Effects of the Application of a Plant-Based Compost on Yield and Quality of Industrial Tomato (Solanum lycopersicum L.) Grown in Different Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Methods
2.2. Chemicals and Instruments
2.3. Determination of Physicochemical Parameters
2.3.1. Firmness
2.3.2. Total Soluble Solids (TSS)
2.3.3. pH and Total Titratable Acidity (TTA)
2.3.4. Evaluation of Antioxidant Compounds and Antioxidant Activity
2.3.5. Ascorbic Acid
2.3.6. Lycopene
2.3.7. In Vitro Chemical Screening of Total Phenols, Total Flavonoids, and Antioxidant Activity
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.fao.org/faostat/en/#home (accessed on 1 February 2019).
- De Sio, F.; Rapacciuolo, M.; De Giorgi, A.; Sandei, L.; Giuliano, B.; Tallarita, A.; Golubkina, N.; Sekara, A.; Stoleru, V.; Cuciniello, A.; et al. Industrial processing affects product yield and quality of diced tomato. Agriculture 2021, 11, 230. [Google Scholar] [CrossRef]
- Sofo, A.; Zanella, A.; Ponge, J.F. Soil quality and fertility in sustainable agriculture, with a contribution to the biological classification of agricultural soils. Soil Use Manag. 2022, 38, 1085–1112. [Google Scholar] [CrossRef]
- Babi, K.; Guittonny, M.; Bussière, B.; Larocque, G.R. Effect of soil quality and planting material on the root architecture and the root anchorage of young hybrid poplar plantations on waste rock slopes. Int. J. Min. Reclam. Environ. 2022, 37, 1–20. [Google Scholar] [CrossRef]
- Sokol, N.W.; Slessarev, E.; Marschmann, G.L.; Nicolas, A.; Blazewicz, S.J.; Brodie, E.L.; Firestone, M.K.; Foley, M.M.; Hestrin, R.; Hungate, A.; et al. Life, and death in the soil microbiome: How ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 2022, 20, 415–430. [Google Scholar] [CrossRef]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. 2021 Chemical fertilizers and their impact on soil health. In Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–20. [Google Scholar]
- Wu, W.; Lin, Z.; Zhu, X.; Li, G.; Zhang, W.; Chen, Y.; Ren, L.; Lou, S.; Lin, H.; Zhou, H.; et al. Improved tomato yield and quality by altering soil physicochemical properties and nitrification processes in the combined use of organic-inorganic fertilizers. Eur. J. Soil Biol. 2022, 109, 103384. [Google Scholar] [CrossRef]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- Fixen, P.; Brentrup, F.; Bruulsema, T.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/fertilizer use efficiency: Measurement, current situation and trends. Manag. Water Fertil. Sustain. Agric. Intensif. 2015, 270, 1–30. [Google Scholar]
- Oyetunji, O.; Bolan, N.; Hancock, G. A comprehensive review on enhancing nutrient use efficiency and productivity of broadacre (arable) crops with the combined utilization of compost and fertilizers. J. Environ. Manag. 2022, 317, 115395. [Google Scholar] [CrossRef]
- Abbasi, P.A.; Al-Dahmani, J.; Sahin, F.; Hoitink, H.A.J.; Miller, S.A. Effect of compost amendments on disease severity and yield of tomato in conventional and organic production systems. Plant Dis. 2002, 86, 156–161. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Singh, G.S. Traditional agriculture: A climate-smart approach for sustainable food production. Energy Ecol. 2017, 2, 296–316. [Google Scholar] [CrossRef] [Green Version]
- Harindintwali, J.D.; Zhou, J.; Muhoza, B.; Wang, F.; Herzberger, A.; Yu, X. Integrated eco-strategies towards sustainable carbon and nitrogen cycling in agriculture. J. Environ. Manag. 2021, 293, 112856. [Google Scholar] [CrossRef] [PubMed]
- Cai, A.; Xu, H.; Shao, X.; Zhu, P.; Zhang, W.; Xu, M.; Murphy, V.D. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System. PLoS ONE 2016, 11, e0152521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, X.; Qin, S.; Zhang, J.; Zhu, A.; Yang, W.; Zhang, X. Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crops Res. 2017, 208, 27–33. [Google Scholar] [CrossRef]
- Guangbin, Z.; Kaifu, S.; Xi, M.; Qiong, H.; Jing, M.; Hua, G.; Hua, X. Nitrous oxide emissions, ammonia volatilization, and grain-heavy metal levels during the wheat season: Effect of partial organic substitution for chemical fertilizer. Agric. Ecosyst. Environ. 2021, 311, 107340. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef]
- Agegnehu, G.; Nelson, P.N.; Bird, M.I. The effects of biochar, compost and their mixture and nitrogen fertilizer on yield and nitrogen use efficiency of barley grown on a Nitisol in the highlands of Ethiopia. Sci. Total Environ. 2016, 569–570, 869–879. [Google Scholar] [CrossRef]
- Amanullah, I.; Al Al Tawaha, A.R.M. Efficacy of pre and post emergence herbicides alone and in combination for effective weeds control without effecting growth and development of maize (Zea mays L.). Russ. Agric. Sci. 2021, 47, 261–269. [Google Scholar]
- Biswas, S.S.; Ghosh, A.; Singhal, S.K.; Biswas, D.R.; Roy, T.; Sarkar, A.; Das, D. Phosphorus enriched organic amendments can increase nitrogen use efficiency in wheat. Commun. Soil Sci. Plant Anal. 2019, 50, 1178–1191. [Google Scholar] [CrossRef]
- Duong, T.T.T.; Penfold, C.; Marschner, P. Amending soils of different texture with six compost types: Impact on soil nutrient availability, plant growth and nutrient uptake. Plant Soil 2012, 354, 197–209. [Google Scholar] [CrossRef]
- Available online: http://www.agricoltura.regione.campania.it/concimazione/PRCFA_intro.html (accessed on 22 May 2023).
