Characterizing the As-Fabricated State of Additively Fabricated IN718 Using Ultrasonic Nondestructive Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ultrasonic Characterization
2.2.1. Phase and Group Velocity
2.2.2. Attenuation Coefficient
2.2.3. Backscatter Coefficient
3. Results
3.1. Velocity
3.1.1. Group Velocities
3.1.2. Phase Velocity
3.2. Attenuation Coefficient
3.3. Backscatter Coefficient
3.4. Backscatter C-Scan to Map Heterogeneity
4. Discussion
4.1. Destructive Measurements
4.2. Velocities
4.3. Grain Clusters and Scattering
4.4. Heterogeneity
4.5. Absorption and Residual Stress
5. Summary
- The ultrasonic velocity shows that the DED sample exhibits a noticeable anisotropy compared to the conventional sample. Specifically, the build direction has a large influence on the ultrasonic velocities. The DED sample has a lower longitudinal velocity compared conventional samples, which could possibly be attributed to the lack of phase. However, the transverse shear velocity along the D1-2 plane was higher than conventional sample, which is conflicting with the hypothesis.
- The DED sample exhibits significantly higher attenuation (−22 dB) compared to conventional sample, and the presence of humps were observed. The origin of these humps in the attenuation curve are debatable and presently there is no explanation.
- Ultrasonic backscatter results also suggest that the DED sample exhibits higher ultrasonic backscatter compared to conventional sample. Due to the periodic noise, strong peaks could be observed at certain frequencies. However, outside that frequency range, the FOM values are similar to conventional samples. The backscatter along the build direction was noticeably higher than the transverse directions.
- Heterogeneity: The DED sample shows a −10 dB spatial variability in amplitude, which is considerable compared to conventional samples. It was also observed that this heterogeneity might be dependent on direction.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DED | Directed Energy Deposition |
IN718 | Inconel 718 |
AM | Additive Manufacturing |
NDE | Nondestructive Evaluation |
UT | Ultrasonic Testing |
TTU | Through Transmission Ultrasound |
FW | Front Wall |
BW | Back Wall |
FOM | Figure Of Merit |
References
- Askari, M.; Hutchins, D.A.; Thomas, P.J.; Astolfi, L.; Watson, R.L.; Abdi, M.; Ricci, M.; Laureti, S.; Nie, L.; Freear, S.; et al. Additive manufacturing of metamaterials: A review. Addit. Manuf. 2020, 36, 101562. [Google Scholar] [CrossRef]
- Thompson, S.M.; Bian, L.; Shamsaei, N.; Yadollahi, A. An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Addit. Manuf. 2015, 8, 36–62. [Google Scholar] [CrossRef]
- Svetlizky, D.; Das, M.; Zheng, B.; Vyatskikh, A.L.; Bose, S.; Bandyopadhyay, A.; Schoenung, J.M.; Lavernia, E.J.; Eliaz, N. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Mater. Today 2021, 49, 271–295. [Google Scholar] [CrossRef]
- Chen, D.; Zheng, X. Multi-material additive manufacturing of metamaterials with giant, tailorable negative Poisson’s ratios. Sci. Rep. 2018, 8, 9139. [Google Scholar] [CrossRef]
- Sahasrabudhe, H.; Harrison, R.; Carpenter, C.; Bandyopadhyay, A. Stainless steel to titanium bimetallic structure using LENS™. Addit. Manuf. 2015, 5, 1–8. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Parvez, M.M.; Liou, F. A review on metallic alloys fabrication using elemental powder blends by laser powder directed energy deposition process. Materials 2020, 13, 3562. [Google Scholar] [CrossRef] [PubMed]
- Feenstra, D.; Molotnikov, A.; Birbilis, N. Effect of energy density on the interface evolution of stainless steel 316L deposited upon INC 625 via directed energy deposition. J. Mater. Sci. 2020, 55, 13314–13328. [Google Scholar] [CrossRef]
- Dass, A.; Moridi, A. State of the art in directed energy deposition: From additive manufacturing to materials design. Coatings 2019, 9, 418. [Google Scholar] [CrossRef] [Green Version]
