Identification of Lacerations Caused by Cervical Cancer through a Comparative Study among Texture-Extraction Techniques
Abstract
:1. Introduction
2. Literature Review
- Comparing a statistical method with an NN to verify whether there exist greater advantages when artificial intelligence (AI) is incorporated into image classification.
- Determining which descriptors and classifiers present better performance regarding the detection of cervical cancer in images.
- Identifying which descriptors provide better results for both a multi-class classifier and an NN, so that these can be subsequently employed for the development of an automated diagnostic software.
3. Materials and Methods
3.1. Database
3.2. Texture-Extraction Techniques
3.2.1. Local Binary Pattern (LBP)
3.2.2. Orthogonal Combination of Local Binary Patterns (OC-LBP)
3.2.3. Center-Symmetric Local Ternary Patterns (CS-LTP)
3.2.4. Improved Center-Symmetric Texture Spectrum (ICS-TS)
3.2.5. Coordinated Cluster Representation (CCR)
3.3. Classifiers
3.3.1. Statistical Classifier
3.3.2. Neural Networks
4. Results
4.1. Tests with the Statistical Classifier
4.2. Neural Network Tests
4.2.1. Ablation Study
4.2.2. ROC Curves
4.2.3. Confusion Matrices
5. Discussion and Contribution
5.1. Discussion
5.2. Contribution
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaki, J.; Dey, N. Texture Feature Extraction Techniques for Image Recognition; Springer Briefs in Applied Sciences and Technology; Springer: Singapore, 2020; ISBN 9789811508523. [Google Scholar]
- Devnath, L.; Summons, P.; Luo, S.; Wang, D.; Shaukat, K.; Hameed, I.A.; Aljuaid, H. Computer-Aided Diagnosis of Coal Workers’ Pneumoconiosis in Chest X-ray Radiographs Using Machine Learning: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 6439. [Google Scholar] [CrossRef] [PubMed]
- González-Castro, V.; Cernadas, E.; Huelga, E.; Fernández-Delgado, M.; Porto, J.; Antunez, J.R.; Souto-Bayarri, M. CT Radiomics in Colorectal Cancer: Detection of KRAS Mutation Using Texture Analysis and Machine Learning. Appl. Sci. 2020, 10, 6214. [Google Scholar] [CrossRef]
- Krishan, A.; Mittal, D. Effective segmentation and classification of tumor on liver MRI and CT images using multi-kernel K-means clustering. Biomed. Eng. Biomed. Tech. 2020, 65, 301–313. [Google Scholar] [CrossRef]
- Prakash, A.J. Capsule Network for the Identification of Individuals Using Quantized ECG Signal Images. IEEE Sens. Lett. 2022, 6, 1–4. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.who.int/es/news-room/fact-sheets/detail/cervical-cancer (accessed on 11 November 2022).
- Park, Y.R.; Kim, Y.J.; Ju, W.; Nam, K.; Kim, S.; Kim, K.G. Comparison of machine and deep learning for the classification of cervical cancer based on cervicography images. Sci. Rep. 2021, 11, 16143. [Google Scholar] [CrossRef]
- Dhawan, S.; Singh, K.; Arora, M. Cervix Image Classification for Prognosis of Cervical Cancer using Deep Neural Network with Transfer Learning. EAI Endorsed Trans. Pervasive Health Technol. 2017, 7, 169183. [Google Scholar] [CrossRef]
- Zhu, C.; Bichot, C.-E.; Chen, L. Image region description using orthogonal combination of local binary patterns enhanced with color information. Pattern Recognit. 2013, 46, 1949–1963. [Google Scholar] [CrossRef]
- Singh, S.K.; Anjali, G. Performance analysis of machine learning algorithms for cervical cancer detection. Int. J. Healthc. Inf. Syst. Inform. 2020, 15, 1–21. [Google Scholar] [CrossRef]
- Payette, J.; Rachleff, J.; de Graaf, C.V. Intel and MobileODT Cervical Cancer Screening Kaggle Competition: Cervix Type Classification Using Deep Learning and Image Classification. Available online: https://www.semanticscholar.org/paper/Intel-and-MobileODT-Cervical-Cancer-Screening-%3A-and-Payette/fb75bbd2ffd384dc0ff5bd25bdd43e5051810d90 (accessed on 28 June 2023).
