Earthquake Prediction for the Düzce Province in the Marmara Region Using Artificial Intelligence
Abstract
:1. Introduction
2. Related Studies
- The first case study focuses on estimating the next day’s biggest seismic event using only time series earthquake magnitude data;
- The latter study focuses on the use of seismic electrical signals (SES) to predict the magnitude of the next seismic event.
3. Materials and Method
3.1. Calculation of Earthquake’s Magnitude
3.2. Distance of the Moon from Earth
3.3. B Value and D Value Calculation
3.4. RNN (Recurrent Neural Network)
- (a)
- The input data are entered into the input layer;
- (b)
- The input data are processed in the hidden layers and the weights are learned;
- (c)
- The hidden layers process the data and generate the output data;
- (d)
- The output data are sent to the output layer;
- (e)
- The output data are generated.
RNN and Other Methods
4. Experimental Datasets
5. Results and Discussion
- n represents the total number of data points.
- Real Value denotes the actual value compared to the predicted value.
- Prediction represents the predicted value.
- Σ indicates the summation symbol.
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Baghdadi, J.A.; Mozahim Hamdoon, R.; Janan Yosief, F. Prediction the Locations of Future Earthquakes in Eastern Part of Iraq Using GIS Techniques. MSE 2020, 745, 012134. [Google Scholar] [CrossRef]
- Deschamps, A.; Iannaccone, G.; Scarpa, R. The umbrian earthquake (Italy) of 19 september 1979. Ann. Geophys 1984, 2, 29–36. [Google Scholar]
- Ishibashi, K. Status of historical seismology in Japan. Ann. Geophys. 2004, 47, 339–368. [Google Scholar] [CrossRef]
- Van der Elst, N.J.; Shaw, B.E. Larger aftershocks happen farther away: Nonseparability of magnitude and spatial distributions of aftershocks. Geophys. Res. Lett. 2015, 42, 5771–5778. [Google Scholar] [CrossRef]
- Purnomo, M.R.A. A Bayesian Reasoning for Earthquake Prediction Based on IoT System. JPhCS 2020, 1471, 012022. [Google Scholar] [CrossRef] [Green Version]
- Azam, F.; Sharif, M.; Yasmin, M.; Mohsin, S. Artificial intelligence based techniques for earthquake prediction: A review. Sci. Int. 2014, 26, 1495–1502. [Google Scholar]
- Núñez, J.L.M.; Lantada, A.S.D. Artificial Intelligence Aided Engineering Education: State of the Art, Potentials and Challenges. Int. J. Eng. Educ. 2020, 36, 1740–1751. [Google Scholar]
- Brykov, M.N.; Petryshynets, I.; Pruncu, C.I.; Efremenko, V.G.; Pimenov, D.Y.; Giasin, K.; Sylenko, S.A.; Wojciechowski, S. Machine learning modelling and feature engineering in seismology experiment. Sensors 2020, 20, 4228. [Google Scholar] [CrossRef]
- Faouzi, J.; Janati, H. pyts: A Python Package for Time Series Classification. J. Mach. Learn. Res. 2020, 21, 1–6. [Google Scholar]
- Krischer, L.; Megies, T.; Barsch, R.; Beyreuther, M.; Lecocq, T.; Caudron, C.; Wassermann, J. ObsPy: A bridge for seismology into the scientific Python ecosystem. Comput. Sci. Discov. 2015, 8, 014003. [Google Scholar] [CrossRef]
- Alves, E.I. Earthquake forecasting using neural networks: Results and future work. Nonlinear Dyn. 2006, 44, 341–349. [Google Scholar] [CrossRef]
