Modelling and Predicting the Growth of Escherichia coli and Staphylococcus aureus in Co-Culture with Geotrichum candidum and Lactic Acid Bacteria in Milk
Abstract
:1. Introduction
2. Material and Methods
2.1. Microorganisms and Culture Conditions
2.2. Preparation of Inoculum and Experiments
2.3. Quantification of Microorganisms
2.4. Mathematical Models
2.4.1. Modelling the Microbial Interaction in Co-Cultures
- A.
- H-GD model with the competition coefficients
2.4.2. Parameter Determination and Evaluation of Model Performance
3. Results and Discussion
3.1. One-Step Analysis of Competitive Growth
3.2. Model Validation
3.2.1. E. coli Isolates in Co-Cultures
3.2.2. S. aureus Isolates in Co-Cultures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whiting, R.; Buchanan, R. A classification of models for predictive microbiology. Food Microbiol. 1993, 10, 175–177. [Google Scholar]
- Jewell, K. Comparison of 1-step and 2-step methods of fitting microbiological models. Int. J. Food Microbiol. 2012, 160, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Huang, L. IPMP Global Fit—A one-step direct data analysis tool for predictive microbiology. Int. J. Food Microbiol. 2017, 262, 38–48. [Google Scholar] [CrossRef]
- Vereecken, K.; Dens, E.; Van Impe, J. Predictive modelling of mixed microbial populations in food products: Evaluation of two-species models. J. Theor. Biol. 2000, 205, 53–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giménez, B.; Dalgaard, P. Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon. J. Appl. Microbiol. 2004, 96, 96–109. [Google Scholar] [CrossRef]
- Possas, A.; Bonilla-Luque, O.M.; Valero, A. From Cheese-Making to Consumption: Exploring the Microbial Safety of Cheeses through Predictive Microbiology Models. Foods 2021, 10, 355. [Google Scholar] [CrossRef]
- Metz, M.; Sheehan, J.; Feng, P.C.H. Use of indicator bacteria for monitoring sanitary quality of raw milk cheeses—A literature review. Food Microbiol. 2020, 85, 103283. [Google Scholar] [CrossRef]
- Gonzales-Barron, U.; Gonçalves-Tenório, A.; Rodrigues, V.; Cadavez, V. Foodborne pathogens in raw milk and cheese of sheep and goat origin: A meta-analysis approach. Curr. Opin. Food Sci. 2017, 18, 7–13. [Google Scholar] [CrossRef]
- Desmarchelier, P.; Fegan, N. Pathogens in Milk: Escherichia coli. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 60–66. [Google Scholar]
- Krebs de Souza, C.; Angioletti, B.L.; Hoffmann, T.G.; Bertoli, S.L.; Reiter, M.G. Promoting the appreciation and marketability of artisanal Kochkäse (traditional German cheese): A review. Int. Dairy J. 2022, 126, 105244. [Google Scholar] [CrossRef]
- Piqueras, J.; Chassard, C.; Callon, C.; Rifa, E.; Rifa, S.; Lebecque, A.D. Lactic Starter Dose Shapes S. aureus and STEC O26:H11 Growth, and Bacterial Community Patterns in Raw Milk Uncooked Pressed Cheeses. Microorganisms 2021, 9, 1081. [Google Scholar] [CrossRef]
- Costanzo, N.; Ceniti, C.; Santoro, A.; Clausi, M.T.; Casalinuovo, F. Foodborne Pathogen Assessment in Raw Milk Cheeses. Int. J. Food Sci. 2020, 2020, 3616713. [Google Scholar] [CrossRef] [PubMed]
- Eliskases-Lechner, F.; Guéguen, M.; Panoff, J.M. Geotrichum candidum. In Encyclopedia of Dairy Sciences, 3rd ed.; Mcsweeney, P.L.H., McNamara, J.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 4, pp. 561–569. [Google Scholar]
- Kačániová, M.; Kunová, S.; Štefániková, J.; Felšöciová, S.; Godočíková, L.; Horská, E.; Nagyová, Ľ.; Haščík, P.; Terentjeva, M. Microbiota of the traditional Slovak sheep cheese “Bryndza”. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 482–486. [Google Scholar] [CrossRef]