- Aydogan, B.; Sahasrabudhe, H. Effects of Heat Treatment on Direct Laser Fabricated Stainless Steel 420-Inconel 718 Alloy Multi-material Structures. J. Mater. Eng. Perform. 2022, 31, 9802–9811. [Google Scholar] [CrossRef]
- Zhang, Y.; Bandyopadhyay, A. Influence of compositionally graded interface on microstructure and compressive deformation of 316L stainless steel to Al12Si aluminum alloy bimetallic structures. ACS Appl. Mater. Interfaces 2021, 13, 9174–9185. [Google Scholar] [CrossRef]
- Singh, A.K.; Mundada, Y.; Bajaj, P.; Wilms, M.B.; Patil, J.P.; Mishra, S.K.; Jägle, E.A.; Arora, A. Investigation of temperature distribution and solidification morphology in multilayered directed energy deposition of Al-0.5 Sc-0.5 Si alloy. Int. J. Heat Mass Transf. 2022, 186, 122492. [Google Scholar] [CrossRef]
- Joshi, S.S.; Sharma, S.; Mazumder, S.; Pantawane, M.V.; Dahotre, N.B. Solidification and microstructure evolution in additively manufactured H13 steel via directed energy deposition: Integrated experimental and computational approach. J. Manuf. Process. 2021, 68, 852–866. [Google Scholar] [CrossRef]
- Lewandowski, J.J.; Seifi, M. Metal additive manufacturing: A review of mechanical properties. Annu. Rev. Mater. Res. 2016, 46, 151–186. [Google Scholar] [CrossRef] [Green Version]
- Honarvar, F.; Varvani-Farahani, A. A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control. Ultrasonics 2020, 108, 106227. [Google Scholar] [CrossRef] [PubMed]
- Mandache, C. Overview of non-destructive evaluation techniques for metal-based additive manufacturing. Mater. Sci. Technol. 2019, 35, 1007–1015. [Google Scholar] [CrossRef]
- Slotwinski, J.A.; Garboczi, E.J. Porosity of additive manufacturing parts for process monitoring. Am. Inst. Phys. 2014, 1581, 1197–1204. [Google Scholar]
- Rieder, H.; Spies, M.; Bamberg, J.; Henkel, B. On-and offline ultrasonic characterization of components built by SLM additive manufacturing. In Proceedings of the AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1706, p. 130002. [Google Scholar]
- Kim, C.; Yin, H.; Shmatok, A.; Prorok, B.C.; Lou, X.; Matlack, K.H. Ultrasonic nondestructive evaluation of laser powder bed fusion 316L stainless steel. Addit. Manuf. 2021, 38, 101800. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Li, Y.; Zhou, Z.; Zhang, J.; Zhu, F.; Miao, Z. Phased array ultrasonic testing of micro-flaws in additive manufactured titanium block. Mater. Res. Express 2020, 7, 016572. [Google Scholar] [CrossRef]
- Bellotti, A.; Kim, J.Y.; Bishop, J.E.; Jared, B.H.; Johnson, K.; Susan, D.; Noell, P.J.; Jacobs, L.J. Nonlinear ultrasonic technique for the characterization of microstructure in additive materials. J. Acoust. Soc. Am. 2021, 149, 158–166. [Google Scholar] [CrossRef]
- Khabouchi, A.; Ventura, P.; Leymarie, N.; Hazotte, A.; Germain, L. Crystallographic texture and velocities of ultrasonic waves in a Ni-based superalloy manufactured by laser powder bed fusion. Mater. Charact. 2020, 169, 110607. [Google Scholar] [CrossRef]
- Du Plessis, A.; Sperling, P.; Beerlink, A.; Du Preez, W.B.; Le Roux, S.G. Standard method for microCT-based additive manufacturing quality control 4: Metal powder analysis. MethodsX 2018, 5, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Li, H.; Liu, S.; Zou, J.; Shen, S.; Wang, Y.; Zhang, T.; Zhang, D.; Chen, Y.; Qi, H. Influence of laser post-processing on pore evolution of Ti–6Al–4V alloy by laser powder bed fusion. J. Alloys Compd. 2020, 818, 152845. [Google Scholar] [CrossRef]
- Shrestha, S.; Starr, T.; Chou, K. Porosity analysis in metal additive manufacturing by micro-ct. Am. Soc. Mech. Eng. 2018, 52019, V002T02A059. [Google Scholar]
- Shrestha, S.; Chou, K. Build location effect on the single-track pore characteristics formed with the laser powder bed fusion process. Manuf. Lett. 2021, 28, 6–10. [Google Scholar] [CrossRef]
- ASTM Standard E3166-20e1; Standard Guide for Nondestructive Examination of Metal Additively Manufactured Aerospace Parts After Buildy. ASTM: West Conshohocken, PA, USA, 2020.
