Dental Surface Conditioning Techniques to Increase the Micromechanical Retention to Fiberglass Posts: A Literature Review
Abstract
:1. Introduction
2. Conditioning Solutions
2.1. Acidic Solutions
2.2. Prefabricated Conditioning Solutions
3. Sonic Methods for the Irrigation Solution Activation
3.1. Sonic Activation
3.2. Passive Ultrasonic Irrigation
4. Laser Methods for the Activation of the Irrigation Solution
4.1. Er: YAG and PIPS
4.2. Nd: YAG Laser
4.3. Er, Cr: YSGG
4.4. Diode Lasers
5. Pre-Treatment Laser Irradiation to Dentin Methods
6. Discussion
7. Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kharboutly, N.A.; Allaf, M.; Kanout, S. Three-Dimensional Finite Element Study of Endodontically Treated Maxillary Central Incisors Restored Using Different Post and Crown Materials. Cureus 2023, 15, e33778. [Google Scholar] [CrossRef] [PubMed]
- Farid, F.; Mahgoli, H.; Hosseini, A.; Chiniforush, N. Effect of eugenol-containing and resin endodontic sealers on retention of prefabricated metal posts cemented with zinc phosphate and resin cements. J. Prosthodont. Res. 2013, 57, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-C.; Lin, W.-C.; Hu, T.-C.; Yan, M.; Tang, C.-M. Evaluation of the Bonding Strength between Various Dental Zirconia Models and Human Teeth for Dental Posts through In Vitro Aging Tests. Coatings 2021, 11, 1017. [Google Scholar] [CrossRef]
- Scribante, A.; Vallittu, P.K.; Özcan, M. Fiber-Reinforced Composites for Dental Applications. Biomed Res. Int. 2018, 2018, 4734986. [Google Scholar] [CrossRef] [PubMed]
- Zarow, M.; Vadini, M.; Chojnacka-Brozek, A.; Szczeklik, K.; Milewski, G.; Biferi, V.; D’Arcangelo, C.; De Angelis, F. Effect of Fiber Posts on Stress Distribution of Endodontically Treated Upper Premolars: Finite Element Analysis. Nanomaterials 2020, 10, 1708. [Google Scholar] [CrossRef]
- Ruschel, G.H.; Gomes, É.A.; Silva-Sousa, Y.T.; Pinelli, R.G.P.; Sousa-Neto, M.D.; Pereira, G.K.R.; Spazzin, A.O. Mechanical properties and superficial characterization of a milled CAD-CAM glass fiber post. J. Mech. Behav. Biomed. Mater. 2018, 82, 187–192. [Google Scholar] [CrossRef]
- Tsintsadze, N.; Margvelashvili-Malament, M.; Natto, Z.S.; Ferrari, M. Comparing survival rates of endodontically treated teeth restored either with glass-fiber-reinforced or metal posts: A systematic review and meta-analyses. J. Prosthet. Dent. 2022. [Google Scholar] [CrossRef]
- Sarkis-Onofre, R.; Amaral Pinheiro, H.; Poletto-Neto, V.; Bergoli, C.D.; Cenci, M.S.; Pereira-Cenci, T. Randomized controlled trial comparing glass fiber posts and cast metal posts. J. Dent. 2020, 96, 103334. [Google Scholar] [CrossRef]
- Akman, M.; Eldeniz, A.U.; Ince, S.; Guneser, M.B. Push-out bond strength of a new post system after various post space treatments. Dent. Mater. J. 2016, 35, 876–880. [Google Scholar] [CrossRef] [Green Version]
- Alkhudhairy, F.I.; Yaman, P.; Dennison, J.; McDonald, N.; Herrero, A.; Bin-Shuwaish, M.S. The effects of different irrigation solutions on the bond strength of cemented fiber posts. Clin. Cosmet. Investig. Dent. 2018, 10, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Mirseifinejad, R.; Tabrizizade, M.; Davari, A.; Mehravar, F. Efficacy of Different Root Canal Irrigants on Smear Layer Removal after Post Space Preparation: A Scanning Electron Microscopy Evaluation. Iran. Endod. J. 2017, 12, 185–190. [Google Scholar] [PubMed]