- Panakkat, A.; Adeli, H. Neural network models for earthquake magnitude prediction using multiple seismicity indicators. Int. J. Neural Syst. 2007, 17, 13–33. [Google Scholar] [CrossRef]
- Adeli, H.; Panakkat, A. A probabilistic neural network for earthquake magnitude prediction. Neural Netw. 2009, 22, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Moustra, M.; Avraamides, M.; Christodoulou, C. Artificial neural networks for earthquake prediction using time series magnitude data or seismic electric signals. Expert Syst. Appl. 2011, 38, 15032–15039. [Google Scholar] [CrossRef]
- Çam, H.; Duman, O. Yapay Sinir Ağı Yöntemiyle Deprem Tahmini: Türkiye Batı Anadolu Fay Hattı Uygulaması. Gümüshane Univ. Electron. J. Inst. Soc. Sci. Gümüshane Univ. Sos. Bilim. Enst. Elektron. Derg. 2016, 7, 227–248. [Google Scholar]
- Özmen, B. Kastamonu ve yakın çevresi için deprem olasılığı tahminleri. Turk. Jeol. Bul. 2011, 54, 109–122. [Google Scholar]
- Christopoulos, S.R.G.; Varotsos, P.K.; Perez-Oregon, J.; Papadopoulou, K.A.; Skordas, E.S.; Sarlis, N.V. Natural time analysis of global seismicity. Appl. Sci. 2022, 12, 7496. [Google Scholar] [CrossRef]
- Sachs, M.; Turcotte, D.L.; Holliday, J.R.; Rundle, J. Forecasting earthquakes: The relm test. Comput. Sci. Eng. 2012, 14, 43–48. [Google Scholar] [CrossRef]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Xiong, P.; Marchetti, D.; De Santis, A.; Zhang, X.; Shen, X. SafeNet: SwArm for earthquake perturbations identification using deep learning networks. Remote Sens. 2021, 13, 5033. [Google Scholar] [CrossRef]
- Florios, K.; Contopoulos, I.; Tatsis, G.; Christofilakis, V.; Chronopoulos, S.; Repapis, C.; Tritakis, V. Possible earthquake forecasting in a narrow space-time-magnitude window. Earth Sci. Inform. 2021, 14, 349–364. [Google Scholar] [CrossRef]
- Wu, Y.M.; Zhao, L. Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning. Geophys. Res. Lett. 2006, 33, L16312. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, E. What we can learn from Japan’s early earthquake warning system. Momentum 2012, 1, 2. [Google Scholar]
- Nuttli, O. The effect of the Earth’s surface on the S wave particle motion. Bull. Seismol. Soc. Am. 1961, 51, 237–246. [Google Scholar] [CrossRef]
- Yılmaz, O.; Misli, Ç. Aristarchus Yöntemi ile Ay ve Güneş. Fiz. Dunya. Derg. 2016, 1, 1–8. [Google Scholar]
- Gimsa, A. Development of the Distance Earth-Moon. Int. J. Sci. Res. Manag. 2020, 8, 10–13. [Google Scholar] [CrossRef]
- Moon Distance Calculator. Available online: https://www.timeanddate.com/astronomy/moon/distance.html (accessed on 7 January 2022).
- Ceylan, S. Marmara Depremlerinin Kaotik Özellikleri ve Fraktal Analizi. Ph.D. Thesis, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Istanbul, Turkey, 2008. [Google Scholar]
- Öztürk, S. Depremselliğin fraktal boyutu ve beklenen güçlü depremlerin orta vadede bölgesel olarak tahmini üzerine bir modelleme: Doğu Anadolu Bölgesi, Türkiye. Gümüşhane Univ. Fen Bilim. Derg. 2015, 5, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Öztürk, S. Elazığ Depremleri İçin Gutenberg-Rıchter B-Değeri Ve Fraktal Boyut Dc-Değerinin İstatistiksel Bir Analizi. In Proceedings of the 4th UluslararasıDeprem Mühendisliği ve Sismoloji Konferansı, Eskişehir, Turkey, 11–13 October 2017. [Google Scholar]
