SATCOM Earth Station Arrays Anti-Jamming Based on MVDR Algorithm
Abstract
:1. Introduction
2. Satellite Communication Earth Station Array Model
3. Satellite Communication Earth Station Array MVDR Algorithm
4. Simulation Analysis
4.1. Two Beamforming Methods and Single Antenna Gain
4.2. Jamming Suppression Effect under Different Parameters
4.3. Jamming Suppression Performance in Actual Satellite Communication
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Li, K.X.; Wang, J.H.; Gao, X.; Xia, X.-G.; Ottersten, B. Massive MIMO transmission for LEO satellite communications. IEEE J. Sel. Areas Commun. 2020, 38, 1851–1865. [Google Scholar]
- Zhao, J.; Gao, F.; Wu, Q.; Jin, S.; Wu, Y.; Jia, W. Beam Tracking for UAV Mounted SatCom on-the-Move with Massive Antenna Array. IEEE J. Sel. Areas Commun. 2018, 36, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, L.T.; Wang, Y.; Yuan, L.; Xiong, Y.; Li, W. Analysis of jamming positioning technology in satellite communication. In Proceedings of the 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering, Changsha, China, 26–28 March 2021; IEEE Press: New York, NY, USA, 2021. [Google Scholar]
- Zhao, Y.; Wang, S.L.; Wang, H.; Zhao, L.J. Evaluation of anti-jamming effectiveness of satellite communication based on cloud model. Telecommun. Eng. 2022, 62, 311–316. [Google Scholar]
- Choi, H.; Moon, H. Blind Estimation of Spreading Sequence and Data Bits in Direct-Sequence Spread Spectrum Communication Systems. IEEE Access 2020, 99, 148066–148074. [Google Scholar] [CrossRef]
- Man, J.; Li, W.; Ma, W. On the technology of frequency hopping communication network-station selection. In Proceedings of the 2021 International Conference on Electronics, Circuits and Information Engineering, Zhengzhou, China, 22–24 January 2021; IEEE Press: New York, NY, USA, 2021. [Google Scholar]
- Yang, L. Research on Anti-Jamming Technology in Satellite Mobile Communication System. Ph.D. Thesis, Southeast University, Nanjing, China, 2021. [Google Scholar]
- Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef]
- Carlson, B.D. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst. 1988, 24, 397–401. [Google Scholar] [CrossRef]
- Arnab, S.; Jared, S.; Aboulnasr, H. MVDR beamformer design by imposing unit circle roots constraints for uniform linear arrays. IEEE Trans. Signal Process. 2021, 69, 6116–6130. [Google Scholar]
- You, H.; Huang, J.G.; Xu, G.M. Beamspace pre-processing on array data based on MVDR. Syst. Eng. Electron. 2008, 30, 64–67. [Google Scholar]
- Chen, Y.; Tian, B.; Wang, C.Y.; Gong, J.; Tan, M.; Zhao, Y.J. FDA platform external jamming suppression based on MVDR beamforming. Syst. Eng. Electron. 2023, 45, 32–40. Available online: https://kns.cnki.net/kcms/detail/11.2422.TN.20220402.1443.010.html (accessed on 30 October 2022).
- Yang, Y.; Guo, H.Y.; Wang, T.T.; Zhang, P.C.; Yang, Z. Multichannel speech MVDR enhancement algorithm based on joint spatial-temporal graph topology. J. Signal Process. 2023, 39, 540–549. Available online: http://kns.cnki.net/kcms/detail/11.2406.TN.20221008.1745.016.html (accessed on 15 November 2022).
- Warnick, K.F.; Jeffs, B.D. Gain and aperture efficiency for a reflector antenna with an array feed. IEEE Antennas Wirel. Propag. Lett. 2006, 5, 499–502. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Zhang, J.; Pan, H.Z. Analysis and compensation of the reflector antenna pointing error under wind disturbance. Res. Astron. Astrophys. 2021, 6, 387–396. [Google Scholar] [CrossRef]
- IESS-601; Intelsat Earth Station Standards. Intelsat: Washington, DC, USA, 2005.