- Gür, C.H.; Cam, I. Comparison of magnetic Barkhausen noise and ultrasonic velocity measurements for microstructure evaluation of SAE 1040 and SAE 4140 steels. Mater. Charact. 2007, 58, 447–454. [Google Scholar] [CrossRef]
- Murthy, G.; Ghosh, S.; Das, M.; Das, G.; Ghosh, R. Correlation between ultrasonic velocity and indentation-based mechanical properties with microstructure in Nimonic 263. Mater. Sci. Eng. A 2008, 488, 398–405. [Google Scholar] [CrossRef]
- Kumar, A.; Shankar, V.; Jayakumar, T.; Rao, K.B.S.; Raj, B. Correlation of microstructure and mechanical properties with ultrasonic velocity in the Ni-based superalloy Inconel 625. Philos. Mag. A 2002, 82, 2529–2545. [Google Scholar] [CrossRef]
- O’Donnell, M.; Jaynes, E.; Miller, J. Kramers–Kronig relationship between ultrasonic attenuation and phase velocity. J. Acoust. Soc. Am. 1981, 69, 696–701. [Google Scholar] [CrossRef]
- Hsu, D.K.; Nair, S.M. Evaluation of porosity in graphite-epoxy composite by frequency dependence of ultrasonic attenuation. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: Berlin/Heidelberg, Germany, 1987; pp. 1185–1193. [Google Scholar]
- Hsu, D.K.; Jeong, H. Ultrasonic velocity change and dispersion due to porosity in composite laminates. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: Berlin/Heidelberg, Germany, 1989; pp. 1567–1573. [Google Scholar]
- Panetta, P.D. Backscattering and Attenuation during the Propagation of Ultrasonic Waves in Duplex Titanium Alloys. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 1999. [Google Scholar]
- Haldipur, P. Material Characterization of Nickel-Based Super Alloys through Ultrasonic Inspection; Iowa State University: Ames, IA, USA, 2006. [Google Scholar]
- Lobkis, O.; Yang, L.; Li, J.; Rokhlin, S. Ultrasonic backscattering in polycrystals with elongated single phase and duplex microstructures. Ultrasonics 2012, 52, 694–705. [Google Scholar] [CrossRef]
- Chabot, A.; Laroche, N.; Carcreff, E.; Rauch, M.; Hascoët, J.Y. Towards defect monitoring for metallic additive manufacturing components using phased array ultrasonic testing. J. Intell. Manuf. 2020, 31, 1191–1201. [Google Scholar] [CrossRef]
- Huanes-Alvan, G.; O’Neil, A.; Sahasrabudhe, H.; Chakrapani, S.K. Baseline estimation of ultrasonic response of metallic structures fabricated via laser direct energy deposition (DED). In Proceedings of the QNDE2019-6989 46th Annual Review of Progress in Quantitative Nondestructive Evaluation, Portland, OR, USA, 14–19 July 2019. [Google Scholar]
- Sotelo, L.D.; Hadidi, H.; Pratt, C.S.; Sealy, M.P.; Turner, J.A. Ultrasonic mapping of hybrid additively manufactured 420 stainless steel. Ultrasonics 2021, 110, 106269. [Google Scholar] [CrossRef]
- Sotelo, L.D.; Karunakaran, R.; Pratt, C.S.; Sealy, M.P.; Turner, J.A. Ultrasound in situ characterization of hybrid additively manufactured Ti6Al4V. J. Acoust. Soc. Am. 2021, 150, 4452–4463. [Google Scholar] [CrossRef]
- Aydogan, B.; O’Neil, A.; Sahasrabudhe, H. Microstructural and mechanical characterization of stainless steel 420 and Inconel 718 multi-material structures fabricated using laser directed energy deposition. J. Manuf. Process. 2021, 68, 1224–1235. [Google Scholar] [CrossRef]
- Papadakis, E.P. The measurement of ultrasonic velocity. Phys. Acoust. 1990, 19, 81–106. [Google Scholar]