- AOAC International. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Washington, DC, USA, 2002; method 967.21. [Google Scholar]
- Morra, L.; Cozzolino, E.; Salluzzo, A.; Modestia, F.; Bilotto, M.; Baiano, S.; del Piano, L. Plant Growth, Yeld and Fruit Quality of Processing Tomato (Solanum lycopersicon L.) as affected by the Combination of biodegradable mulching and digestate. Agronomy 2021, 11, 100. [Google Scholar] [CrossRef]
- Jagota, S.K.; Dani, H.M. A new Colorimetric Technique for the estimation of vitamin C using Folin Phenol Reagent. Anal. Biochem. 1982, 127, 178–182. [Google Scholar] [CrossRef]
- Periago, M.J.; Rincon, F.; Aguera, M.D.; Ros, G. Mixture approach for optimizing lycopene extraction from tomato and tomato products. J. Agric. Food Chem. 2004, 52, 5796–5802. [Google Scholar] [CrossRef] [PubMed]
- Kaur, C.; Walia, S.; Nagal, S.; Walia, S.; Singh, J.; Singh, B.B.; Saha, S.; Dingh, B.; Kalia, P.; Jaggi, S.; et al. Functional quality and antioxidant composition of selected tomato (Solanum lycopersicon L.) cultivars grown in Northern India. Food Sci. Technol. 2013, 50, 139–145. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic-acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and theirscavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Pekal, A.; Pyrzynska, K. Evaluation of aluminium complexation for Flavonoid content assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. J. Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ozcelik, J.H.; Lee, J.H.; Min, D.B. Effects of light, oxygen and pH on the adsorbance of 2,2-Diphenyl-1-picrilhydrazyl. J. Food Sci. 2003, 68, 487–490. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, R.; Klammsteiner, T.; Kong, X.; Yan, B.; Mihai, F.C.; Zhang, Z.; Awasthi, M.K. Recent trends and advances in composting and vermicomposting technologies: A review. Bioresour. Technol. 2022, 360, 127591. [Google Scholar] [CrossRef]
- Ouansafi, S.; Abdelilah, F.; Kabine, M.; Maaghloud, H.; Bellali, F.; El Bouqdaoui, K. The effects of soil proprieties on the yield and the growth of tomato plants and fruits irrigated by treated wastewater. AIMS Agric. Food 2019, 4, 921–938. [Google Scholar] [CrossRef]
- Sorgonà, A.; Abenavoli, M.R.; Cacco, G.; Gelsomino, A. Growth of tomato and zucchini seedlings in orange waste compost media: pH and implication of dosage. Compost. Sci. Util. 2011, 19, 189–196. [Google Scholar] [CrossRef]
- Ddamulira, G.; Idd, R.; Namazzi, S.; Kalali, F.; Mundingotto, J.; Maphosa, M. Nitrogen and potassium fertilizers increase cherry tomato height and yield. J. Agric. Sci. 2019, 11, 1916–9760. [Google Scholar] [CrossRef]
- Kavvadias, V.; Ioannou, Z.; Vavoulidou, E.; Paschalidis, C. Short Term Effects of Chemical Fertilizer, Compost and Zeolite on Yield of Lettuce, Nutrient Composition and Soil Properties. Agriculture 2023, 13, 1022. [Google Scholar] [CrossRef]