- Koňuchová, M.; Valík, Ľ. Modelling the Radial Growth of Geotrichum candidum: Effects of Temperature and Water Activity. Microorganisms 2021, 9, 532. [Google Scholar] [CrossRef] [PubMed]
- Marcellino, S.N.; Benson, D.R. The good, the bad, and the ugly: Tales of mold-ripened cheese. In Cheese and Microbes, 1st ed.; Donnelly, C.W., Ed.; ASM Press: Washington, DC, USA, 2014; pp. 95–132. [Google Scholar]
- Fusco, V.; Chieffi, D.; De Angelis, M. Fresh pasta filata cheeses: Composition, role, and evolution of the microbiota in their quality and safety. J. Dairy Sci. 2022, 105, 9347–9366. [Google Scholar] [CrossRef] [PubMed]
- Mayo, B.; Rodríguez, J.; Vázquez, L.; Flórez, A.B. Microbial Interactions within the Cheese Ecosystem and Their Application to Improve Quality and Safety. Foods 2021, 10, 602. [Google Scholar] [CrossRef] [PubMed]
- Ačai, P.; Valík, Ľ.; Medveďová, A. One- and Two-Step Kinetic Data Analysis Applied for Single and Co-Culture Growth of Staphylococcus aureus, Escherichia coli, and Lactic Acid Bacteria in Milk. Appl. Sci. 2021, 11, 8673. [Google Scholar] [CrossRef]
- Lobacz, A.; Kowalik, J.; Zulewska, J. Determination of the survival kinetics of Salmonella spp. on the surface of ripened raw milk cheese during storage at different temperatures. Int. J. Food Sci. Technol. 2020, 55, 610–618. [Google Scholar] [CrossRef] [Green Version]
- Valík, Ľ.; Ačai, P.; Medveďová, A. Application of competitive models in predicting the simultaneous growth of Staphylococcus aureus and lactic acid bacteria in milk. Food Control 2018, 87, 145–152. [Google Scholar] [CrossRef]
- Valík, Ľ.; Görner, F.; Sonneveld, C. Fermentation of ewe’s lump cheese under conditions of artisan production. Breed. Sheep Goats 2004, 24, 23–24. [Google Scholar]
- Palo, V.; Kaláb, M. Slovak sheep cheeses. Milchwissenshaft 1984, 39, 518–521. [Google Scholar]
- Šipošová, P.; Koňuchová, M.; Valík, Ľ.; Medveďová, A. Growth dynamics of lactic acid bacteria and dairy microscopic fungus Geotrichum candidum during their co-cultivation in milk. Food Sci. Technol. Int. 2020, 27, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Ačai, P.; Medveďová, A.; Mančušková, T.; Valík, Ľ. Growth prediction of two bacterial populations in co-culture with lactic acid bacteria. Food Sci. Technol. Int. 2019, 25, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Ačai, P.; Valík, Ľ.; Medveďová, A.; Rosskopf, F. Modelling and predicting the simultaneous growth of Escherichia coli and lactic acid bacteria in milk. Food Sci. Technol. Int. 2016, 22, 475–484. [Google Scholar] [CrossRef]
- EN ISO 15214; Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria. Colony-Count Technique at 30 °C. International Organization of Standardization (ISO): Geneva, Switzerland, 2005.
- EN ISO 21527-1; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Colony Count Technique in Products with Water Activity Greater Than 0.95. International Organization of Standardization (ISO): Geneva, Switzerland, 2008.
- National Standard Method F23; Enumeration of Enterobacteriaceae by the Colony Count Technique. Standards Unit, Evaluations and Standards Laboratory, Health Protection Agency: Hong Kong, China, 2005; p. 23.
- EN ISO 6888-1; Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species). Part 1: Technique Using Baird-Parker Agar Medium. International Organization of Standardization (ISO): Geneva, Switzerland, 2001.