- Bhatia, A.B. Ultrasonic Absorption: An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids, and Solids; Courier Corporation: Chelmsford, MA, USA, 1985. [Google Scholar]
- Margetan, F.J.; Thompson, R.B.; Yalda-Mooshabad, I.; Han, Y.K. Detectability of Small Flaws in Advanced Engine Alloys; Iowa State University: Ames, IA, USA, 1993. [Google Scholar]
- Panetta, P.D.; Bland, L.G.; Tracy, M.; Hassan, W. Ultrasonic backscattering measurements of grain size in metal alloys. In TMS 2014: 143rd Annual Meeting & Exhibition; Springer: Berlin/Heidelberg, Germany, 2014; pp. 723–730. [Google Scholar]
- Sindhura, D.; Sravya, M.V.; Murthy, G. Comprehensive microstructural evaluation of precipitation in Inconel 718. Metallogr. Microstruct. Anal. 2019, 8, 233–240. [Google Scholar] [CrossRef]
- Barnard, D.; Dace, G.; Buck, O. Acoustic harmonic generation due to thermal embrittlement of Inconel 718. J. Nondestruct. Eval. 1997, 16, 67–75. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, F.; Zhang, K.; Nie, P.; Hosseini, S.R.E.; Feng, K.; Li, Z. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling. J. Alloys Compd. 2016, 670, 312–321. [Google Scholar] [CrossRef]
- Hassan, B.; Corney, J. Grain boundary precipitation in Inconel 718 and ATI 718Plus. Mater. Sci. Technol. 2017, 33, 1879–1889. [Google Scholar] [CrossRef] [Green Version]
- Deng, D. Additively Manufactured Inconel 718: Microstructures and Mechanical Properties. Ph.D. Thesis, Linköping University, Linköping, Sweden, 2018. [Google Scholar]
- Baicheng, Z.; Xiaohua, L.; Jiaming, B.; Junfeng, G.; Pan, W.; Chen-nan, S.; Muiling, N.; Guojun, Q.; Jun, W. Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing. Mater. Des. 2017, 116, 531–537. [Google Scholar] [CrossRef]
- Rossin, J.; Goodlet, B.; Torbet, C.; Musinski, W.; Cox, M.; Miller, J.; Groeber, M.; Mayes, A.; Biedermann, E.; Smith, S.; et al. Assessment of grain structure evolution with resonant ultrasound spectroscopy in additively manufactured nickel alloys. Mater. Charact. 2020, 167, 110501. [Google Scholar] [CrossRef]
- Cazic, I.; Zollinger, J.; Mathieu, S.; El Kandaoui, M.; Plapper, P.; Appolaire, B. New insights into the origin of fine equiaxed microstructures in additively manufactured Inconel 718. Scr. Mater. 2021, 195, 113740. [Google Scholar] [CrossRef]
- Stanke, F.E.; Kino, G.S. A unified theory for elastic wave propagation in polycrystalline materials. J. Acoust. Soc. Am. 1984, 75, 665–681. [Google Scholar] [CrossRef]
- Arguelles, A.P.; Turner, J.A. Ultrasonic attenuation of polycrystalline materials with a distribution of grain sizes. J. Acoust. Soc. Am. 2017, 141, 4347–4353. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lobkis, O.; Rokhlin, S. Shape effect of elongated grains on ultrasonic attenuation in polycrystalline materials. Ultrasonics 2011, 51, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.G.; Simpson, W., Jr.; Vitek, J.; Barnard, D.; Tweed, L.; Foley, J. Ultrasonic attenuation due to grain boundary scattering in copper and copper-aluminum. J. Acoust. Soc. Am. 2004, 116, 109–116. [Google Scholar] [CrossRef]
- Liu, F.; Lin, X.; Leng, H.; Cao, J.; Liu, Q.; Huang, C.; Huang, W. Microstructural changes in a laser solid forming Inconel 718 superalloy thin wall in the deposition direction. Opt. Laser Technol. 2013, 45, 330–335. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Sui, S.; Zhong, C.; Lu, X.; Lin, X. The microstructure evolution and tensile properties of Inconel 718 fabricated by high-deposition-rate laser directed energy deposition. Addit. Manuf. 2020, 31, 100941. [Google Scholar] [CrossRef]