- Marques, E.F.; Marceliano-Alves, M.F.V.; Pelegrine, R.A.; Pinheiro, S.L.; Bueno, C. Influence of the Chelating Solutions in the Resistance of Glass Fiber Posts to the Root Dentin. Eur. J. Dent. 2020, 14, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Maroulakos, G.; He, J.; Nagy, W.W. The Post-endodontic Adhesive Interface: Theoretical Perspectives and Potential Flaws. J. Endod. 2018, 44, 363–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yumi Umeda Suzuki, T.; Gomes-Filho, J.E.; Fraga Briso, A.L.; Gonçalves Assunção, W.; Dos Santos, P.H. Influence of the depth of intraradicular dentin on the pushout bond strength of resin materials. J. Investig. Clin. Dent. 2019, 10, e12461. [Google Scholar] [CrossRef] [PubMed]
- Demiryürek, E.O.; Külünk, S.; Saraç, D.; Yüksel, G.; Bulucu, B. Effect of different surface treatments on the push-out bond strength of fiber post to root canal dentin. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 108, e74–e80. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, G.; Lizio, A.; Giudice, R.L.; Centofanti, A.; Rizzo, G.; Runci, M.; Alibrandi, A.; Cicciù, M. The Effect of Different Cleaning Protocols on Post Space: A SEM Study. Int. J. Dent. 2016, 2016, 1907124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akyuz Ekim, S.N.; Erdemir, A. Effect of different irrigant activation protocols on push-out bond strength. Lasers Med. Sci. 2015, 30, 2143–2149. [Google Scholar] [CrossRef]
- Kaushal, R.; Bansal, R.; Malhan, S. A comparative evaluation of smear layer removal by using ethylenediamine tetraacetic acid, citric acid, and maleic acid as root canal irrigants: An in vitro scanning electron microscopic study. J. Conserv. Dent. JCD 2020, 23, 71–78. [Google Scholar]
- Belizário, L.G.; Kuga, M.C.; Castro-Núñez, G.M.; Escalante-Otárola, W.G.; Só, M.V.R.; Pereira, J.R. Effects of different peracetic acid formulations on post space radicular dentin. J. Prosthet. Dent. 2018, 120, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Fan, F.; Ibrahim, M.; Dai, P.; Mao, Y.; He, B.; Wu, G.; Ma, J.; Huang, S. Effect of maleic acid on the bond strength of fibre posts to root dentine. Eur. J. Oral Sci. 2017, 125, 396–402. [Google Scholar] [CrossRef]
- Taneja, S.; Kumari, M.; Anand, S. Effect of QMix, peracetic acid and ethylenediaminetetraacetic acid on calcium loss and microhardness of root dentine. J. Conserv. Dent. JCD 2014, 17, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Elnaghy, A.M. Effect of QMix irrigant on bond strength of glass fibre posts to root dentine. Int. Endod. J. 2014, 47, 280–289. [Google Scholar] [CrossRef]
- Poletto, D.; Poletto, A.C.; Cavalaro, A.; Machado, R.; Cosme-Silva, L.; Garbelini, C.C.D.; Hoeppner, M.G. Smear layer removal by different chemical solutions used with or without ultrasonic activation after post preparation. Restor. Dent. Endod. 2017, 42, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P.K.; Dipallini, S.; Sahoo, K.C.; Patri, G.; Lata, S. Effect of temperature and activation techniques of irrigating solutions on push-out bond strength of fiber post. J. Conserv. Dent. JCD 2020, 23, 295–298. [Google Scholar] [CrossRef]
