An Improved Rotational Modulation Scheme for Tri-Axis Rotational Inertial Navigation System (RINS) with Fiber Optic Gyro (FOG)
Abstract
:1. Introduction
2. Introduction of Tri-Axis RINS
2.1. System Configuration
2.2. Definitions of Coordinate Systems and Symbols
2.3. Error Propagation Equations of RINS
3. Improved Rotational Modulation Scheme Based on Tri-Axis RINS
3.1. Design of Improved Rotational Modulation Scheme
3.2. Error Characteristics of Different Rotation Schemes
4. Simulations and Experiments on Tri-Axis RINS
4.1. Simulations
4.2. Experiments and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Titterton, D.; Weston, J. Strapdown Inertial Navigation Technology; Institution of Electrical Engineers: Stevenage, UK, 2004. [Google Scholar]
- Li, J.; Dang, P.; Li, Y.; Gu, B. A General Euler Angle Error Model of Strapdown Inertial Navigation Systems. Appl. Sci. 2018, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Fang, X.; Song, Y.; Chen, N.; Liang, M.; Li, J.; Qiao, F. Simulation Optimization and Application of Shearer Strapdown Inertial Navigation System Modulation Scheme. Sensors 2023, 23, 4290. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Fang, X.; Song, Y.; Liang, M.; Chen, N. Study on the Shearer Attitude Sensing Error Compensation Method Based on Strapdown Inertial Navigation System. Appl. Sci. 2022, 12, 10848. [Google Scholar] [CrossRef]
- Wu, G.; Fang, X.; Zhang, L.; Liang, M.; Lv, J.; Quan, Z. Positioning Accuracy of the Shearer Based on a Strapdown Inertial Navigation System in Underground Coal Mining. Appl. Sci. 2020, 10, 2176. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Gao, Y. Fiber-based rotary strapdown inertial navigation system. Opt. Eng. 2013, 52, 076106. [Google Scholar] [CrossRef]
- Ishibashi, S.; Tsukioka, S.; Yoshida, H.; Hyakudome, T.; Ishikawa, A. Accuracy Improvement of an Inertial Navigation System Brought about by the Rotational Motion. In Proceedings of the OCEANS 2007—Europe, Aberdeen, UK, 18–21 June 2007. [Google Scholar]
- Zhu, T.; Wang, L.; Zou, T.; Peng, G. A Dual-Axis Rotation Scheme for Redundant Rotational Inertial Navigation System. Micromachines 2023, 14, 351. [Google Scholar] [CrossRef] [PubMed]
- Feng, J. A Review of Rotary Modulation Technology Applied to Strapdown Inertial Navigation System. In Proceedings of the 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), Xiamen, China, 10–12 August 2018; pp. 1–3. [Google Scholar]
- Song, T.; Li, K.; Wang, L.; Sui, J.; Wang, L. A rapid and high-precision initial alignment scheme for dual-axis rotational inertial navigation system. Microsyst. Technol. 2017, 23, 5515–5525. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Wang, J. Research on Initial Alignment and Self-Calibration of Rotary Strapdown Inertial Navigation Systems. Sensors 2015, 15, 3154–3171. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Gao, P.; Wang, L.; Zhang, Q. Analysis and Improvement of Attitude Output Accuracy in Rotation Inertial Navigation System. Math. Probl. Eng. 2015, 2015, 768174. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, L.; Li, K.; Han, H. Analysis and Improvement of Attitude Output Accuracy in Tri-Axis Rotational Inertial Navigation System. IEEE Sens. J. 2020, 20, 6091–6100. [Google Scholar] [CrossRef]
- Gao, P.; Li, K.; Wang, L.; Liu, Z. A self-calibration method for tri-axis rotational inertial navigation system. Meas. Sci. Technol. 2016, 27, 115009. [Google Scholar] [CrossRef]