- Zhao, X.; Li, B.; Ni, J.; Xie, D. Effect of four crop straws on transformation of organic matter during sewage sludge composting. J. Integr. Agric. 2016, 15, 232–240. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.A.; Cayuela, M.L.; Sánchez-García, M.; Vandecasteele, B.; D’Hose, T.; López, G.; Mondini, C. Agronomic evaluation of biochar, compost and biochar-blended compost across different cropping systems: Perspective from the European project FERTIPLUS. Agronomy 2019, 9, 225. [Google Scholar] [CrossRef] [Green Version]
- Sayara, T.; Basheer-Salimia, R.; Hawamde, F.; Sánchez, A. Recycling of organic wastes through composting: Process performance and compost application in agriculture. Agronomy 2020, 10, 1838. [Google Scholar] [CrossRef]
- Mardanluo, S.; Souri, M.K.; Ahmadi, M. Plant growth and fruit quality of two pepper cultivars under different potassium levels of nutrient solutions. J. Plant Nutr. 2018, 41, 1604–1614. [Google Scholar] [CrossRef]
- Oke, M.; Ahn, T.; Schofield, A.; Paliyath, G. Effects of phosphorus fertilizer supplementation on processing quality and functional food ingredients in tomato. J. Agric. Food chem. 2005, 53, 1531–1538. [Google Scholar] [CrossRef]
- Ruiz-Nieves, J.M.; Ayala-Garay, O.J.; Serra, V.; Dumont, D.; Vercambre, G.; Génard, M.; Gautier, H. The effects of diurnal temperature rise on tomato fruit quality. Can the management of the greenhouse climate mitigate such effects? Sci. Hortic. 2021, 278, 109836. [Google Scholar] [CrossRef]
- Campos, M.T.; Maia, L.F.; Dos Santos, H.F.; Edwards, H.G.; de Oliveira, L.F. Revealing the chemical synergism in coloring tomatoes by Raman spectroscopy. J. Raman Spectrosc. 2022. [Google Scholar] [CrossRef]
- Alhaithloul, H.A.; Galal, F.H.; Seufi, A.M. Effect of extreme temperature changes on phenolic, flavonoid contents and antioxidant activity of tomato seedlings (Solanum lycopersicum L.). PeerJ 2021, 9, e11193. [Google Scholar] [CrossRef] [PubMed]
- Vasileva, V.H.; Dinev, N.S. Mineral content and quality parameters of tomato fruits as affected by different potassium fertilization treatments and cultivar specifics. Indian J. Agric. Res. 2021, 55, 169–174. [Google Scholar]
- Zheng, X.; Gong, M.; Zhang, Q.; Tan, H.; Li, L.; Tang, Y.; Deng, W. Metabolism and regulation of ascorbic acid in fruits. Plants 2022, 11, 1602. [Google Scholar] [CrossRef] [PubMed]
Experimental Factors | Total Yield (kg·m−2) | Waste Fruits (Rotten) (kg·m−2) | Waste Fruits (Green) (kg·m−2) | Marketable Yield (kg·m−2) | No. of Fruits per m2 | Mean Fruit Weight (g) | Plant Fresh Weight (g) | Plant Dry Weight (g) |
---|---|---|---|---|---|---|---|---|
Soil texture | ||||||||
Clayey (Cl) | 7.95 ± 1.55 b | 0.12 ± 0.01 b | 0.41 ± 0.04 b | 7.42 ± 1.54 b | 104.33 ± 13.86 b | 70.54 ± 7.02 ab | 1224.89 ± 106.47 ab | 11.12 ± 0.99 b |
Loamy (L) | 8.84 ± 1.92 a | 0.18 ± 0.05 a | 0.54 ± 0.11 a | 8.12 ± 1.82 a | 109.56 ± 17.56 a | 73.54 ± 7.21 a | 1258.13 ± 113.7 a | 11.8 ± 1.16 a |
Sandy (S) | 7.73 ± 1.53 b | 0.15 ± 0.04 ab | 0.49 ± 0.11 ab | 7.09 ± 1.49 b | 103.56 ± 12.69 b | 67.95 ± 8.44 b | 1204.98 ± 105.22 b | 10.99 ± 1.07 b |
Fertilization type | ||||||||
