Power System Reliability Evaluation Based on Chronological Booth–Baleriaux Method
Abstract
:1. Introduction
2. Literature Review
2.1. Loss of Load Probability
2.2. Capacity Outage Probability Table Method
2.3. Load Duration Curve Method
3. Methodology
4. Case Study
4.1. IEEE RTS 2020
4.1.1. System Data
4.1.2. Proposed Method Verification
4.2. Effect of Chronological Characteristic on the Power System Reliability
4.2.1. Load Uncertainty
4.2.2. Preventive Maintenance Schedule
4.2.3. Temperature
4.2.4. Renewable Energy Uncertainty
4.3. Korean Power System
4.3.1. System Data
4.3.2. Adequate Installed Capacity Reserve
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gooi, H.B.; Mendes, D.P.; Bell, K.R.W.; Kirschen, D.S. Optimal scheduling of spinning reserve. IEEE Trans. Power Syst. 1999, 14, 1485–1492. [Google Scholar] [CrossRef]
- Billinton, R.; Allan, R.N. Power-system reliability in perspective. Electron. Power 1984, 30, 231–236. [Google Scholar] [CrossRef]
- Chowdhury, A.A.; Koval, D.O. Value-based power system reliability planning. IEEE Trans. Ind. Appl. 1999, 35, 305–311. [Google Scholar] [CrossRef]
- Milligan, M.; Frew, B.A.; Bloom, A.; Ela, E.; Botterud, A.; Townsend, A.; Levin, T. Wholesale electricity market design with increasing levels of renewable generation: Revenue sufficiency and long-term reliability. Electr. J. 2016, 29, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Department for Business, Energy & Industrial Strategy. GB Implementation Plan; Government of the UK: London, UK, 2020.
- PJM Interconnection. PJM Manual 20; PJM: Norristown, PA, USA, 2021. [Google Scholar]
- National Association of Regulatory Utility Commissioners. Resource Adequacy for State Primer for State National Association of Regulatory; NARUC: Washington, DC, USA, 2021. [Google Scholar]
- Abarca, R.M. Interim Report of the Sector Inquiry on Capacity Mechanisms; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Ministry of Trade, Idustry and Energy. 9Th Basic Plan for Power Supply and Demand; MOTIE: Sejong, Republic of Korea, 2020.
- Billinton, R.; Allan, R.N. Reliability Evaluation of Power Systems; Springer: Berlin/Heidelberg, Germany, 1996; ISBN 9781489918628. [Google Scholar]
- Baleriaux, H.; Jamoulle, E.; de Guertechin, F.L. Simulation de l’exploitation d’un parc de machines thermiques de Production d’, electricite’, couple a des stations de pompage. Rev. E 1967, 5, 225–245. [Google Scholar]
- Booth, R.R. Power system simulation model based on probability analysis. IEEE Trans. Power Appar. Syst. 1972, PAS-91, 62–69. [Google Scholar] [CrossRef]
- Harrison, R.L. Introduction to Monte Carlo simulation. AIP Conf. Proc. 2009, 1204, 17–21. [Google Scholar] [CrossRef] [Green Version]
- LI, W. Reliability Assessment of Electric Power Systems Using Monte Carlo Methods (Billington, 1994); Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Mukerji, R.; Merrill, H.M.; Erickson, B.W.; Parker, J.H.; Friedman, R.E. Power Plant Maintenance Scheduling: Optimizing Economics and Reliability. IEEE Trans. Power Syst. 1991, 6, 476–483. [Google Scholar] [CrossRef]
- Zhou, X.; Xi, L.; Lee, J. Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation. Reliab. Eng. Syst. Saf. 2007, 92, 530–534. [Google Scholar] [CrossRef]
- Singh, C.; Chen, Q. An Efficient Method for Generating Capacity Reliability Evaluation Including the Effect of Planned Outages. IEEE Trans. Power Syst. 1989, 4, 1397–1404. [Google Scholar] [CrossRef]