- Zhou, Y.; Deng, Z.; Wang, B.; Xiao, X.; Wang, M. Analytical Method of the Performance of the Rotational INS based on the Spatial Accumulation of the Inertial Instrument Biases. IFAC Proc. Vol. 2014, 47, 9649–9653. [Google Scholar] [CrossRef]
- Kang, L.; Ye, L.; Song, K.; Zhou, Y. Attitude Heading Reference System Using MEMS Inertial Sensors with Dual-Axis Rotation. Sensors 2014, 14, 18075–18095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, N.; Cai, Q.; Yang, G.; Yin, H. Analysis and calibration of the mounting errors between inertial measurement unit and turntable in dual-axis rotational inertial navigation system. Meas. Sci. Technol. 2013, 24, 115002. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Wang, W.; Gao, P. An improved rotation scheme for Tri-axis rotational inertial navigation system. Microsyst. Technol. 2017, 23, 5423–5433. [Google Scholar] [CrossRef]
- Niu, M.; Sun, X.; Ma, H.; Zhu, Z.; Huang, T.; Song, K. Analysis and Design of Wireless Power Transfer System for Rotational Inertial Navigation Application. Appl. Sci. 2022, 12, 6392. [Google Scholar] [CrossRef]
- Yuan, X.; Li, J.; Zhang, X.; Feng, K.; Wei, X.; Zhang, D.; Mi, J. A Low-Cost MEMS Missile-Borne Compound Rotation Modulation Scheme. Sensors 2021, 21, 4910. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Liu, Z.; Feng, P. An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System. Sensors 2015, 15, 18443–18458. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Chen, Y.; Wang, L. Online self-calibration research of single-axis rotational inertial navigation system. Measurement 2018, 129, 633–641. [Google Scholar] [CrossRef]
- Wang, L.; Li, K.; Chen, Y.; Liu, J.; Xu, Y. Single-axis rotation/azimuth-motion insulation inertial navigation control system with FOGs. Opt. Express 2017, 25, 30956. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, Y.; Shi, X. Estimation of azimuth gyro drifts with single-axis rotational SINS. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Syst. Eng. Electron. 2018, 40, 2334–2339. [Google Scholar] [CrossRef]
- Feng, S.; Wang, Q. Researching on the compensation technology of rotating mechanism error in single-axis rotation strapdown inertial navigation system. In Proceedings of the International Conference on Mechatronics & Automation, Sichuan, China, 5–8 August 2012. [Google Scholar]
- Song, T.; Wang, X.; Liang, W.; Xing, L. Improved motor control method with measurements of fiber optics gyro (FOG) for dual-axis rotational inertial navigation system (RINS). Opt. Express 2018, 26, 13072–13084. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, Q.; Sun, Q.; Xia, X. A New Rotary Scheme of the Dual-Axis Rotary Inertial Navigation System. J. Comput. Theor. Nanosci. 2015, 12, 5674–5684. [Google Scholar] [CrossRef]
- Zha, F.; Chang, L.; He, H. Comprehensive Error Compensation for Dual-Axis Rotational Inertial Navigation System. IEEE Sens. J. 2020, 20, 3788–3802. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, L.; Song, T.X.; Wang, W. A High-Precision Motor Control Method for Tracking Wandering Azimuth Coordinate System Based on Tri-Axis Rotational Inertial Navigation System (RINS). IEEE Sens. J. 2021, 21, 27993–28000. [Google Scholar] [CrossRef]