- Polat, O.; Goek, E.; Yilmaz, D. Earthquake hazard of the Aegean extension region (West Turkey). Turk. J. Earth Sci. 2008, 17, 593–614. [Google Scholar]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Glowacka, D. Deep gate recurrent neural network. In Proceedings of the Asian Conference on Machine Learning, Hamilton, New Zealand, 16–18 November 2016; pp. 350–365. [Google Scholar]
- Zhu, X.; Chu, J.; Wang, K.; Wu, S.; Yan, W.; Chiam, K. Prediction of rockhead using a hybrid N-XGBoost machine learning framework. J. Rock Mech. Geotech. Eng. 2021, 13, 1231–1245. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, H.; Guo, M.; Kannan, R.S.; Mars, J.; Tang, L. Prophet: Precise qos prediction on non-preemptive accelerators to improve utilization in warehouse-scale computers. In Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems, Xi’an, China, 8–12 April 2017; pp. 17–32. [Google Scholar]
- Ariyo, A.A.; Adewumi, A.O.; Ayo, C.K. Stock price prediction using the ARIMA model. In Proceedings of the 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, Cambridge, UK, 26–28 March 2014; pp. 106–112. [Google Scholar]
- De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean absolute percentage error for regression models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef] [Green Version]
Article | Authors | Date |
---|---|---|
Earthquake Forecasting Using Neural Networks: Results and Future Work. | Alves, E. I. [11] | 2006 |
Neural Network Models for Earthquake Magnitude Prediction Using Multiple Seismicity Indicators. | Panakkat, A. and Adeli, H. [12] | 2007 |
A Probabilistic Neural Network for Earthquake Magnitude Prediction. | Adeli, H. and Panakkat, A. [13] | 2009 |
Artificial Neural Networks for Earthquake Prediction Using Time Series Magnitude Data or Seismic Electric Signals. | Moustra, M., Avraamides, M. and Christodoulou, C. [14] | 2011 |
Yapay Sinir Ağı Yöntemiyle Deprem Tahmini: Türkiye Batı Anadolu Fay Hattı Uygulaması. | Çam, H. and Duman, O. [15] | 2016 |
Kastamonu ve Yakın Çevresi İçin Deprem Olasılığı Tahminleri | Özmen, B. [16] | 2011 |
Natural Time Analysis of Global Seismicity. | Christopoulos, S. R. G., Varotsos, P. K., Perez-Oregon, J., Papadopoulou, K. A., Skordas, E. S. and Sarlis, N. V. [17] | 2022 |
Forecasting Earthquakes: The RELM Test. | Sachs, M., Turcotte, D. L., Holliday, J. R. and Rundle, J. [18] | 2012 |
Estimation of the Size of Earthquake Preparation Zones. | Dobrovolsky, I. P., Zubkov, S. I. and Miachkin, V. I. [19] | 1979 |
SafeNet: SwArm for Earthquake Perturbations Identification Using Deep Learning Networks. | Xiong, P., Marchetti, D., De Santis, A., Zhang, X. and Shen, X. [20] | 2021 |
Possible Earthquake Forecasting In a Narrow Space-Time-Magnitude Window. | Florios, K., Contopoulos, I., Tatsis, G., Christofilakis, V., Chronopoulos, S., Repapis, C. and Tritakis, V. [21] | 2021 |
Date | Month | Day | Local Time | Latitude | Longitude | Depth | Magnitude |
---|---|---|---|---|---|---|---|
1990 | February | 09 | 18:20:00.00 | 41.0000 | 31.9000 | 10 | 3.7 |
1990 | February | 14 | 12:17:01.40 | 40.7400 | 29.1000 | 7 | 3.0 |