- Huang, L. Optimization of a new mathematical model for bacterial growth. Food Control 2013, 32, 283–288. [Google Scholar] [CrossRef]
- Ratkowsky, D.A.; Olley, J.; McMeekin, T.A.; Ball, A. Relationship Between Temperature and Growth Rate of Bacterial Cultures. J. Bacteriol. 1982, 149, 1–5. [Google Scholar] [CrossRef]
- Buchanan, R.L. Predictive food microbiology. Trends Food Sci. Technol. 1993, 4, 6–11. [Google Scholar] [CrossRef]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; Van’t Riet, K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef]
- Huang, L. Mathematical modeling and validation of growth of Salmonella Enteritidis and background microorganisms in potato salad—One-step kinetic analysis and model development. Food Control 2016, 68, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Medveďová, A.; Kočiš-Kovaľ, M.; Valík, Ľ. Effect of salt and temperature on the growth of Escherichia coli PSII. Acta Aliment. 2021, 50, 180–188. [Google Scholar]
- Baranyi, J.; Pin, C.; Ross, T. Validating and comparing predictive models. Int. J. Food Microbiol. 1999, 48, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Hwang, C.; Liu, Y.; Renye, J.; Jia, Z. Growth competition between lactic acid bacteria and Listeria monocytogenes during simultaneous fermentation and drying of meat sausages—A mathematical modeling. Food Res. Int. 2022, 158, 111553. [Google Scholar] [CrossRef] [PubMed]
- Licitra, G.; Caccamo, M.; Lortal, S. Artisanal Products Made With Raw Milk. In Raw Milk: Balance between Hazards and Benefits; Nero, L.A., De Carvalho, A.F., Eds.; Academic Press: London, UK, 2019; pp. 175–221. [Google Scholar] [CrossRef]
- Šipošová, P.; Lehotová, V.; Valík, Ľ.; Medveďová, A. Microbiological quality assessment of raw milk from a vending machine and of traditional Slovakian pasta filata cheeses. J. Food Nutr. Res. 2020, 59, 272–279. [Google Scholar]
- Lehotová, V.; Antálková, V.; Medveďová, A.; Valík, Ľ. Quantitative Microbiological Analysis of Artisanal Stretched Quantitative Microbiological Analysis of Artisanal Stretched. Appl. Sci. 2021, 11, 2680. [Google Scholar] [CrossRef]
- Bettera, L.; Levante, A.; Bancalari, E.; Bottari, B.; Gatti, M. Lactic acid bacteria in cow raw milk for cheese production: Which and how many? Front. Microbiol. 2023, 13, 1092224. [Google Scholar] [CrossRef]
- Schoustra, S.; van der Zon, C.; Groenenboom, A.; Moonga, H.B.; Shindano, J.; Smid, E.J.; Hazeleger, W. Microbiological safety of traditionally processed fermented foods based on raw milk, the case of Mabisi from Zambia. LWT Food Sci. Technol. 2022, 171, 113997. [Google Scholar] [CrossRef]
- Medveďová, A.; Koňuchová, M.; Kvočiková, K.; Hatalová, I.; Valík, Ľ. Effect of Lactic Acid Bacteria Addition on the Microbiological Safety of Pasta-Filata Types of Cheeses. Front. Microbiol. 2020, 11, 612528. [Google Scholar] [CrossRef]
- Medveďová, A.; Valík, Ľ. Staphylococcus aureus: Characterisation and Quantitative Growth Description in Milk and Artisanal Raw Milk Cheese Production. In Structure and Function of Food Engineering; Eissa, A.A., Ed.; InTech: Rijeka, Croatia, 2012; pp. 71–102. [Google Scholar]
- Dalcanton, F.; Carrasco, E.; Pérez-Rodríguez, F.; Posada-Izquierdo, G.D.; Falcão de Aragão, G.M.; García-Gimeno, R.M. Modeling the Combined Effects of Temperature, pH, and Sodium Chloride and Sodium Lactate Concentrations on the Growth Rate of Lactobacillus plantarum ATCC 8014. J. Food Qual. 2018, 2018, 1726761. [Google Scholar] [CrossRef] [Green Version]
