A Green Technology Approach Using Enzymatic Hydrolysis to Valorize Meat Waste as a Way to Achieve a Circular Economy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- Resinase® HT, a lipase originating from Aspergillus sp., is highly effective for triglyceride hydrolysis with a declared activity of 50 KLU/g [35] and a density of 1.05 g/mL [34], whose optimal conditions are temperatures of 50–70 °C (although it is stable up to temperatures of 90 °C), and its pH is between 5 and 8 [35].
2.2. Analytical Methods
2.3. Enzymatic Hydrolysis Procedure
2.4. Sample Treatment
2.5. Experimental Strategy
3. Results and Discussion
3.1. Basic Compositional Analysis of Meat Waste
3.2. Protein Hydrolysis
3.2.1. Influence of pH and Temperature
3.2.2. Influence of Protease/Proteinic Substrate Ratio (Eo/So)
3.3. Lipid Hydrolysis
3.3.1. Influence of pH and Temperature
3.3.2. Influence of Lipase/Lipidic Substrate Ratio (Eo’/So’)
3.4. Simultaneous Protein and Lipid Hydrolysis
3.4.1. Recovered Products
3.4.2. Overall Mass Balance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eurostat. Food Waste and Food Waste Prevention—Estimates. 2023. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Food_waste_and_food_waste_prevention_-_estimates (accessed on 19 June 2023).
- European Commission. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe; European Commission: Brussels, Belgium, 2020.
- United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; Resolution A/RES/70/1; United Nations General Assembly: New York, NY, USA, 2015. [Google Scholar]
- European Commission. Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC on Waste; Official Journal of the European Union: Luxembourg, 2018; p. 32018L0851.
- Angulo, M. Obtención de Subproductos con Elevado Valor Añadido a Partir de Residuos de Productos Cárnicos Destinados al Consumo Humano. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 2021. [Google Scholar]
- European Commission. Regulation (EC) No 1069/2009 of the European Parliament and of the Council Laying Down Health Rules as Regards Animal By-Products and Derived Products; Official Journal of the European Union: Luxembourg, 2009; p. L 300.
- Barampouti, E.M.; Mai, S.; Dimitris, M. Report on Urban Biowaste Composition & Physicochemical Characteristics; WaysTUP! Consortium: Athenas, Greece, 2021. [Google Scholar]
- Jayathilakan, K.; Khudsia Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baraldi, I.J.; Giordano, R.L.C.; Zangirolami, T.C. Enzymatic hydrolysis as an environmentally friendly process compared to thermal hydrolysis for instant coffee production. Braz. J. Chem. Eng. 2016, 33, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Muharja, M.; Junianti, F.; Ranggina, D.; Nurtono, T.; Widjaja, A. An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk. Bioresour. Technol. 2018, 249, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, M.; Acebal, C.; de la Mata, I. Biocatálisis y biotecnología. Arbor 2014, 190, a156. [Google Scholar]
- Figueroa, J. Procesos de Biocátalisis Enzimática en Almidones Nativos y Pre-Gelatinizados de Yuca: Efectos a Nivel Morfológico, Molecular y de Digestibilidad In Vitro. Ph.D. Thesis, Universidad Nacional de Colombia, Medellín, Colombia, 2020. [Google Scholar]
- Sindhu, R.; Shiburaj, S.; Sabu, A.; Fernandes, P.; Singhal, R.; Mathew, G.M.; Nair, I.C.; Jayachandran, K.; Vidya, J.; de Souza Vandenberghe, L.P.; et al. Enzyme Technology in Food Processing: Recent Developments and Future Prospects. In Innovative Food Processing Technologies; Knoerzer, K., Muthukumarappan, K., Eds.; Elsevier: Oxford, UK, 2021; pp. 191–215. [Google Scholar]
- Tapal, A.; Tiku, P.K. Nutritional and Nutraceutical Improvement by Enzymatic Modification of Food Proteins. In Enzymes in Food Biotechnology; Kudus, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 471–481. [Google Scholar]
- Latorres, J.M.; Rios, D.G.; Saggiomo, G.; Wasielesky, W., Jr.; Prentice-Hernandez, C. Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei). J. Food Sci. Technol. 2018, 55, 721–729. [Google Scholar] [CrossRef]
- Manninen, A.H. Protein hydrolysates in sports nutrition. Nutr. Metab. 2009, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Pasupuleti, V.K.; Holmes, C.; Demain, A.L. Applications of protein hydrolysates in biotechnology. In Protein Hydrolysates in Biotechnology; Pasupuleti, V.K., Demain, A.L., Eds.; Springer Science & Business Media: New York, NY, USA, 2014; pp. 1–9. [Google Scholar]