- Guo, Y.; Kong, H.; Huang, Q.; Lin, M.; Zhu, W.; Amindavar, H. Performance analysis for the forward link of multiuser satellite communication systems. Int. J. Satell. Commun. Netw. 2021, 39, 560–569. [Google Scholar] [CrossRef]
- Wang, Y.L.; Chen, H.; Peng, Y.N.; Wan, Q. Spatial Spectrum Estimation and Theoretical Algorithms. Master’s Thesis, Tsinghua University, Beijing, China, 2004. [Google Scholar]
- Sun, S.C.; Ye, Z.F. Robust adaptive beamforming based on a method for steering vector estimation and jamming covariance matrix reconstruction. Signal Process. 2021, 182, 107939. [Google Scholar] [CrossRef]
- Yuan, X.L.; Lu, G. Robust adaptive beamforming via a novel subspace method for jamming covariance matrix reconstruction. Signal Process. 2016, 130, 233–242. [Google Scholar] [CrossRef]
- Park, K.; Seo, J. Single-Antenna-Based GPS Antijamming Method Exploiting Polarization Diversity. IEEE Trans. Aerosp. Electron. Syst. 2021, 27, 919–934. [Google Scholar] [CrossRef]
- Chen, P.; Yang, X.X.; Wang, Y.; Ma, Y. Adaptive beamforming with sensor position errors using covariance matrix construction based on subspace bases transition. IEEE Signal Process. Lett. 2019, 26, 19–23. [Google Scholar] [CrossRef]
- Li, H.R.; Geng, J.; Xie, J.H. Robust adaptive beamforming based on covariance matrix reconstruction with RCB principle. Digit. Signal Process. 2022, 127, 103565. [Google Scholar] [CrossRef]
- Yang, J.; Liu, R.Q.; Xi, X.Q. A adaptive beamforming design in low sample number conditions based on diagonal loading algorithm. In Proceedings of the 2016 IEEE International Conference on Signal and Image Processing, Beijing, China, 13–15 August 2016; IEEE Press: New York, NY, USA, 2016. [Google Scholar]
- Shi, R.H.; Meng, Q.J.; Dong, J.; Guo, Y. A robust adaptive beamforming algorithm based on diagonal loading. J. Hunan Univ. 2012, 39, 57–61. [Google Scholar]
- Min, S.Q. Satellite Communication System Engineering Design and Application. Master’s Thesis, Publishing House of Electronics Industry, Beijing, China, 2004. [Google Scholar]
Method | SINR Improvement |
---|---|
CBF algorithm | 29 dB |
SMI algorithm | 34.6 dB |
Jamming signal separation method | 28 dB |
Despread–respread method | 30.1 dB |
DL algorithm | 36 dB |
Parameter | Value |
---|---|
Downlink signal frequency | 12.5 GHz |
Satellite fixed-point longitude | 110.5° E |
Earth station antenna diameter | 0.5 m |
Earth station longitude | 108.5° E |
Earth station latitude | 34° N |
EIRP of the satellite | 52 dBW |
Atmospheric absorption loss | 0.5 dB |
Feeder loss | 0.5 dB |
Altitude of the jamming source | 5 km |
Equivalent noise temperature of the earth station | 150 K |
Noise bandwidth | 36 MHz |
SNR threshold of the earth station | 7 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, Y.; Liu, J.; Zhao, W. SATCOM Earth Station Arrays Anti-Jamming Based on MVDR Algorithm. Appl. Sci. 2023, 13, 8337. https://doi.org/10.3390/app13148337
Xi Y, Liu J, Zhao W. SATCOM Earth Station Arrays Anti-Jamming Based on MVDR Algorithm. Applied Sciences. 2023; 13(14):8337. https://doi.org/10.3390/app13148337
Chicago/Turabian StyleXi, Yanpeng, Jian Liu, and Wenhao Zhao. 2023. "SATCOM Earth Station Arrays Anti-Jamming Based on MVDR Algorithm" Applied Sciences 13, no. 14: 8337. https://doi.org/10.3390/app13148337
APA StyleXi, Y., Liu, J., & Zhao, W. (2023). SATCOM Earth Station Arrays Anti-Jamming Based on MVDR Algorithm. Applied Sciences, 13(14), 8337. https://doi.org/10.3390/app13148337