- Srirekha, A.; Rashmi, K.; Hegde, J.; Lekha, S.; Rupali, K.; Reshmi, G. An in vitro evaluation of passive ultrasonic agitation of different irrigants on smear layer removal after post space preparation: A scanning electron microscopic study. J. Indian Prosthodont. Soc. 2013, 13, 240–246. [Google Scholar] [CrossRef]
- Chen, X.; Liu, H.; He, Y.; Luo, T.; Zou, L. Effects of Endodontic Sealers and Irrigation Systems on Smear Layer Removal after Post Space Preparation. J. Endod. 2018, 44, 1293–1297. [Google Scholar] [CrossRef]
- Arisu, H.D.; Kivanç, B.H.; Sağlam, B.C.; Şimşek, E.; Görgül, G. Effect of post-space treatments on the push-out bond strength and failure modes of glass fibre posts. Aust. Endod. J. J. Aust. Soc. Endodontology Inc 2013, 39, 19–24. [Google Scholar] [CrossRef]
- Fundaoğlu Küçükekenci, F.; Küçükekenci, A.S. Effect of ultrasonic and Nd: Yag laser activation on irrigants on the push-out bond strength of fiber post to the root canal. J. Appl. Oral Sci. Rev. FOB 2019, 27, e20180420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parčina, I.; Miletić, I.; Ionescu, A.C.; Brambilla, E.; Gabrić, D.; Baraba, A. Influence of Laser Activated Irrigation with two Erbium Lasers on Bond Strength of Inidividually Formed Fiber Reinforced Composite Posts to Root Canal Dentin. Acta Stomatol. Croat. 2016, 50, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Costa Scholz, M.F.; Aboud Matos de Almeida, R.; Scholz, N.; Gomes, G.M.; Masson, P.M.; Loguercio, A.D.; Reis, A.; Bandéca, M.C. The Effect of Viscosity and Application Mode of Phosphoric Acid on Bond Strength of GlassFiber Post. Clin. Cosmet. Investig. Dent. 2020, 12, 61–70. [Google Scholar] [CrossRef]
- Borges, C.C.; Palma-Dibb, R.G.; Rodrigues, F.C.C.; Plotegher, F.; Rossi-Fedele, G.; de Sousa-Neto, M.D.; Souza-Gabriel, A.E. The Effect of Diode and Er, Cr: YSGG Lasers on the Bond Strength of Fiber Posts. Photobiomodulation Photomed. Laser Surg. 2020, 38, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Kuntze, M.M.; Mendes Souza, B.D.; Schmidt, T.F.; de Almeida, J.; Bortoluzzi, E.A.; Felippe, W.T. Scanning electron microscopy evaluation of dentin ultrastructure after surface demineralization. J. Conserv. Dent. JCD 2020, 23, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Breschi, L.; Mazzoni, A.; De Stefano Dorigo, E.; Ferrari, M. Adhesion to Intraradicular Dentin: A Review. J. Adhes. Sci. Technol. 2009, 23, 1053–1083. [Google Scholar] [CrossRef]
- Jalali, H.; Farid, F.; Kulivand, S.; Nokar, S.; Dadgar, K. Effect of Different Irrigants Applied After Post Space Preparation on Push-Out Bond Strength of a Self-Etch Resin Cement. J. Dent. (Tehran Iran) 2018, 15, 222–229. [Google Scholar]
- Nogo-Živanović, D.; Kanjevac, T.; Bjelović, L.; Ristić, V.; Tanasković, I. The effect of final irrigation with MTAD, QMix, and EDTA on smear layer removal and mineral content of root canal dentin. Microsc. Res. Tech. 2019, 82, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Tan, Y.; Xie, J.; Huang, X.; Guo, L. The effect of a root-dentin pretreatment technique combining PIPS with MTAD aiming to improve the bond strength of glass fiber post. Microsc. Res. Tech. 2020, 83, 824–833. [Google Scholar] [CrossRef]