- Molina, P.; Heinrich, P. Wien Automatic System Planning (WASP) Package; International Atomic Energy Agency: Vienna, Austria, 2001. [Google Scholar]
- Hoffer, J. Modelling the partial planned outages in production costing simulation. Int. J. Electr. Power Energy Syst. 1995, 17, 377–380. [Google Scholar] [CrossRef]
- Kim, J.; Park, J. Probabilistic Generation Modeling in Electricity Markets Considering Generator Maintenance Outage. Trans. Korean Inst. Electr. Eng. A 2005, 54, 418–428. [Google Scholar]
- Saraiva, J.T.; Miranda, V.; Pinto, L.M.V.G. Generation/transmission power system reliability evaluation by Monte-Carlo simulation assuming a fuzzy load description. IEEE Trans. Power Syst. 1996, 11, 690–695. [Google Scholar]
- Chen, Q.; Mili, L. Composite power system vulnerability evaluation to cascading failures using importance sampling and antithetic variates. IEEE Trans. Power Syst. 2013, 28, 2321–2330. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, Y.; Li, W.; Yu, J. Composite Power System Reliability Evaluation Based on Enhanced Sequential Cross-Entropy Monte Carlo Simulation. IEEE Trans. Power Syst. 2019, 34, 3891–3901. [Google Scholar] [CrossRef]
- Billinton, R.; Huang, D. Incorporating wind power in generating capacity reliability evaluation using different models. IEEE Trans. Power Syst. 2011, 26, 2509–2517. [Google Scholar] [CrossRef]
- Koh, L.H.; Peng, W.; Tseng, K.J.; Zhiyong, G. Reliability evaluation of electric power systems with solar photovoltaic & energy storage. In Proceedings of the 2014 International Conference on Probabilistic Methods Applied to Power Systems PMAPS 2014, Durham, UK, 7–10 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–5. [Google Scholar]
- Xiao, R.; Xiang, Y.; Wang, L.; Xie, K. Power system reliability evaluation incorporating dynamic thermal rating and network topology optimization. IEEE Trans. Power Syst. 2018, 33, 6000–6012. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, J.; Chen, F. Power Generation System Reliability Evaluation Base on Cross Entropy Method. In Proceedings of the 2020 5th Asia Conference on Power and Electrical Engineering, ACPEE 2020, Chengdu, China, 4–7 June 2020; Volume 2, pp. 1641–1645. [Google Scholar]
- Urgun, D.; Singh, C. LSTM Networks to Evaluate Composite Power System Reliability Evaluation with Injected Wind Power. In Proceedings of the 2019 IEEE Power and Energy Society General Meeting, Atlanta, GA, USA, 4–8 August 2019; Volume 2019, pp. 1–5. [Google Scholar]
- Wang, Y.; Gao, X.; Cai, Y.; Yang, M.; Li, S.; Li, Y. Reliability evaluation for aviation electric power system in consideration of uncertainty. Energies 2020, 13, 1175. [Google Scholar] [CrossRef] [Green Version]
- Urgun, D.; Singh, C. A Hybrid Monte Carlo Simulation and Multi Label Classification Method for Composite System Reliability Evaluation. IEEE Trans. Power Syst. 2019, 34, 908–917. [Google Scholar] [CrossRef]
- Firouzi, M.; Samimi, A. Reliability evaluation of a composite power system in the presence of renewable generations. Reliab. Eng. Syst. Saf. 2022, 222, 108396. [Google Scholar] [CrossRef]
- Barrows, C.; Preston, E.; Staid, A.; Stephen, G.; Watson, J.P.; Bloom, A.; Ehlen, A.; Ikaheimo, J.; Jorgenson, J.; Krishnamurthy, D.; et al. The IEEE Reliability Test System: A Proposed 2019 Update. IEEE Trans. Power Syst. 2020, 35, 119–127. [Google Scholar] [CrossRef]
- Github. Available online: https://github.com/GridMod/RTS-GMLC (accessed on 1 June 2023).