- Medveďová, A.; Šipošová, P.; Mančušková, T.; Valík, Ľ. The effect of salt and temperature on the growth of Fresco culture. Fermentation 2019, 5, 3390. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Sánchez, S.; Ramos, I.M.; Rodríguez-Pérez, M.; Poveda, J.M.; Seseña, S.; Palop, M.L. Lactic acid bacteria as biocontrol agents to reduce Staphylococcus aureus growth, enterotoxin production and virulence gene expression. LWT 2022, 170, 114025. [Google Scholar] [CrossRef]
- Sreekumar, O.; Hosono, A. Immediate effect of Lactobacillus acidophilus on the intestinal flora and fecal enzymes of rats and the in vitro inhibition of Escherichia coli in coculture. J. Dairy Sci. 2000, 83, 931–939. [Google Scholar] [CrossRef]
- Medveďová, A.; Liptáková, D.; Hudecová, A.; Valík, Ľ. Quantification of the growth competition of lactic acid bacteria: A case of co-culture with Geotrichum candidum and Staphylococcus aureus. Acta Chim. Slovaca 2008, 1, 192–201. [Google Scholar]
- Aldarf, M.; Fourcade, F.; Amrane, A.; Prigent, Y. Diffusion of lactate and ammonium in relation to growth of Geotrichum candidum at the surface of solid media. Biotechnol. Bioeng. 2004, 87, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Medveďová, A.; Havlíková, A.; Lehotová, V.; Valík, Ľ. Staphylococcus aureus 2064 growth as affected by temperature and reduced water activity. Ital. J. Food Saf. 2019, 8, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Canon, F.; Nidelet, T.; Guédon, E.; Thierry, A.; Gagnaire, V. Understanding the Mechanisms of Positive Microbial Interactions That Benefit Lactic Acid Bacteria Co-cultures. Front. Microbiol. 2020, 11, 2088. [Google Scholar] [CrossRef] [PubMed]
- Šipošová, P.; Koňuchová, M.; Valík, Ľ.; Trebichavská, M.; Medveďová, A. Quantitative Characterization of Geotrichum candidum Growth in Milk. Appl. Sci. 2021, 11, 4619. [Google Scholar] [CrossRef]
- Ross, T. Indices for performance evaluation of predictive models in food microbiology. J. Appl. Microbiol. 1996, 81, 501–508. [Google Scholar] [CrossRef]
Microorganism | Isolate | Origin |
---|---|---|
DVS® Fresco® 1000NG | - | commercial LAB culture; Christian Hansen, Hoersholm, Denmark |
G. candidum | J | Slovakian traditional cheese “Bryndza” |
E. coli | Br | Slovakian traditional cheese “Bryndza” |
PS2 | laboratory-produced pasta-filata cheese from raw cows’ milk | |
S. aureus | 2064 | Slovakian ewes’ lump cheese |
14733 | milk vending machine biofilm |
Parameters | E. coli (Isolate BR) | E. coli (Isolate PS2) | ||
---|---|---|---|---|
In Milk | 1% NaCl in Milk | In Milk | 1% NaCl in Milk | |
xmax,Lab | 9.34 ± 0.04 | 9.32 ± 0.03 | 9.36 ± 0.04 | 9.33 ± 0.04 |
xmax,Ec | 4.17 ± 0.16 | 3.95 ± 0.10 | 5.14 ± 0.17 | 5.14 ± 0.10 |
xmax,Gc | 5.96 ± 0.08 | 6.09 ± 0.10 | 5.72 ± 0.08 | 6.04 ± 0.17 |
ILE | 1.158 ± 0.093 | 1.254 ± 0.100 | 0.957 ± 0.059 | 0.951 ± 0.054 |
IEL | 0.526 ± 0.045 | 0.536 ± 0.049 | 0.588 ± 0.042 | 0.513 ± 0.035 |
kGc | 0.850 ± 0.038 | 0.710 ± 0.025 | 0.931 ± 0.048 | 0.749 ± 0.046 |
kref | 0.101 ± 0.006 | 0.101 ± 0.006 | 0.133 ± 0.006 | 0.081 ± 0.006 |
xres,Ec | 0.4 a | 0.42 ± 0.16 | 1.20 ± 0.29 | 0.5 d |
zEc | 30.67 ± 5.68 | 32.25 d | 6.38 ± 0.70 | 28.21 ± 5.76 |