- Gao, P.; Li, K.; Song, T.; Liu, Z. An Accelerometers-Size-Effect Self-Calibration Method for Triaxis Rotational Inertial Navigation System. IEEE Trans. Ind. Electron. 2018, 65, 1655–1664. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Zhang, J.; Liu, Z. High precision locking control based on fiber optic gyro and photoelectric encoder for rotational inertial navigation system. IEICE Electron. Express 2016, 13, 20160841. [Google Scholar] [CrossRef]
- Giovanni, C.S., Jr.; Levinson, E. Performance of a ring laser strapdown marine gyrocompass. In Proceedings of the ION 37th Annual Meeting Proceedings, Bad Honnef, Germany, 12–15 October 1981; pp. 28–40. [Google Scholar]
- Yang, Y.; Miao, L.J. Fiber-optic strapdown inertial system with sensing cluster continuous rotation. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 1173–1178. [Google Scholar] [CrossRef]
- Yang, Y.; Miao, L.J.; Shen, J. Method of Improving the Navigation Accuracy of SINS by Continuous Rotation. J. Beijing Inst. Technol. 2005, 14, 45–49. [Google Scholar]
- Jing, Z.; Li, J.; Zhang, X.; Feng, K.; Zheng, T. A novel rotation scheme for MEMS IMU error mitigation based on a missile-borne rotation semi-strapdown inertial navigation system. Sensors 2019, 19, 1683. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Wang, D.; Xu, L.; Xu, L. MEMS-based rotary strapdown inertial navigation system. Measurement 2013, 46, 2585–2596. [Google Scholar] [CrossRef]
- Sun, W.; Xu, A.; Che, L.; Gao, Y. Accuracy Improvement of SINS Based on IMU Rotational Motion. IEEE Aerosp. Electron. Syst. Mag. 2012, 27, 4–10. [Google Scholar] [CrossRef]
- Deng, Z.; Mu, S.; Wang, B. Error modulation scheme analysis of dual-axis rotating strap-down inertial navigation system based on FOG. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014. [Google Scholar]
- Yuan, B.; Liao, D.; Han, S. Error compensation of an optical gyro INS by multi-axis rotation. Meas. Sci. Technol. 2012, 23, 025102. [Google Scholar] [CrossRef]
- Guan, B.F.; Li, S.H.; Fu, Q.W. Research on Rotation Scheme of Hybrid Inertial Navigation System with Three Rotating Axes. In Proceedings of the 2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), St Petersburg, Russia, 25–27 May 2020. [Google Scholar]
- Lv, P.; Lai, J.; Liu, J.; Nie, M. The Compensation Effects of Gyros’ Stochastic Errors in a Rotational Inertial Navigation System. J. Navig. 2014, 67, 1069–1088. [Google Scholar] [CrossRef]
- Levinson, E.; Majure, R. Accuracy Enhancement Techniques Applied to the Marine Ring Laser Inertial Navigator (MARLIN). Navigation 1987, 34, 64–86. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.; Zhang, Q.; Gao, P.Y. Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro. Opt. Eng. 2014, 53, 064103. [Google Scholar] [CrossRef] [Green Version]
- Ban, J.; Wang, L.; Liu, Z.; Zhang, L. Self-calibration method for temperature errors in multi-axis rotational inertial navigation system. Opt. Express 2020, 28, 8909–8923. [Google Scholar] [CrossRef]
- Dzhashitov, V.E.; Pankratov, V.M.; Golikov, A.V.; Nikolaev, S.G.; Kolevatov, A.P.; Plonikov, A.D.; Koffer, K.V. Hierarchical thermal models of FOG-based strapdown inertial navigation system. Gyroscopy Navig. 2015, 6, 156. [Google Scholar] [CrossRef] [Green Version]
Error Components | Error Values | |
---|---|---|
Horizontal Gyro | Vertical Gyro | |
Gyro zero bias stability | 0.002°/h (1σ, 100 s) | 0.0035°/h (1σ, 100 s) |
Gyro angle random walk coefficient | 0.0003°/ | 0.0005°/ |
Gyro scale factor stability | 10 ppm | 20 ppm |