- Arrieta, F.R.P.; Lora, E.E.S. Influence of ambient temperature on combined-cycle power-plant performance. Appl. Energy 2005, 80, 261–272. [Google Scholar] [CrossRef]
- WWIS. Available online: https://worldweather.wmo.int/kr/city.html?201606300402&cityId=270 (accessed on 1 June 2023).
- Karki, R.; Dhungana, D.; Billinton, R. An appropriate wind model for wind integrated power systems reliability evaluation considering wind speed correlations. Appl. Sci. 2013, 3, 107–121. [Google Scholar] [CrossRef] [Green Version]
- EPSIS. Available online: http://epsis.kpx.or.kr/ (accessed on 1 June 2023).
Group | Type | Pmax [MW] | Number of Generators | FOR [%] |
---|---|---|---|---|
U12 | Oil/Steam | 12 | 7 | 2.0 |
U20 | Oil/CT | 20 | 12 | 10.0 |
U55 | Gas/CT | 55 | 27 | 3.1 |
U76 | Coal/Steam | 76 | 7 | 2.0 |
U155 | Coal/Steam | 155 | 7 | 4.0 |
U350 | Coal/Steam | 350 | 2 | 8.0 |
U355 | Gas/CC | 355 | 10 | 3.1 |
U400 | Nuclear | 400 | 1 | 12.0 |
Method | LOLH (Hour/Year) | EUE (MWh/Year) | Time (s) |
---|---|---|---|
COPT method | 0.001898 | 0.233808 | 0.60 |
Proposed method | 0.001898 | 0.233808 | 9.81 |
Traditional method | 0.001898 | 0.233808 | 47.23 |
Indices | Uncertainty (%) | ||||
---|---|---|---|---|---|
0 | 2 | 5 | 10 | 15 | |
LOLH (hour/year) | 0.001898 | 0.003347 | 0.032086 | 1.189605 | 8.549189 |
EUE (MWh) | 0.234 | 0.438 | 5.123 | 319.870 | 3615.958 |
Group | Generator Index | Maintenance Start Week | Maintenance Period (Weeks) | Derated Capacity (MW) |
---|---|---|---|---|
U12 | g1–g6 | 1 | 2 | 11 |
g7 | 12 | |||
U20 | g8–g16 | 1 | 2 | 19 |
g17 | 7 | |||
g18 | 12 | |||
g19 | 15 | |||
U55 | g20 | 1 | 1 | 54 |
g21–g26 | 4 | |||
g27–g29 | 12 | |||
g30 | 13 | |||
g31–g34 | 16 | |||
g35–g36 | 46 | |||
g37–g41 | 48 | |||
g42–g46 | 50 | |||
U76 | g47–g48 | 6 | 3 | 72 |
g49 | 7 | |||
g50–g53 | 44 | |||
U155 | g54 | 7 | 4 | 143 |
g55–g57 | 10 | |||
g58–g59 | 15 | |||
g60 | 42 | |||
U350 | g61 | 4 | 5 | 317 |
g62 | 44 | |||
U355 | g63–g64 | 1 | 1 | 348 |
g65–g68 | 4 | |||
g69–g70 | 15 | |||
g71 | 45 | |||
g72 | 48 | |||
U400 | g73 | 12 | 6 | 354 |
Indices | Base Case | Optimized Case | Derated Case |
---|---|---|---|
LOLH (hour/year) | 0.001898 | 0.001898 | 0.011447 |
EUE (MWh/year) | 0.23380 | 0.23380 | 1.510155 |
Month | Temperature (°C) | Change (%) | G55 (MW) | G355 (MW) |
---|---|---|---|---|
1 | 0.65 | +8.6 | 59 | 385 |
2 | 2.35 | +7.6 | 59 | 382 |
3 | 6.80 | +4.9 | 57 | 372 |