1990 | April | 11 | 08:02:08.00 | 40.7000 | 29.9000 | 7 | 3.0 |
1990 | May | 06 | 22:09:13.60 | 40.7200 | 29.7000 | 13 | 3.1 |
1990 | May | 07 | 10:36:02.70 | 40.5800 | 30.2000 | 5 | 3.5 |
1990 | June | 07 | 23:28:30.00 | 40.7400 | 29.2000 | 10 | 3.3 |
1990 | June | 08 | 01:47:56.00 | 40.5400 | 30.1400 | 3 | 3.9 |
1990 | June | 18 | 19:27:08.00 | 40.5100 | 30.5000 | 5 | 3.3 |
1990 | July | 21 | 17:56:49.00 | 40.7000 | 30.3000 | 22 | 3.1 |
1990 | August | 22 | 13:02:34.00 | 41.0000 | 29.9000 | 3 | 3.1 |
1990 | September | 01 | 17:27:37.00 | 40.7000 | 30.0000 | 8 | 3.0 |
1990 | September | 29 | 00:02:17.00 | 40.7000 | 29.8000 | 12 | 3.0 |
1990 | October | 03 | 01:51:29.00 | 40.6900 | 30.0000 | 5 | 3.0 |
1990 | October | 05 | 10:16:45.00 | 40.7000 | 30.0000 | 7 | 3.0 |
1990 | October | 08 | 05:50:14.00 | 40.7000 | 30.2000 | 4 | 3.1 |
1990 | October | 19 | 05:28:11.00 | 40.6800 | 30.0000 | 7 | 3.0 |
1990 | November | 04 | 08:07:49.70 | 40.7800 | 30.0300 | 9 | 3.1 |
1990 | November | 11 | 22:06:00.10 | 40.6000 | 31.7400 | 14 | 3.2 |
Formulas | Explanation |
---|---|
ht = f(ht−1, Xt) | ht: current value of h ht−1: the previous h value xt: current input vector |
ht = tanh(Whhht−1 + WhxXt) | W: weight h: hidden layer Whh: weight of the previous hidden layer Whx: weight of the current hidden layer tanh: activation function |
yt = Whyht | Why: weighing value of the output layer yt: output |
Date | Magnitude (M ≥ 3) | Depth (km) | Probability (%) | Prediction (M) |
---|---|---|---|---|
23 November 2022 | 6.1 | 8.3 | 73.0 | 5.6 |
23 November 2022 | 4.4 | 5 | 75.3 | 4.0 |
23 November 2022 | 3.8 | 5.3 | 73.2 | 3.1 |
24 November 2022 | 3.2 | 3.8 | 60.7 | 2.7 |
25 November 2022 | 3.5 | 5 | 65.4 | 3.1 |
25 November 2022 | 3.4 | 5 | 60.2 | 2.9 |
25 November 2022 | 3 | 6.5 | 63.4 | 2.6 |
27 November 2022 | 4.5 | 17.5 | 73.2 | 4.0 |
2 December 2022 | 3.6 | 9.9 | 74.1 | 3.1 |
2 December 2022 | 3.6 | 5.1 | 72.2 | 3.1 |
2 December 2022 | 3.3 | 8.3 | 73.4 | 2.8 |
3 December 2022 | 4.2 | 10.6 | 69.2 | 3.7 |
3 December 2022 | 3.6 | 14.1 | 71.3 | 3.1 |
4 December 2022 | 3.5 | 6.3 | 58.9 | 3.0 |
8 December 2022 | 3 | 5.4 | 63.4 | 2.5 |
12 December 2022 | 3 | 4.5 | 66.9 | 2.6 |
Date | Depth (km) | Magnitude (M ≥ 3) | Average Magnitude (M ≥ 3) | Probability (%) | Prediction (M) |
---|---|---|---|---|---|
17 August 1999 | 18 | 7.4 | 4.7 | 74.3 | 6.8 |
17 August 1999 | 15 | 5.5 | |||
17 August 1999 | 5 | 4.3 | |||
17 August 1999 | 16 | 5.0 | |||
17 August 1999 | 16 | 4.5 | |||
17 August 1999 | 17 | 4.4 | |||
17 August 1999 | 10 | 4.1 | |||
17 August 1999 | 11 | 4.0 | |||
17 August 1999 | 6 | 4.0 | |||
17 August 1999 | 13 | 4.0 | |||
17 August 1999 | 16 | 4.3 | |||
17 August 1999 | 16 | 4.4 |
Date | Depth (km) | Magnitude (M ≥ 3) | Average Magnitude (M ≥ 3) | Probability (%) | Prediction (M) |
---|---|---|---|---|---|
18 August 1999 | 14 | 4.3 | 4.2 | 74.0 | 4.6 |
18 August 1999 | 5 | 4.3 | |||
18 August 1999 | 5 | 4.0 | |||
18 August 1999 | 9 | 4.0 | |||
18 August 1999 | 8 | 4.0 | |||
18 August 1999 | 11 | 4.4 | |||
18 August 1999 | 9 | 4.2 | |||
18 August 1999 | 1 | 4.0 | |||
18 August 1999 | 24 | 4.1 |
Date | Depth (km) | Magnitude (M ≥ 3) | Average Magnitude (M ≥ 3) | Probability (%) | Prediction (M) |