Accelerometer zero bias stability | 20 ug | |
Accelerometer noise | 10 ug | |
Accelerometer scale factor stability | 25 ppm | |
Sampling frequency | 200 Hz | |
Angle encoder accuracy | <3″ | |
Angle encoder resolution | 0.019″ |
Name | Symbol | Name | Symbol |
---|---|---|---|
The geographic coordinate frame (n-frame) | The carrier coordinate frame (b-frame) | ||
The sensor coordinate frame (s-frame) | The gyro installation frame (g-frame) | ||
Ture angular velocity and acceleration of n-frame | The accelerometer installation frame (a-frame) | ||
Error angular velocity and acceleration of n-frame | Equivalent gyro drift of n-frame | ||
Gyro drift | , , | Accelerometer zero bias | , , |
Gyro scale factor errors | , , | Gyro installation errors | , , , , |
Accelerometer scale factor errors | , , | Accelerometer installation errors | , , , |
The angles of the inner, middle and outer encoders | , , | Geographic latitude | |
Polar axis drift | The transformation matrix from a-frame to b-frame | ||
Rotational angular velocity of the Earth | Angular velocity of frame rotation |
Position | Oscillation Error Angles |
---|---|
Position 1~4 | (1): (2): (3): (4): |
Position 5~8 | (5) (6): (7): (8): |
Position 9~12 | (9): (10): (11): (12): |
Position 13~16 | (13): (14): (15): (16): |
Position | Oscillation Error Angles |
---|---|
Position 1~3 | (1): (2): (3): |
Position 4~6 | (4): (5): (6): |
Position 7~9 | (7): (8): (9): |
Position 10~12 | (10): (11): (12): |
Rotation Scheme | Zero Bias Error | Scale Factor Error | Installation Error |
---|---|---|---|
Scheme A | |||
Scheme B | |||
Scheme C |
Error Parameters | Value |
---|---|
Constant gyro drift | |
Gyro random walk coefficient | |
Constant accelerometer bias | |
Accelerometer white noise | |
Gyro scale factor errors | |
Accelerometer scale factor errors | |
Gyro installation errors | |
Accelerometer installation errors |
Experiment Number | Circular Error Probability (n Mile/h) | ||
---|---|---|---|
Scheme A | Scheme B | Scheme C | |
1 | 0.140 | 0.069 | 0.054 |
2 | 0.083 | 0.072 | 0.055 |
3 | 0.105 | 0.068 | 0.049 |
Mean value | 0.109 | 0.070 | 0.053 |
Experiment Number | Maximum Radial Position Errors (m) | ||
---|---|---|---|
Scheme A | Scheme B | Scheme C | |
1 | 2028.9 | 928.1 | 650.4 |
2 | 1304.7 | 1143.7 | 303.3 |
3 | 1716.4 | 947.2 | 467.6 |
Mean value | 1683.3 | 1006.3 | 473.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Wang, W.; Liu, Y.; Guo, Z. An Improved Rotational Modulation Scheme for Tri-Axis Rotational Inertial Navigation System (RINS) with Fiber Optic Gyro (FOG). Appl. Sci. 2023, 13, 8394. https://doi.org/10.3390/app13148394
Lu Y, Wang W, Liu Y, Guo Z. An Improved Rotational Modulation Scheme for Tri-Axis Rotational Inertial Navigation System (RINS) with Fiber Optic Gyro (FOG). Applied Sciences. 2023; 13(14):8394. https://doi.org/10.3390/app13148394
Chicago/Turabian StyleLu, Yao, Wei Wang, Yuao Liu, and Zhenwei Guo. 2023. "An Improved Rotational Modulation Scheme for Tri-Axis Rotational Inertial Navigation System (RINS) with Fiber Optic Gyro (FOG)" Applied Sciences 13, no. 14: 8394. https://doi.org/10.3390/app13148394
APA StyleLu, Y., Wang, W., Liu, Y., & Guo, Z. (2023). An Improved Rotational Modulation Scheme for Tri-Axis Rotational Inertial Navigation System (RINS) with Fiber Optic Gyro (FOG). Applied Sciences, 13(14), 8394. https://doi.org/10.3390/app13148394