- Mathew, S.; Raju, I.R.; Sreedev, C.P.; Karthick, K.; Boopathi, T.; Deepa, N.T. Evaluation of Push out Bond Strength of Fiber Post after Treating the Intra Radicular Post Space with Different Post Space Treatment Techniques: A Randomized Controlled In vitro Trial. J. Pharm. Bioallied Sci. 2017, 9 (Suppl. S1), S197–S200. [Google Scholar] [CrossRef]
- Fernández, M.L.; Pérez, G.G.; Villagómez, M.O.; Villagómez, G.O.; Báez, T.D.M.; Lara, G.G. Estudio in vitro del grado de erosión que provoca el EDTA sobre la dentina del conducto radicular. Revista Odontologica Mexicana 2012, 16, 8–13. [Google Scholar]
- Tuncdemir, A.R.; Yildirim, C.; Ozcan, E.; Polat, S. The effect of a diode laser and traditional irrigants on the bond strength of self-adhesive cement. J. Adv. Prosthodont. 2013, 5, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Heredia, M.; Ferrer-Luque, C.M.; González-Rodríguez, M.P. The effectiveness of different acid irrigating solutions in root canal cleaning after hand and rotary instrumentation. J. Endod. 2006, 32, 993–997. [Google Scholar] [CrossRef]
- Natasha Gupta, N.S. Effect of Maleic Acid, Ethylendiaminetetraacetic Acid, MTAD on Smear Layer Removal and Dentin Microhardness. J. Dent. Indones. 2018, 25, 91–98. [Google Scholar]
- Balasubramanian, S.K.; Saraswathi, V.; Ballal, N.V.; Acharya, S.R.; Sampath, J.S.; Singh, S. A Comparative Study of the Quality of Apical Seal in Resilon/Epiphany SE Following Intra canal Irrigation With 17% EDTA, 10% Citric Acid, And MTAD as Final Irrigants—A Dye Leakage Study Under Vacuum. J. Clin. Diagn. Res. JCDR 2017, 11, Zc20–Zc24. [Google Scholar] [CrossRef]
- Wright, P.P.; Kahler, B.; Walsh, L.J. Alkaline Sodium Hypochlorite Irrigant and Its Chemical Interactions. Materials 2017, 10, 1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzoni, A.; Tjäderhane, L.; Checchi, V.; Di Lenarda, R.; Salo, T.; Tay, F.R.; Pashley, D.H.; Breschi, L. Role of dentin MMPs in caries progression and bond stability. J. Dent. Res. 2015, 94, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Baldasso, F.E.R.; Roleto, L.; Silva, V.D.D.; Morgental, R.D.; Kopper, P.M.P. Effect of final irrigation protocols on microhardness reduction and erosion of root canal dentin. Braz. Oral Res. 2017, 31, e40. [Google Scholar] [CrossRef]
- Baena, E.; Flores, A.; Ceballos, L. Influence of root dentin treatment on the push-out bond strength of fiber posts. Odontology 2017, 105, 170–177. [Google Scholar] [CrossRef]
- Plotino, G.; Pameijer, C.H.; Grande, N.M.; Somma, F. Ultrasonics in endodontics: A review of the literature. J. Endod. 2007, 33, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Vangala, A.; Hegde, V.; Sathe, S.; Dixit, M.; Jain, P. Effect of irrigating solutions used for postspace treatment on the push-out bond strength of glass fiber posts. J. Conserv. Dent. JCD 2016, 19, 82–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kırmalı, Ö.; Üstün, Ö.; Kapdan, A.; Kuştarcı, A. Evaluation of Various Pretreatments to Fiber Post on the Push-out Bond Strength of Root Canal Dentin. J. Endod. 2017, 43, 1180–1185. [Google Scholar] [CrossRef]