4 | 12.45 | +1.5 | 55 | 360 |
5 | 17.30 | −1.4 | 54 | 350 |
6 | 22.45 | −4.5 | 52 | 339 |
7 | 24.85 | −5.9 | 51 | 334 |
8 | 24.10 | −5.5 | 52 | 335 |
9 | 19.90 | −2.9 | 53 | 344 |
10 | 13.35 | +1.0 | 55 | 358 |
11 | 8.00 | +4.2 | 57 | 369 |
12 | 2.55 | +7.5 | 59 | 381 |
Indices | Base Case | Temp-Considered Case | Change (%) |
---|---|---|---|
LOLH (hour/year) | 0.001898 | 0.011176 | +488.8 |
EUE (MWh/year) | 0.23380 | 1.47222 | +529.7 |
Indices | Uncertainty (%) | ||||
---|---|---|---|---|---|
0 | 2 | 5 | 10 | 15 | |
LOLH (hour/year) | 0.000966 | 0.000974 | 0.001018 | 0.001180 | 0.001506 |
EUE (MWh) | 0.118651 | 0.119550 | 0.125131 | 0.147038 | 0.191325 |
Fuel | Dispatchable | Total Capacity (GW) | Number of Generators | % of Total (%) |
---|---|---|---|---|
Oil | Y | 0.86 | 14 | 0.6 |
LNG | Y | 41.20 | 96 | 30.7 |
Coal | Y | 36.14 | 58 | 26.9 |
Nuclear | Y | 23.25 | 24 | 17.3 |
Pump | Y | 4.70 | 16 | 3.5 |
RE | N | 26.30 | - | 19.6 |
etc. | N | 1.82 | - | 1.4 |
Iteration | Peak Demand (MW) | LOLE (Day/Year) | Reserve Margin (%) |
---|---|---|---|
1 | 86,719 | 0.0000 | 31.31 |
2 | 89,202 | 0.0000 | 27.66 |
3 | 91,478 | 0.0001 | 24.48 |
4 | 93,579 | 0.0021 | 21.69 |
5 | 95,516 | 0.0173 | 19.22 |
6 | 97,232 | 0.0746 | 17.12 |
7 | 98,515 | 0.1740 | 15.59 |
8 | 99,190 | 0.2522 | 14.80 |
9 | 99,432 | 0.2850 | 14.53 |
10 | 99,504 | 0.2952 | 14.44 |
11 | 99,525 | 0.2984 | 14.42 |
12 | 99,532 | 0.2994 | 14.41 |
13 | 99,535 | 0.2998 | 14.41 |
14 | 99,536 | 0.2999 | 14.41 |
15 | 99,536 | 0.3000 | 14.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, H.; Shin, H.; Kwag, K.; Hwang, P.; Kim, W. Power System Reliability Evaluation Based on Chronological Booth–Baleriaux Method. Appl. Sci. 2023, 13, 8548. https://doi.org/10.3390/app13148548
Oh H, Shin H, Kwag K, Hwang P, Kim W. Power System Reliability Evaluation Based on Chronological Booth–Baleriaux Method. Applied Sciences. 2023; 13(14):8548. https://doi.org/10.3390/app13148548
Chicago/Turabian StyleOh, Hyobin, Hansol Shin, Kyuhyeong Kwag, Pyeongik Hwang, and Wook Kim. 2023. "Power System Reliability Evaluation Based on Chronological Booth–Baleriaux Method" Applied Sciences 13, no. 14: 8548. https://doi.org/10.3390/app13148548
APA StyleOh, H., Shin, H., Kwag, K., Hwang, P., & Kim, W. (2023). Power System Reliability Evaluation Based on Chronological Booth–Baleriaux Method. Applied Sciences, 13(14), 8548. https://doi.org/10.3390/app13148548