---|---|---|---|---|---|
19 August 1999 | 10 | 3.0 | 3.9 | 72.2 | 3.4 |
19 August 1999 | 3 | 3.1 | |||
19 August 1999 | 6 | 4.8 | |||
19 August 1999 | 12 | 4.5 | |||
19 August 1999 | 14 | 4.0 | |||
19 August 1999 | 11 | 5.0 | |||
19 August 1999 | 12 | 4.3 | |||
19 August 1999 | 1 | 4.3 | |||
19 August 1999 | 9 | 3.5 | |||
19 August 1999 | 28 | 3.2 |
Date | Depth (km) | Magnitude (M ≥ 3) | Average Magnitude (M ≥ 3) | Probability (%) | Prediction (M) |
---|---|---|---|---|---|
20 August 1999 | 11 | 4.3 | 3.9 | 70.4 | 3.4 |
20 August 1999 | 5 | 3.3 | |||
20 August 1999 | 14 | 3.5 | |||
20 August 1999 | 8 | 4.6 | |||
20 August 1999 | 17 | 4.6 | |||
20 August 1999 | 12 | 3.8 | |||
20 August 1999 | 7 | 4.4 | |||
20 August 1999 | 5 | 3.5 | |||
20 August 1999 | 9 | 3.2 | |||
20 August 1999 | 16 | 4.4 | |||
20 August 1999 | 21 | 3.0 | |||
20 August 1999 | 8 | 3.8 | |||
20 August 1999 | 9 | 4.3 | |||
20 August 1999 | 1 | 4.1 |
Date | Depth (km) | Magnitude (M ≥ 3) | Average Magnitude (M ≥ 3) | Probability (%) | Prediction (M) |
---|---|---|---|---|---|
21 August 1999 | 8 | 3.4 | 3.7 | 71.5 | 3.2 |
21 August 1999 | 8 | 4.1 | |||
21 August 1999 | 7 | 3.3 | |||
21 August 1999 | 1 | 4.1 | |||
21 August 1999 | 1 | 3.4 | |||
21 August 1999 | 23 | 4.0 |
Date | Depth (km) | Magnitude (M ≥ 3) | Average Magnitude (M ≥ 3) | Probability (%) | Prediction (M) |
---|---|---|---|---|---|
22 August 1999 | 10 | 4.3 | 4.1 | 73.0 | 3.6 |
22 August 1999 | 9 | 3.4 | |||
22 August 1999 | 9 | 4.0 | |||
22 August 1999 | 5 | 3.7 | |||
22 August 1999 | 1 | 4.0 | |||
22 August 1999 | 5 | 5.0 |
Date | Depth (km) | Magnitude (M ≥ 3) | Average Magnitude (M ≥ 3) | Probability (%) | Prediction (M) |
---|---|---|---|---|---|
23 August 1999 | 1 | 3.1 | 3.3 | 69.4 | 3.4 |
23 August 1999 | 6 | 3.2 | |||
23 August 1999 | 4 | 3.3 | |||
23 August 1999 | 11 | 3.0 | |||
23 August 1999 | 23 | 3.5 | |||
23 August 1999 | 5 | 3.8 | |||
23 August 1999 | 7 | 3.0 | |||
23 August 1999 | 4 | 3.2 |
Date | Depth (km) | Magnitude (M ≥ 3) | Average Magnitude (M ≥ 3) | Probability (%) | Prediction (M) |
---|---|---|---|---|---|
24 August 1999 | 5 | 3.7 | 3.3 | 69.6 | 2.9 |
24 August 1999 | 9 | 3.0 | |||
24 August 1999 | 8 | 3.1 | |||
24 August 1999 | 6 | 3.2 | |||
24 August 1999 | 7 | 3.0 | |||
24 August 1999 | 16 | 3.7 | |||
24 August 1999 | 1 | 3.2 | |||
24 August 1999 | 1 | 3.1 |
Date | Depth (km) | Magnitude (M ≥ 3) | Average Magnitude (M ≥ 3) | Probability (%) | Prediction (M) |
---|---|---|---|---|---|
25 August 1999 | 1 | 3.1 | 3.4 | 70.1 | 2.8 |
25 August 1999 | 1 | 3.5 | |||
25 August 1999 | 14 | 3.5 | |||
25 August 1999 | 12 | 3.8 | |||
25 August 1999 | 7 | 3.3 | |||
25 August 1999 | 14 | 3.2 | |||
25 August 1999 | 13 | 3.7 | |||
25 August 1999 | 5 | 3.1 | |||
25 August 1999 | 5 | 3.3 |
Date | Depth (km) | Magnitude (M ≥ 3) | Average Magnitude (M ≥ 3) | Probability (%) | Prediction (M) |
---|---|---|---|---|---|
26 August 1999 | 9 | 3.1 | 3.5 | 68.9 | 3.0 |
26 August 1999 | 2 | 3.1 | |||
26 August 1999 | 1 | 3.6 | |||
26 August 1999 | 7 | 3.0 | |||
26 August 1999 | 5 | 3.2 | |||
26 August 1999 | 6 | 3.7 | |||
26 August 1999 | 3 | 4.1 | |||
26 August 1999 | 5 | 3.6 | |||
