Opfermann, M.; Leutner, D. Cognitive load and instructionally supported learning with provided and learner-generated visualizations. Comput. Hum. Behav. 2011, 27, 89–93. [Google Scholar] [CrossRef]
- Leopold, C.; Sumfleth, E.; Leutner, D. Learning with summaries: Effects of representation mode and type of learning activity on comprehension and transfer. Learn. Instr. 2013, 27, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Parody, L.; Santos, J.; Trujillo-Cayado, L.A.; Ceballos, M. Gamification in Engineering Education: The Use of Classcraft Platform to Improve Motivation and Academic Performance. Appl. Sci. 2022, 12, 11832. [Google Scholar] [CrossRef]
- Mayer, R.E. Evidence-based principles for how to design effective instructional videos. J. Appl. Res. Mem. Cogn. 2021, 10, 229–240. [Google Scholar] [CrossRef]
- Noetel, M.; Griffith, S.; Delaney, O.; Harris, N.R.; Sanders, T.; Parker, P.; del Pozo Cruz, B.; Lonsdale, C. Multimedia Design for Learning: An Overview of Reviews with Meta-Meta-Analysis. Rev. Educ. Res. 2021, 92, 413–454. [Google Scholar] [CrossRef]
- Hagaman, J.L.; Reid, R. The Effects of the Paraphrasing Strategy on the Reading Comprehension of Middle School Students at Risk for Failure in Reading. Rem. Spec. Educ. 2008, 29, 222–234. [Google Scholar] [CrossRef]
- Coleman, L.O.; Gibson, P.; Cotten, S.R.; Howell-Moroney, M.; Stringer, K. Integrating computing across the curriculum: The impact of internal barriers and training intensity on computer integration in the elementary school classroom. J. Educ. Comput. Res. 2016, 54, 275–294. [Google Scholar] [CrossRef]
- Nieto-Márquez, N.L.; Baldominos, A.; Martínez, A.C.; Pérez-Nieto, M.Á. An exploratory analysis of the implementation and use of an intelligent platform for learning in primary education. Appl. Sci. 2020, 10, 983. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolou, D.; Linardatos, G. Cognitive Load Approach to Digital Comics Creation: A Student-Centered Learning Case. Appl. Sci. 2023, 13, 7896. https://doi.org/10.3390/app13137896
Apostolou D, Linardatos G. Cognitive Load Approach to Digital Comics Creation: A Student-Centered Learning Case. Applied Sciences. 2023; 13(13):7896. https://doi.org/10.3390/app13137896
Chicago/Turabian StyleApostolou, Dimitris, and Gerasimos Linardatos. 2023. "Cognitive Load Approach to Digital Comics Creation: A Student-Centered Learning Case" Applied Sciences 13, no. 13: 7896. https://doi.org/10.3390/app13137896
APA StyleApostolou, D., & Linardatos, G. (2023). Cognitive Load Approach to Digital Comics Creation: A Student-Centered Learning Case. Applied Sciences, 13(13), 7896. https://doi.org/10.3390/app13137896