- Prado, M.; Gusman, H.; Gomes, B.P.; Simão, R.A. Scanning electron microscopic investigation of the effectiveness of phosphoric acid in smear layer removal when compared with EDTA and citric acid. J. Endod. 2011, 37, 255–258. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, N.; Podar, R.; Singh, S.; Kulkarni, G.; Dadu, S. Effect of ultrasonic activation on calcium ion quantification, smear layer removal, and canal cleaning efficacy of demineralizing irrigants. J. Conserv. Dent. JCD 2018, 21, 551–556. [Google Scholar]
- Mozayeni, M.A.; Zadeh, Y.M.; Paymanpour, P.; Ashraf, H.; Mozayani, M. Evaluation of push-out bond strength of AH26 sealer using MTAD and combination of NaOCl and EDTA as final irrigation. Dent. Res. J. 2013, 10, 359–363. [Google Scholar]
- Dai, L.; Khechen, K.; Khan, S.; Gillen, B.; Loushine, B.A.; Wimmer, C.E.; Gutmann, J.L.; Pashley, D.; Tay, F.R. The effect of QMix, an experimental antibacterial root canal irrigant, on removal of canal wall smear layer and debris. J. Endod. 2011, 37, 80–84. [Google Scholar] [CrossRef]
- Căpută, P.E.; Retsas, A.; Kuijk, L.; Chávez de Paz, L.E.; Boutsioukis, C. Ultrasonic Irrigant Activation during Root Canal Treatment: A Systematic Review. J. Endod. 2019, 45, 31–44.e13. [Google Scholar] [CrossRef] [PubMed]
- Gündoğar, M.; Sezgin, G.P.; Erkan, E.; Özyılmaz, Ö.Y. The influence of the irrigant QMix on the push-out bond strength of a bioceramic endodontic sealer. Eur. Oral Res. 2018, 52, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Aksel, H.; Serper, A.; Kalayci, S.; Somer, G.; Erisken, C. Effects of QMix and ethylenediaminetetraacetic acid on decalcification and erosion of root canal dentin. Microsc. Res. Tech. 2016, 79, 1056–1061. [Google Scholar] [CrossRef]
- Eggmann, F.; Vokac, Y.; Eick, S.; Neuhaus, K.W. Sonic irrigant activation for root canal disinfection: Power modes matter! BMC Oral Health 2020, 20, 102. [Google Scholar] [CrossRef] [Green Version]
- Kharouf, N.; Pedullà, E.; La Rosa, G.R.M.; Bukiet, F.; Sauro, S.; Haikel, Y.; Mancino, D. In Vitro Evaluation of Different Irrigation Protocols on Intracanal Smear Layer Removal in Teeth with or without Pre-Endodontic Proximal Wall Restoration. J. Clin. Med. 2020, 9, 3325. [Google Scholar] [CrossRef]
- Plotino, G.; Grande, N.M.; Mercade, M.; Cortese, T.; Staffoli, S.; Gambarini, G.; Testarelli, L. Efficacy of sonic and ultrasonic irrigation devices in the removal of debris from canal irregularities in artificial root canals. J. Appl. Oral Sci. Rev. FOB 2019, 27, e20180045. [Google Scholar] [CrossRef]
- Lukač, N.; Jezeršek, M. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er: YAG laser pulses. Lasers Med. Sci. 2018, 33, 823–833. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.H.; Zhang, L.; Xu, S.; Li, F.; Yu, F.; Liu, Z.Y.; Huang, L.; Chen, J.H. Effects of Epigallocatechin-3-gallate (EGCG) on the bond strength of fiber posts to Sodium hypochlorite (NaOCl) treated intraradicular dentin. Sci. Rep. 2017, 7, 4235. [Google Scholar] [CrossRef] [Green Version]
- Tocci, J.M.; Felcher, C.M.; García Solá, M.E.; Kordon, E.C. R-spondin-mediated WNT signaling potentiation in mammary and breast cancer development. IUBMB Life 2020, 72, 1546–1559. [Google Scholar] [CrossRef] [PubMed]
- DiVito, E.; Peters, O.A.; Olivi, G. Effectiveness of the erbium: YAG laser and new design radial and stripped tips in removing the smear layer after root canal instrumentation. Lasers Med. Sci. 2012, 27, 273–280. [Google Scholar] [CrossRef]