bλ,Gc | 0.0109 ± 0.0003 | 0.0101 ± 0.0003 | 0.0096 ± 0.0002 | 0.0085 ± 0.0002 |
bT,Gc b | 0.0228 b | 0.0228 b | 0.0228 a | 0.0228 a |
Tmin,Gc b | 0.00 b | 0.00 b | 0.00 a | 0.00 a |
bλ,Lab c | 0.0343 c | 0.0343 c | 0.0343 b | 0.0343 b |
bT,Lab c | 0.0384 c | 0.0384 c | 0.0384 b | 0.0384 b |
Tmin,Lab | 1.11 c | 1.11 c | 1.11 b | 1.11 b |
bλ,Ec | 0.0493 c | 0.0493 c | 0.0365 ± 0.0045 | 0.0366 ± 0.0044 |
bT,Ec | 0.0421 c | 0.0421 c | 0.052 c | 0.052 c |
Tmin,Ec | 4.16 c | 4.16 c | 4.80 c | 4.80 c |
Parameters | S. aureus (Isolate 2064) | S. aureus (Isolate 14733) | ||
---|---|---|---|---|
In Milk | 1% NaCl in Milk | In Milk | 1% NaCl in Milk | |
xmax,Lab | 9.43 ± 0.03 | 9.40 ± 0.05 | 9.34 ± 0.03 | 9.25 ± 0.03 |
xmax,Sa | 3.83 ± 0.15 | 4.17 ± 0.11 | 4.43 ± 0.12 | 4.43 ± 0.16 |
xmax,Gc | 5.65 ± 0.12 | 5.82 ± 0.17 | 5.85 ± 0.11 | 6.04 ± 0.15 |
ILS | 1.262 ± 0.056 | 1.083 ± 0.057 | 1.064 ± 0.044 | 0.912 ± 0.043 |
ISL | 0.308 ± 0.144 | 0.174 ± 0.089 | 0.705 ± 0.079 | 0.526 ± 0.054 |
cLS | - | - | - | - |
cSL | - | - | - | - |
kGc | 0.995 ± 0.067 | 0.778 ± 0.058 | 0.906 ± 0.048 | 0.850 ± 0.055 |
kref | 0.133 ± 0.022 | 0.102 ± 0.007 | 0.107 ± 0.007 | 0.094 ± 0.006 |
xres,Sa | 1.47 ± 0.13 | 0.3 c | 0.5 c | 0.5 c |
zSa | 9.46 ± 1.21 | 10.44 ± 0.51 | 11.49 ± 1.18 | 13.79 ± 1.67 |
bλ,Gc | 0.0092 ± 0.0002 | 0.0086 ± 0.0003 | 0.0104 ± 0.0003 | 0.0086 ± 0.0002 |
bT,Gc | 0.0228 a | 0.0228 a | 0.0228 a | 0.0228 a |
Tmin,Gc | 0.00 a | 0.00 a | 0.00 a | 0.00 a |
bλ,Lab | 0.0343 b | 0.0343 b | 0.0384 b | 0.0384 b |
bT,Lab | 0.0384 b | 0.0384 b | 1.11 b | 1.11 b |
Tmin,Lab | 1.11 b | 1.11 b | 0.0302 b | 0.0302 b |
bλ,Sa | 0.0302 b | 0.0302 b | 0.0409 b | 0.0409 b |
bT,Sa | 0.0409 b | 0.0409 b | 5.02 b | 5.02 b |
Tmin,Sa | 5.02 b | 5.02 b |
Indices | E. coli BR | E. coli PS2 | S. aureus 2064 | S. aureus 14733 | ||||
---|---|---|---|---|---|---|---|---|
in Milk | 1% NaCl in Milk | in Milk | 1% NaCl in Milk | in Milk | 1% NaCl in Milk | in Milk | 1% NaCl in Milk | |
SSE | 14.719 | 16.080 | 19.450 | 25.719 | 10.625 | 11.725 | 15.184 | 17.592 |
R2 | 0.992 | 0.991 | 0.987 | 0.986 | 0.991 | 0.991 | 0.989 | 0.988 |
p | 10 | 10 | 11 | 11 | 10 | 10 | 10 | 10 |
RMSE | 0.251 | 0.254 | 0.289 | 0.324 | 0.280 | 0.284 | 0.270 | 0.282 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ačai, P.; Koňuchová, M.; Valík, Ľ. Modelling and Predicting the Growth of Escherichia coli and Staphylococcus aureus in Co-Culture with Geotrichum candidum and Lactic Acid Bacteria in Milk. Appl. Sci. 2023, 13, 8713. https://doi.org/10.3390/app13158713
Ačai P, Koňuchová M, Valík Ľ. Modelling and Predicting the Growth of Escherichia coli and Staphylococcus aureus in Co-Culture with Geotrichum candidum and Lactic Acid Bacteria in Milk. Applied Sciences. 2023; 13(15):8713. https://doi.org/10.3390/app13158713
Chicago/Turabian StyleAčai, Pavel, Martina Koňuchová, and Ľubomír Valík. 2023. "Modelling and Predicting the Growth of Escherichia coli and Staphylococcus aureus in Co-Culture with Geotrichum candidum and Lactic Acid Bacteria in Milk" Applied Sciences 13, no. 15: 8713. https://doi.org/10.3390/app13158713
APA StyleAčai, P., Koňuchová, M., & Valík, Ľ. (2023). Modelling and Predicting the Growth of Escherichia coli and Staphylococcus aureus in Co-Culture with Geotrichum candidum and Lactic Acid Bacteria in Milk. Applied Sciences, 13(15), 8713. https://doi.org/10.3390/app13158713