26 August 1999 | 5 | 3.6 | |||
26 August 1999 | 5 | 3.5 |
Date | Depth (km) | Magnitude (M ≥ 3) | Average Magnitude (M ≥ 3) | Probability (%) | Prediction (M) |
---|---|---|---|---|---|
27 August 1999 | 9 | 3.3 | 3.3 | 71.1 | 3.0 |
27 August 1999 | 15 | 3.0 | |||
27 August 1999 | 16 | 3.1 | |||
27 August 1999 | 7 | 3.5 | |||
27 August 1999 | 10 | 3.8 | |||
27 August 1999 | 10 | 3.2 | |||
27 August 1999 | 5 | 3.1 | |||
27 August 1999 | 10 | 3.1 |
Date | Depth (km) | Magnitude (M ≥ 3) | Average Magnitude (M ≥ 3) | Probability (%) | Prediction (M) |
---|---|---|---|---|---|
28 August 1999 | 7 | 3.1 | 3.4 | 68.3 | 3.2 |
28 August 1999 | 5 | 3.6 | |||
28 August 1999 | 5 | 3.3 | |||
28 August 1999 | 22 | 3.3 | |||
28 August 1999 | 9 | 3.6 | |||
28 August 1999 | 5 | 3.7 | |||
28 August 1999 | 9 | 3.5 | |||
28 August 1999 | 9 | 3.2 | |||
28 August 1999 | 9 | 3.0 |
Date | Depth (km) | Magnitude (M ≥ 3) | Average Magnitude (M ≥ 3) | Probability (%) | Prediction (M) |
---|---|---|---|---|---|
29 August 1999 | 5 | 3.3 | 3.7 | 70.3 | 3.4 |
29 August 1999 | 5 | 3.2 | |||
29 August 1999 | 7 | 4.8 | |||
29 August 1999 | 16 | 4.0 | |||
29 August 1999 | 5 | 3.5 | |||
29 August 1999 | 12 | 3.3 | |||
29 August 1999 | 4 | 3.6 | |||
29 August 1999 | 7 | 3.6 |
Date | Depth (km) | Magnitude (M ≥ 3) | Average Magnitude (M ≥ 3) | Probability (%) | Prediction (M) |
---|---|---|---|---|---|
30 August 1999 | 9 | 3.3 | 3.3 | 69.8 | 2.9 |
30 August 1999 | 4 | 4.0 | |||
30 August 1999 | 5 | 3.2 | |||
30 August 1999 | 8 | 3.2 | |||
30 August 1999 | 1 | 3.0 | |||
30 August 1999 | 5 | 3.1 | |||
30 August 1999 | 5 | 3.0 | |||
30 August 1999 | 8 | 3.5 | |||
30 August 1999 | 10 | 3.1 | |||
30 August 1999 | 5 | 3.2 | |||
30 August 1999 | 13 | 3.1 | |||
30 August 1999 | 4 | 3.3 |
Date | Depth (km) | Magnitude (M ≥ 3) | Average Magnitude (M ≥ 3) | Probability (%) | Prediction (M) |
---|---|---|---|---|---|
31 August 1999 | 17 | 5.2 | 3.5 | 70.3 | 3.0 |
31 August 1999 | 10 | 4.6 | |||
31 August 1999 | 4 | 3.0 | |||
31 August 1999 | 20 | 3.2 | |||
31 August 1999 | 1 | 3.0 | |||
31 August 1999 | 5 | 3.1 | |||
31 August 1999 | 7 | 3.1 | |||
31 August 1999 | 19 | 4.1 | |||
31 August 1999 | 10 | 3.3 | |||
31 August 1999 | 7 | 3.1 | |||
31 August 1999 | 14 | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pura, T.; Güneş, P.; Güneş, A.; Hameed, A.A. Earthquake Prediction for the Düzce Province in the Marmara Region Using Artificial Intelligence. Appl. Sci. 2023, 13, 8642. https://doi.org/10.3390/app13158642
Pura T, Güneş P, Güneş A, Hameed AA. Earthquake Prediction for the Düzce Province in the Marmara Region Using Artificial Intelligence. Applied Sciences. 2023; 13(15):8642. https://doi.org/10.3390/app13158642
Chicago/Turabian StylePura, Turgut, Peri Güneş, Ali Güneş, and Ali Alaa Hameed. 2023. "Earthquake Prediction for the Düzce Province in the Marmara Region Using Artificial Intelligence" Applied Sciences 13, no. 15: 8642. https://doi.org/10.3390/app13158642
APA StylePura, T., Güneş, P., Güneş, A., & Hameed, A. A. (2023). Earthquake Prediction for the Düzce Province in the Marmara Region Using Artificial Intelligence. Applied Sciences, 13(15), 8642. https://doi.org/10.3390/app13158642