- Do, Q.L.; Gaudin, A. The Efficiency of the Er: YAG Laser and PhotonInduced Photoacoustic Streaming (PIPS) as an Activation Method in Endodontic Irrigation: A Literature Review. J. Lasers Med. Sci. 2020, 11, 316–334. [Google Scholar] [CrossRef]
- Quinto, J., Jr.; Amaral, M.M.; Francci, C.E.; Ana, P.A.; Moritz, A.; Zezell, D.M. Evaluation of Intra Root Canal Er, Cr: YSGG Laser Irradiation on Prosthetic Post Adherence. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2019, 28, e181–e185. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.M.; Kim, H.C.; Bae, K.S.; Baek, S.H.; Shon, W.J.; Lee, W. Effect of laser-activated irrigation of 1320-nanometer Nd: YAG laser on sealer penetration in curved root canals. J. Endod. 2012, 38, 531–535. [Google Scholar] [CrossRef]
- Arslan, D.; Guneser, M.B.; Dincer, A.N.; Kustarci, A.; Er, K.; Siso, S.H. Comparison of Smear Layer Removal Ability of QMix with Different Activation Techniques. J. Endod. 2016, 42, 1279–1285. [Google Scholar] [CrossRef]
- Pelozo, L.L.; Silva-Neto, R.D.; Corona, S.A.M.; Palma-Dibb, R.G.; Souza-Gabriel, A.E. Dentin pretreatment with Er: YAG laser and sodium ascorbate to improve the bond strength of glass fiber post. Lasers Med. Sci. 2019, 34, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, N.; Savadi Oskoee, S.; Abed Kahnamoui, M.; Bahari, M.; Kimyai, S.; Rikhtegaran, S. Effect of Er, Cr: YSGG pretreatment on bond strength of fiber posts to root canal dentin using a self-adhesive resin cement. Lasers Med. Sci. 2013, 28, 65–69. [Google Scholar] [CrossRef]
- Strefezza, C.; Amaral, M.M.; Quinto, J., Jr.; Gouw-Soares, S.C.; Zamataro, C.B.; Zezell, D.M. Effect of 830 nm Diode Laser Irradiation of Root Canal on Bond Strength of Metal and Fiber Post. Photomed. Laser Surg. 2018, 36, 439–444. [Google Scholar] [CrossRef]
- Khoroushi, M.; Najafabadi, M.A.; Feiz, A. Effects of Calcium Hypochlorite and Sodium Hypochlorite, as Root Canal Irrigants, on the Bond Strength of Glass Fiber Posts Cemented with Self-Adhesive Resin Cement. Front. Dent. 2019, 16, 214–223. [Google Scholar] [CrossRef]
- Feiz, A.; Samimi, P.; Karami, A.; Badrian, H.; Goroohi, H.; Swift, E.J., Jr. Effect of surface treatments on fracture resistance of root filled teeth with bonded fibre posts. Dent. Traumatol. Off. Publ. Int. Assoc. Dent. Traumatol. 2014, 30, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Salas, M.M.; Bocangel, J.S.; Henn, S.; Pereira-Cenci, T.; Cenci, M.S.; Piva, E.; Demarco, F.F. Can viscosity of acid etchant influence the adhesion of fibre posts to root canal dentine? Int. Endod. J. 2011, 44, 1034–1040. [Google Scholar] [CrossRef]
- Arslan, H.; Capar, I.D.; Saygili, G.; Uysal, B.; Gok, T.; Ertas, H.; Topcuoglu, H.S. Efficacy of various irrigation protocols on the removal of triple antibiotic paste. Int. Endod. J. 2014, 47, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Pereira, É.C.; da Silveira Bueno, C.E.; Kato, A.S.; Fontana, C.E.; Stringheta, C.P.; Pelegrine, R.A. Irrigant Agitation Techniques versus Passive Ultrasonic Irrigation for Removing Debris from Curved Root Canals: An Environmental Scanning Electron Microscopic Study. Iran. Endod. J. 2021, 16, 26–32. [Google Scholar] [PubMed]