- Devi, M.A.; Ravi, S.; Vaishnavi, J.; Punitha, S. Classification of Cervical Cancer Using Artificial Neural Networks. Procedia Comput. Sci. 2016, 89, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zeng, Z.; Teo, S.G.; Wang, L.; Chandrasekhar, V.; Hoi, S. Deep Learning for Practical Image Recognition: Case Study on Kaggle Competitions. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; ACM: London, UK, 2018; pp. 923–931. [Google Scholar]
- Pal, A.; Xue, Z.; Befano, B.; Rodriguez, A.C.; Long, L.R.; Schiffman, M.; Antani, S. Deep Metric Learning for Cervical Image Classification. IEEE Access 2021, 9, 53266–53275. [Google Scholar] [CrossRef]
- Elayaraja, P.; Suganthi, M. Automatic Approach for Cervical Cancer Detection and Segmentation Using Neural Network Classifier. Asian Pac. J. Cancer Prev. 2018, 19, 3571–3580. [Google Scholar] [CrossRef] [Green Version]
- Al-Wesabi, Y.M.S.; Choudhury, A.; Won, D. Classification of Cervical Cancer Dataset. arXiv 2018, arXiv:1812.10383. [Google Scholar]
- Tanimu, J.J.; Hamada, M.; Hassan, M.; Kakudi, H.; Abiodun, J.O. A Machine Learning Method for Classification of Cervical Cancer. Electronics 2022, 11, 463. [Google Scholar] [CrossRef]
- Mehmood, M.; Rizwan, M.; Gregus Ml, M.; Abbas, S. Machine Learning Assisted Cervical Cancer Detection. Front. Public Health 2021, 9, 788376. [Google Scholar] [CrossRef]
- Parikh, D.; Menon, V. Machine Learning Applied to Cervical Cancer Data. Int. J. Math. Sci. Comput. 2019, 5, 53–64. [Google Scholar] [CrossRef]
- Asadi, F.; Salehnasab, C.; Ajori, L. Supervised Algorithms of Machine Learning for the Prediction of Cervical Cancer. J. Biomed. Phys. Eng. 2020, 10, 513–522. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, S.; Li, M.; Wang, J.; Ma, C.; Wang, B.; Lv, X. Classification of Cervical Biopsy Images Based on LASSO and EL-SVM. IEEE Access 2020, 8, 24219–24228. [Google Scholar] [CrossRef]
- Mariarputham, E.J.; Stephen, A. Nominated Texture Based Cervical Cancer Classification. Comput. Math. Methods Med. 2015, 2015, 586928. [Google Scholar] [CrossRef] [PubMed]
- Sun, G. Cervical Cancer Diagnosis based on Random Forest. Int. J. Perform. Eng. 2017, 17, 446. [Google Scholar] [CrossRef]
- Khamparia, A.; Gupta, D.; De Albuquerque, V.H.C.; Sangaiah, A.K.; Jhaveri, R.H. Internet of health things-driven deep learning system for detection and classification of cervical cells using transfer learning. J. Supercomput. 2020, 76, 8590–8608. [Google Scholar] [CrossRef]
- Wei, M.; Zhe, C.; Wei, S.; Feng, Y.; Ruwei, D.; Ning, W.; Jie, T. Staging of cervical cancer based on tumor heterogeneity characterized by texture features on 18F-FDG PET images. Phys. Med. Biol. 2015, 60, 5123–5139. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, Y. Cervical Cancer Detection Using SVM Based Feature Screening. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2004; Barillot, C., Haynor, D.R., Hellier, P., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3217, pp. 873–880. ISBN 978-3-540-22977-3. [Google Scholar] [CrossRef] [Green Version]
- Ghoneim, A.; Muhammad, G.; Hossain, M.S. Cervical cancer classification using convolutional neural networks and extreme learning machines. Future Gener. Comput. Syst. 2020, 102, 643–649. [Google Scholar] [CrossRef]
- Mat-Isa, N.A.; Mashor, M.Y.; Othman, N.H. An automated cervical pre-cancerous diagnostic system. Artif. Intell. Med. 2008, 42, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rahmadwati; Naghdy, G.; Ros, M.; Todd, C. Morphological Characteristics of Cervical Cells for Cervical Cancer Diagnosis. In Proceedings of the 2011 2nd International Congress on Computer Applications and Computational Science, Jakarta, Indonesia, 15–17 November 2011; Gaol, F.L., Nguyen, Q.V., Eds.; Advances in Intelligent and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2012; Volume 145, pp. 235–243. ISBN 978-3-642-28307-9. [Google Scholar]
- Kavitha, R.; Jothi, D.K.; Saravanan, K.; Swain, M.P.; Gonzáles, J.L.A.; Bhardwaj, R.J.; Adomako, E. Ant Colony Optimization-Enabled CNN Deep Learning Technique for Accurate Detection of Cervical Cancer. BioMed Res. Int. 2023, 2023, 1742891. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim Waly, M.; Yacin Sikkandar, M.; Abdelkader Aboamer, M.; Kadry, S.; Thinnukool, O. Optimal Deep Convolution Neural Network for Cervical Cancer Diagnosis Model. Comput. Mater. Contin. 2022, 70, 3295–3309. [Google Scholar] [CrossRef]
- Kudva, V.; Prasad, K.; Guruvare, S. Automation of Detection of Cervical Cancer Using Convolutional Neural Networks. Crit. Rev. Biomed. Eng. 2018, 46, 135–145. [Google Scholar] [CrossRef]
- Skerrett, E.; Miao, Z.; Asiedu, M.N.; Richards, M.; Crouch, B.; Sapiro, G.; Qiu, Q.; Ramanujam, N. Multicontrast Pocket Colposcopy Cervical Cancer Diagnostic Algorithm for Referral Populations. BME Front. 2022, 2022, 9823184. [Google Scholar] [CrossRef]
- Alyafeai, Z.; Ghouti, L. A fully-automated deep learning pipeline for cervical cancer classification. Expert. Syst. Appl. 2020, 141, 112951. [Google Scholar] [CrossRef]
- Kaggle. [En línea]. Available online: https://www.kaggle.com/c/intel-mobileodt-cervical-cancer-screening (accessed on 30 June 2023).