- Kumar, S.P.; Elangovan, S.; Mohanraj, R.; Ramakrishna, J. A review on properties of Inconel 625 and Inconel 718 fabricated using direct energy deposition. Mater. Today Proc. 2021, 46, 7892–7906. [Google Scholar] [CrossRef]
- Parimi, L.L.; Ravi, G.; Clark, D.; Attallah, M.M. Microstructural and texture development in direct laser fabricated IN718. Mater. Charact. 2014, 89, 102–111. [Google Scholar] [CrossRef]
- Zhai, Y.; Lados, D.A.; Brown, E.J.; Vigilante, G.N. Understanding the microstructure and mechanical properties of Ti-6Al-4V and Inconel 718 alloys manufactured by Laser Engineered Net Shaping. Addit. Manuf. 2019, 27, 334–344. [Google Scholar] [CrossRef]
- Yeoh, Y.C.; Macchi, G.; Jain, E.; Gaskey, B.; Raman, S.; Tay, G.; Verdi, D.; Patran, A.; Grande, A.M.; Seita, M. Multiscale microstructural heterogeneity and mechanical property scatter in Inconel 718 produced by directed energy deposition. J. Alloys Compd. 2021, 887, 161426. [Google Scholar] [CrossRef]
- Truell, R.; Elbaum, C.; Chick, B.B. Ultrasonic Methods in Solid State Physics; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Alers, G.; Thompson, D. Dislocation contributions to the modulus and damping in copper at megacycle frequencies. J. Appl. Phys. 1961, 32, 283–293. [Google Scholar] [CrossRef]
- Granato, A.; Lücke, K. Theory of mechanical damping due to dislocations. J. Appl. Phys. 1956, 27, 583–593. [Google Scholar] [CrossRef]
- Fergani, O.; Berto, F.; Welo, T.; Liang, S. Analytical modelling of residual stress in additive manufacturing. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 971–978. [Google Scholar] [CrossRef]
- Dike, J.; Johnson, G. Residual stress determination using acoustoelasticity. J. Appl. Mech. Mar. 1990, 57, 12–17. [Google Scholar] [CrossRef]
- Rogers, P.H.; Van Buren, A.L. An exact expression for the lommeldiffraction correction integral. J. Acoust. Soc. Am. 1974, 55, 724–728. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Oxygen and moisture | <20 ppm |
Laser power | 1000 W |
Speed | 14.4 mm/s |
Powder feed rate | 12.3 g/min |
Powder particle size | 16–44 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miles, Z.; Aydogan, B.; Huanes-Alvan, G.; Sahasrabudhe, H.; Chakrapani, S.K. Characterizing the As-Fabricated State of Additively Fabricated IN718 Using Ultrasonic Nondestructive Evaluation. Appl. Sci. 2023, 13, 8137. https://doi.org/10.3390/app13148137
Miles Z, Aydogan B, Huanes-Alvan G, Sahasrabudhe H, Chakrapani SK. Characterizing the As-Fabricated State of Additively Fabricated IN718 Using Ultrasonic Nondestructive Evaluation. Applied Sciences. 2023; 13(14):8137. https://doi.org/10.3390/app13148137
Chicago/Turabian StyleMiles, Zebadiah, Beytullah Aydogan, Guillermo Huanes-Alvan, Himanshu Sahasrabudhe, and Sunil Kishore Chakrapani. 2023. "Characterizing the As-Fabricated State of Additively Fabricated IN718 Using Ultrasonic Nondestructive Evaluation" Applied Sciences 13, no. 14: 8137. https://doi.org/10.3390/app13148137
APA StyleMiles, Z., Aydogan, B., Huanes-Alvan, G., Sahasrabudhe, H., & Chakrapani, S. K. (2023). Characterizing the As-Fabricated State of Additively Fabricated IN718 Using Ultrasonic Nondestructive Evaluation. Applied Sciences, 13(14), 8137. https://doi.org/10.3390/app13148137