- Matsuoka, E.; Jayawardena, J.A.; Matsumoto, K. Morphological study of the Er, Cr: YSGG laser for root canal preparation in mandibular incisors with curved root canals. Photomed. Laser Surg. 2005, 23, 480–484. [Google Scholar] [CrossRef]
- Perdigão, J. Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2010, 26, e24–e37. [Google Scholar] [CrossRef]
- Freire, M.A.; Córdova, N.M.; Vernimmen, F.S. Evaluación de la interfase de adhesión-cohesión entre el poste de fibra de vidrio, cemento dual y dentina, previa irrigación con 2 sustancias desinfectantes. Rev. Odontológica Mex. 2012, 16, 182–187. [Google Scholar]
- Kandaswamy, D.; Venkateshbabu, N. Root canal irrigants. J. Conserv. Dent. JCD 2010, 13, 256–264. [Google Scholar] [CrossRef]
Conditioning Solution | Activity |
---|---|
Acidic solutions | |
Ethylenediaminetetraacetic acid | Chelating agent [35,38] Removal of the SL [10,11,16,22,25,34,39] |
Orthophosphoric acid | Remove the SL and open the dentinal tubules [40] |
Citric acid | Demineralizing solution [18] |
Maleic acid | Demineralization of the intertubular dentin [18,41] |
Prefabricated solutions | |
Biopure MTAD | Antimicrobial activity [34,36] Removing inorganic compounds [41,42] Calcium chelator [41,43] Reduces the surface tension [41] |
QMix | Antimicrobial activity [18,24] Chelating agent [35,38] Removal of the SL [10,11,16,22,25,34,39] Inhibit the activity of metalloproteinases [44] |
Conventional Dentin Conditioning | |||
---|---|---|---|
Protocols | Secondary Smear Layer Removal | Reference | |
17% EDTA | Partial–Complete | [11,22,23,42,56] | |
17% EDTA (Gel) | Without Removal | [46] | |
37% phosphoric acid liquid | Partial | [30] | |
35–37% phosphoric acid gel | Partial–Complete | [25,30,46] | |
7% maleic acid | Complete | [20] | |
MTAD | Partial | [36] | |
NaOCl | Without removal–Partial | [6,7,16,18,19,23,37,45] | |
17% EDTA | Partial–Complete | [9,10,11,20,27,36] | |
10% citric acid | Partial | [9] | |
Qmix | Complete | [9,22] | |
17% EDTA | 37% phosphoric acid liquid | Partial | [16] |
Dentin conditioning with sonic or ultrasonic activation | |||
Protocols | Secondary smear layer removal | Reference | |
17% EDTA | Partial–Complete | [16,23] | |
37% phosphoric acid gel | Complete | [30] | |
37% phosphoric acid liquid | Partial–Complete | [16,30] | |
10% citric acid | Partial | [25] | |
2.5–3% NaOCl | Without removal–Partial | [25] | |
2.5% NaOCl | 17% EDTA | Partial–Complete | [23,25] |
17% EDTA | 37% phosphoric acid liquid | Complete | [16] |
Dentin conditioning with laser | |||
Protocols | Secondary smear layer removal | Reference | |
Er: YAG | 17% EDTA | Complete | [48] |
Er: YAG | MTAD | Complete | [36] |
Er: YAG | Little waste—Partial | [29,36] | |
Er: YSGG laser | Partial | [29] | |
Diode | Partial | [27] |
Conditioning Solutions | Type of Activation | ||
---|---|---|---|
Convetional (MPa) | Sonic (MPa) | Ultrasonic (Mpa) | |
17% EDTA | Cervical | ||
10.7–18.63 [10,20,22,46] | N/D | N/D | |
Middle | |||
11–12. [20,22,46] | N/D | N/D | |
Apical | |||
8.3–13.49 [10,20,22,46] | N/D | N/D | |
Mean | |||
10.9–49.08 [34,46] | N/D | N/D | |
5.25% NaOCl followed by 17% EDTA | Cervical | ||
5.54–14.9 [9,27,28,48] | N/D | 6.95–13.91 [17,28] | |
Middle | |||
3.65–14.9 [9,27,28,48] | N/D | 12.98 [28] | |
Apical | |||
4.34 [9,28] | N/D | 4.96–8.66 ± 1.55 [17,28] | |
Mean | |||
5.54–11.07 [27,28] | N/D | 5.96–11.85 [17,24,28] | |