- Liu, L.; Fieguth, P.; Zhao, G.; Pietikäinen, M.; Hu, D. Extended local binary patterns for face recognition. Inf. Sci. 2016, 358–359, 56–72. [Google Scholar] [CrossRef]
- Priya, T.V.; Sanchez, G.V.; Raajan, N.R. Facial Recognition System Using Local Binary Patterns(LBP). Int. J. Pure Appl. Math. 2018, 119, 1895–1899. [Google Scholar]
- Touahri, R.; AzizI, N.; Hammami, N.E.; Aldwairi, M.; Benaida, F. Automated Breast Tumor Diagnosis Using Local Binary Patterns (LBP) Based on Deep Learning Classification. In Proceedings of the 2019 International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia, 3–4 April 2019; IEEE: Sakaka, Saudi Arabia, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Wei, X.; Yu, X.; Liu, B.; Zhi, L. Convolutional neural networks and local binary patterns for hyperspectral image classification. Eur. J. Remote Sens. 2019, 52, 448–462. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, D.; Li, Z.; Wang, D.; Dey, N.; Biswas, A.; Moraru, L.; Sherratt, R.S.; Shi, F. An efficient local binary pattern based plantar pressure optical sensor image classification using convolutional neural networks. Optik 2019, 185, 543–557. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Sun, J. An Extended Center-Symmetric Local Ternary Patterns for Image Retrieval. In Proceedings of the Advances in Computer Science, Environment, Ecoinformatics, and Education: International Conference, CSEE 2011, Wuhan, China, 21–22 August 2011; Springer: Berlin/Heidelberg, Germany, 2011; Volume 214, pp. 359–364. [Google Scholar]
- Fernández, A.; Álvarez, M.X.; Bianconi, F. Texture Description Through Histograms of Equivalent Patterns. J. Math. Imaging Vis. 2013, 45, 76–102. [Google Scholar] [CrossRef] [Green Version]
- Fernández, A.; Ghita, O.; González, E.; Bianconi, F.; Whelan, P.F. Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification. Mach. Vis. Appl. 2011, 22, 913–926. [Google Scholar] [CrossRef]
- Gupta, R.; Patil, H.; Mittal, A. Robust order-based methods for feature description. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; IEEE: San Francisco, CA, USA, 2010; pp. 334–341. [Google Scholar] [CrossRef]
- Sánchez-Yáñez, R.E.; Kurmyshev, E.V.; Cuevas, F.J. A framework for texture classification using the coordinated clusters representation. Pattern Recognit. Lett. 2003, 24, 21–31. [Google Scholar] [CrossRef]
- Kurmyshev, E.V.; Poterasu, M.; Guillen-Bonilla, J.T. Image scale determination for optimal texture classification using coordinated clusters representation. Appl. Opt. 2007, 46, 1467–1476. [Google Scholar] [CrossRef]
- Kurmyshev, E.V.; Sanchez-Yanez, R.E. Comparative experiment with colour texture classifiers using the CCR feature space. Pattern Recognit. Lett. 2005, 26, 1346–1353. [Google Scholar] [CrossRef]
- Guillen-Bonilla, J.T.; Kurmyshev, E.; Fernández, A. Quantifying a similarity of classes of texture images. Appl. Opt. 2007, 46, 5562–5570. [Google Scholar] [CrossRef]
- Fajardo Sigüenza, E.D. Sistema de Clasificación de Textura y Color Mediante Visión por Computador, RediUMH Universidad Miguel Hernández, Spain. 2020. Available online: http://dspace.umh.es/handle/11000/7683 (accessed on 30 June 2023).