Compost (Co) | 6.08 ± 0.38 c | 0.12 ± 0.02 b | 0.45 ± 0.10 | 5.51 ± 0.34 c | 89.89 ± 3.48 c | 61.41 ± 4.13 b | 1102.38 ± 0.00 c | 12.48 ± 0.00 a |
Compost + Mineral (C+M) | 8.69 ± 0.65 b | 0.16 ± 0.04 a | 0.51 ± 0.12 | 8.02 ± 0.61 b | 105.00 ± 5.36 b | 76.37 ± 3.74 a | 1241.06 ± 37.66 b | 11.29 ± 0.47 b |
Mineral (M) | 9.75 ± 0.76 a | 0.16 ± 0.05 a | 0.49 ± 0.10 | 9.10 ± 0.66 a | 122.56 ± 6.58 a | 74.25 ± 3.4 a | 1344.57 ± 30.51 a | 10.14 ± 0.50 c |
n.s. |
Experimental Factors | Titratable Acidity (%) | pH | Dry Residue (°Brix) | Firmness (kg·cm−2) | Color a/b |
---|---|---|---|---|---|
Soil texture | |||||
Clayey (Cl) | 0.30 ± 0.02 b | 4.13 ± 0.07 | 5.24 ± 0.24 b | 0.71 ± 0.05 | 2.26 ± 0.14 b |
Loamy (L) | 0.33 ± 0.02 a | 4.09 ± 0.08 | 5.39 ± 0.28 a | 0.73 ± 0.05 | 2.34 ± 0.14 a |
Sandy (S) | 0.29 ± 0.01 b | 4.14 ± 0.11 | 5.23 ± 0.22 b | 0.7 ± 0.06 | 2.22 ± 0.13 b |
n.s. | n.s. | ||||
Fertilization type | |||||
Compost (Co) | 0.31 ± 0.02 | 4.16 ± 0.11 | 5.53 ± 0.21 a | 0.66 ± 0.03 b | 2.32 ± 0.08 a |
Compost + Mineral (C+M) | 0.30 ± 0.02 | 4.12 ± 0.08 | 5.31 ± 0.08 b | 0.74 ± 0.04 a | 2.39 ± 0.06 a |
Mineral (M) | 0.31 ± 0.03 | 4.09 ± 0.06 | 5.02 ± 0.10 c | 0.75 ± 0.02 a | 2.11 ± 0.07 b |
n.s. | n.s. |
PC1 | PC2 | |
---|---|---|
Eigenvalue | 11.128 | 3.606 |
Variability (%) | 55.6 | 18.1 |
Cumulative % | 55.6 | 73.7 |
Flavonoids | 0.113 | −0.359 |
Lycopene | −0.228 | 0.050 |
Antioxidant activity | −0.176 | −0.237 |
Ascorbic acid | −0.186 | 0.093 |
Titratable acidity | 0.059 | −0.360 |
pH | −0.147 | 0.204 |
Yield | 0.295 | 0.004 |
Waste fruits (rotten) | 0.216 | −0.168 |
Waste fruits (green) | 0.141 | −0.223 |
Marketable yield | 0.295 | 0.017 |
No. of fruits | 0.275 | 0.086 |
Fruit mean weight | 0.278 | −0.079 |
Fruit dry weight | −0.231 | −0.299 |
Dry residue | −0.228 | −0.314 |
Firmness | 0.287 | −0.039 |
Color | 0.295 | −0.051 |
Plant fresh weight | 0.290 | 0.053 |
Plant dry weight | 0.067 | −0.469 |
Plant dry matter | −0.231 | −0.312 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cozzolino, E.; Salluzzo, A.; Piano, L.d.; Tallarita, A.V.; Cenvinzo, V.; Cuciniello, A.; Cerbone, A.; Lombardi, P.; Caruso, G. Effects of the Application of a Plant-Based Compost on Yield and Quality of Industrial Tomato (Solanum lycopersicum L.) Grown in Different Soils. Appl. Sci. 2023, 13, 8401. https://doi.org/10.3390/app13148401
Cozzolino E, Salluzzo A, Piano Ld, Tallarita AV, Cenvinzo V, Cuciniello A, Cerbone A, Lombardi P, Caruso G. Effects of the Application of a Plant-Based Compost on Yield and Quality of Industrial Tomato (Solanum lycopersicum L.) Grown in Different Soils. Applied Sciences. 2023; 13(14):8401. https://doi.org/10.3390/app13148401
Chicago/Turabian StyleCozzolino, Eugenio, Antonio Salluzzo, Luisa del Piano, Alessio Vincenzo Tallarita, Vincenzo Cenvinzo, Antonio Cuciniello, Antonietta Cerbone, Pasquale Lombardi, and Gianluca Caruso. 2023. "Effects of the Application of a Plant-Based Compost on Yield and Quality of Industrial Tomato (Solanum lycopersicum L.) Grown in Different Soils" Applied Sciences 13, no. 14: 8401. https://doi.org/10.3390/app13148401