Orthophosphoric acid | Cervical | ||
Gel 8.8–19.1 [30,46] Liquid 6.9 [30] | Gel 7.0 Liquid 9.5 [30] | N/D | |
Middle | |||
Gel 4.1–21.0 [30,46] Liquid 3.3 [30] | Gel 4.5 Liquid 6.0 ± 1.5 [30] | N/D | |
Apical | |||
Gel 2.0–18.6 [30,46] Liquid 2.2 [30] | Gel 2.1 Liquid 3.7 [30] | N/D | |
Mean | |||
Gel 13.2–53.1 [34,46] | Gel 4.6 Liquid 6.2 [30] | N/D | |
NaOCl 5.25% + citric acid 10% | Cervical | ||
5.25 [9] | N/D | N/D | |
Middle | |||
3.79 [9] | N/D | N/D | |
Apical | |||
4.34 [9] | N/D | N/D | |
Mean | |||
N/D | N/D | N/D | |
Maleic acid | Cervical | ||
12.58 [20] | N/D | N/D | |
Middle | |||
11.91 [20] | N/D | N/D | |
Apical | |||
10.80 [20] | N/D | ||
Mean | |||
N/D | N/D | N/D | |
Biopure MTAD | Cervical | ||
11.8 [36] | N/D | N/D | |
Middle | |||
10.87 [36] | N/D | N/D | |
Apical | |||
8.47 [36] | N/D | N/D | |
Mean | |||
10.48–52.47 [34,36] | N/D | N/D | |
Qmix | Cervical | ||
8.10–19.0 [9,22] | N/D | N/D | |
Middle | |||
6.22–15.4 [9,22] | N/D | N/D | |
Apical | |||
5.92–10.3 [9,22] | N/D | N/D | |
Mean | |||
N/D | N/D | 8.81 [20] |
Diodo Laser (MPa) | Nd: YAG (MPa) | Er: YAG (MPa) | PIPS (MPa) | Er, Cr: YSGG (MPa) |
---|---|---|---|---|
Cervical | ||||
5.25 [17] | 6.15–13.14 [17,28] | 6.54 [17] | 8.40–17.7 [17,41] | 5.02 [49] |
Middle | ||||
N/D | 12.28 [17,28] | N/D | 16.7 [41] | 5.38 [49] |
Apical | ||||
4.62 [17] | 5.03–9.47 [17,28] | 5.04 [17] | 6.21 [17] | 4.03 [49] |
Mean | ||||
4.94 [17] | 5.59–11.63 [17,28] | 5.79 [17] | 7.31 [17] | N/D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Sánchez, P.L.; Ramírez-Álvarez, M.; Ayala-Ham, A.d.R.; Silva-Benítez, E.d.L.; Casillas-Santana, M.Á.; Leyva del Rio, D.; Espinosa-Cristóbal, L.F.; Lizárraga-Verdugo, E.; Avendaño-Félix, M.M.; Soto-Sainz, J.E. Dental Surface Conditioning Techniques to Increase the Micromechanical Retention to Fiberglass Posts: A Literature Review. Appl. Sci. 2023, 13, 8083. https://doi.org/10.3390/app13148083
Moreno-Sánchez PL, Ramírez-Álvarez M, Ayala-Ham AdR, Silva-Benítez EdL, Casillas-Santana MÁ, Leyva del Rio D, Espinosa-Cristóbal LF, Lizárraga-Verdugo E, Avendaño-Félix MM, Soto-Sainz JE. Dental Surface Conditioning Techniques to Increase the Micromechanical Retention to Fiberglass Posts: A Literature Review. Applied Sciences. 2023; 13(14):8083. https://doi.org/10.3390/app13148083
Chicago/Turabian StyleMoreno-Sánchez, Paulina Leticia, Maricela Ramírez-Álvarez, Alfredo del Rosario Ayala-Ham, Erika de Lourdes Silva-Benítez, Miguel Ángel Casillas-Santana, Diana Leyva del Rio, León Francisco Espinosa-Cristóbal, Erik Lizárraga-Verdugo, Mariana Melisa Avendaño-Félix, and Jesús Eduardo Soto-Sainz. 2023. "Dental Surface Conditioning Techniques to Increase the Micromechanical Retention to Fiberglass Posts: A Literature Review" Applied Sciences 13, no. 14: 8083. https://doi.org/10.3390/app13148083
APA StyleMoreno-Sánchez, P. L., Ramírez-Álvarez, M., Ayala-Ham, A. d. R., Silva-Benítez, E. d. L., Casillas-Santana, M. Á., Leyva del Rio, D., Espinosa-Cristóbal, L. F., Lizárraga-Verdugo, E., Avendaño-Félix, M. M., & Soto-Sainz, J. E. (2023). Dental Surface Conditioning Techniques to Increase the Micromechanical Retention to Fiberglass Posts: A Literature Review. Applied Sciences, 13(14), 8083. https://doi.org/10.3390/app13148083