- Pointer, I. Programming Pytorch for Deep Learning Creating and Deploying Deep Learning Applications, 1st ed.; O’Reilly: Torrance, CA, USA, 2019. [Google Scholar]
- Brownlee, J. Deep Learning for Computer Vision Image Classification, Object Detection and Face Recognition in Python; Machine Learning Mastery: Vermont, Australia, 2020. [Google Scholar]
- Linmi, T.; Atif, M. Deep Learning for Hyperspectral Image Analysis and Classification; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 978-981-334-420-4. [Google Scholar]
- Aston, Z.; Zachary, C.L.; Mu, L.; Alexander, J.S. Dive into Deep Learning [En línea]. arXiv 2022, arXiv:2106.11342. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. Available online: http://arxiv.org/abs/1412.6980 (accessed on 30 June 2023).
- Dhamdhere, K.; Sundararajan, M.; Yan, Q. How Important Is a Neuron? arXiv 2018, arXiv:1805.12233. Available online: http://arxiv.org/abs/1805.12233 (accessed on 28 June 2023).
Descriptor | Characteristic Vector Dimension | Structure | Accuracy |
---|---|---|---|
LBP | 256 |
| 98.3333 |
OC_LBP | 32 |
| 81.6667 |
CS_LTP | 9 |
| 36.6667 |
ICS_TS | 18 |
| 55 |
CCR | 512 |
| 98.3333 |
Employed Techniques | Accuracy | Reference |
---|---|---|
LBP/Multi-class | 100% | Proposed |
OC-LBP/Multi-class | 98.3333% | Proposed |
CS_LTP/Multi-class | 96.6667% | Proposed |
ICS-TS/Multi-class | 98.3333% | Proposed |
CCR/Multi-class | 83.3333% | Proposed |
LBP/Neural Network | 98.3333% | Proposed |
OC-LBP/Neural Network | 81.6667% | Proposed |
CS_LTP/Neural Network | 36.6667% | Proposed |
ICS-TS/Neural Network | 55% | Proposed |
CCR/Neural Network | 98.3333% | Proposed |
Random Forest, Neural Network | 93.6% | [18] |
CNN | 100% | [32] |
CNN | 99.7% | [27] |
OC_LBP | |||||
---|---|---|---|---|---|
Category | Type I | Type II | Type III | Total | Errors |
Type I | 18 | 20 | 2 | ||
Type II | 16 | 20 | 4 | ||
Type III | 16 | 20 | 4 | ||
60 |
OC_LBP | |||||
---|---|---|---|---|---|
Category | Type I | Type II | Type III | Total | Errors |
Type I | 15 | 20 | 5 | ||
Type II | 18 | 20 | 2 | ||
Type III | 16 | 20 | 4 | ||
60 |
OC_LBP | |||||
---|---|---|---|---|---|
Category | Type I | Type II | Type III | Total | Errors |
Type I | 6 | 20 | 14 | ||
Type II | 11 | 20 | 9 | ||
Type III | 5 | 20 | 15 | ||
60 |
OC_LBP | |||||
---|---|---|---|---|---|
Category | Type I | Type II | Type III | Total | Errors |
Type I | 9 | 20 | 11 | ||
Type II | 16 | 20 | 4 | ||
Type III | 8 | 20 | 12 | ||
60 |
Texture Spectrum (Histogram) | Statistical Classifier | Neural Network |
---|---|---|
E (%) | E (%) | |
LBP | 100 | 98.3333 |
OC_LBP | 98.3333 | 81.6667 |
CS_LTP | 96.6667 | 36.6667 |
ICS_TS | 98.3333 | 55 |
CCR | 83.3333 | 98.3333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Santiago, J.; Guillen-Bonilla, J.T.; García-Ramírez, M.A.; Jiménez-Rodríguez, M. Identification of Lacerations Caused by Cervical Cancer through a Comparative Study among Texture-Extraction Techniques. Appl. Sci. 2023, 13, 8292. https://doi.org/10.3390/app13148292
Aguilar-Santiago J, Guillen-Bonilla JT, García-Ramírez MA, Jiménez-Rodríguez M. Identification of Lacerations Caused by Cervical Cancer through a Comparative Study among Texture-Extraction Techniques. Applied Sciences. 2023; 13(14):8292. https://doi.org/10.3390/app13148292
Chicago/Turabian StyleAguilar-Santiago, Jorge, José Trinidad Guillen-Bonilla, Mario Alberto García-Ramírez, and Maricela Jiménez-Rodríguez. 2023. "Identification of Lacerations Caused by Cervical Cancer through a Comparative Study among Texture-Extraction Techniques" Applied Sciences 13, no. 14: 8292. https://doi.org/10.3390/app13148292
APA StyleAguilar-Santiago, J., Guillen-Bonilla, J. T., García-Ramírez, M. A., & Jiménez-Rodríguez, M. (2023). Identification of Lacerations Caused by Cervical Cancer through a Comparative Study among Texture-Extraction Techniques. Applied Sciences, 13(14), 8292. https://doi.org/10.3390/app13148292