- Ścibisz, M.; Arct, J.; Pytkowska, K. Protein hydrolysates in cosmetics production, part II. SÖFW J. Wyd. Polskie 2008, 1, 12–20. [Google Scholar]
- Nchienzia, H.A.; Morawicki, R.O.; Gadang, V.P. Enzymatic hydrolysis of poultry meal with endo- and exopeptidases. Poult. Sci. 2010, 89, 2273–2280. [Google Scholar] [CrossRef]
- Ahern, K.; Rajagopal, I.; Tan, T. Biochemistry: Free for All; Oregon State University: Corvallis, OR, USA, 2018; pp. 74–166. [Google Scholar]
- Shen, C.-H. Diagnostic Molecular Biology; Academic Press: London, UK, 2019; pp. 97–98. [Google Scholar]
- Lee, E.H.; Chun, S.Y.; Lee, J.N.; Yoon, B.H.; Chung, J.-W.; Han, M.-H.; Kwon, T.G.; Ha, Y.-S.; Kim, B.S. Optimized collagen extraction process to obtain high purity and large quantity of collagen from human perirenal adipose tissue. BioMed Res. Int. 2022, 2022, 3628543. [Google Scholar] [CrossRef]
- Sionkowska, A.; Skrzyński, S.; Śmiechowski, K.; Kołodziejczak, A. The review of versatile application of collagen. Polym. Adv. Technol. 2017, 28, 4–9. [Google Scholar] [CrossRef]
- Pereira, A.L.F.; Abreu, V.K.G. Lipid peroxidation in meat and meat products. In Lipid Peroxidation Research; Mansour, M.A., Ed.; IntechOpen: London, UK, 2018; pp. 1–14. [Google Scholar]
- Baena, A.; Orjuela, A.; Rakshit, S.K.; Clark, J.H. Enzymatic hydrolysis of waste fats, oils and greases (FOGs): Status, prospective, and process intensification alternatives. Chem. Eng. Process. Process Intensif. 2022, 175, 108930. [Google Scholar] [CrossRef]
- Carvalho, P.D.O.; Campos, P.R.B.; Noffs, M.D.; Fregolente, P.B.L.; Fregolente, L.V. Enzymatic hydrolysis of salmon oil by native lipases: Optimization of process parameters. J. Braz. Chem. Soc. 2009, 20, 117–124. [Google Scholar] [CrossRef]
- Abiona, O.O.; Awojide, S.H.; Anifowose, A.J.; Adegunwa, A.O.; Agbaje, W.B.; Tayo, A.S. Quality characteristics of extracted oil from the head and gills of Catfish and Titus fish. Bull. Natl. Res. Cent. 2021, 45, 101. [Google Scholar] [CrossRef]
- Kelm, G.R.; Wickett, R.R. The role of fatty acids in cosmetic technology. In Fatty Acids Chemistry, Synthesis, and Applications; Ahmad, U., Ed.; Academic Press and AOCS Press: London, UK, 2017; pp. 385–404. [Google Scholar]
- Dembitsky, V.M.; Kuklev, D.V. Acetylenic epoxy fatty acids: Chemistry, synthesis and their pharmaceutical applications. In Fatty Acids Chemistry, Synthesis, and Applications; Ahmad, U., Ed.; Academic Press and AOCS Press: London, UK, 2017; pp. 121–146. [Google Scholar]
- Hayes, D.G. Fatty acids–based surfactants and their uses. In Fatty Acids Chemistry, Synthesis, and Applications; Ahmad, U., Ed.; Academic Press and AOCS Press: London, UK, 2017; pp. 355–384. [Google Scholar]
- SNS Insider Strategy & Stats. Protein Hydrolysate Market Size, Share and Segmentation; Report Code: SNS/F&B/2268; SNS Insider Strategy & Stats: Pune, India, 2022; 132p. [Google Scholar]
- Grand View Research. Collagen Market Size, Share & Trends Analysis Report; Report ID: GVR-1-68038-835-0; Grand View Research: San Francisco, CA, USA, 2023; 125p. [Google Scholar]
- Fiormarkets. Fatty Acids Market; Report ID: 420159; Fiormarkets: Pune, India, 2023; 238p. [Google Scholar]
- Novozymes. Enzymes for Biocatalysis. Available online: https://www.strem.com/uploads/resources/documents/novozymes_enzymes_for_biocatalysis_copy1.pdf (accessed on 19 June 2023).
- Novozymes. Lipases for Biocatalysis for Smarter Chemical Synthesis; Report No. 2014-12478-04; Novozymes A/S: Bagsvaerd, Denmark, 2016. [Google Scholar]
- AOAC. Official Method of Analysis, 22nd ed.; Methods: 920.39, 950.46, 963.22, 981.10, 990.26; Oxford University Press: New York, NY, USA, 2023. [Google Scholar]
- Nielsen, S.S. Food Analysis, 5th ed.; Springer: Connersville, IN, USA, 2021. [Google Scholar]
- Jafarpour, A.; Gregersen, S.; Marciel Gomes, R.; Marcatili, P.; Hegelund Olsen, T.; Jacobsen, C.; Overgaard, M.T.; Sørensen, A.M. Biofunctionality of Enzymatically Derived Peptides from Codfish (Gadus morhua) Frame: Bulk In Vitro Properties, Quantitative Proteomics, and Bioinformatic Prediction. Mar. Drugs 2020, 18, 599. [Google Scholar] [CrossRef]
- Viji, P.; Phannendra, T.S.; Jesmi, D.; Madhusudana Rao, B.; Dhiju Das, P.H.; George, N. Functional and Antioxidant Properties of Gelatin Hydrolysates Prepared from Skin and Scale of Sole Fish. J. Aquat. Food Prod. Technol. 2019, 28, 976–986. [Google Scholar] [CrossRef]
- Mat, D.J.L.; Cattenoz, T.; Souchon, I.; Michon, C.; Le Feunteun, S. Monitoring protein hydrolysis by pepsin using pH-stat: In vitro gastric digestions in static and dynamic pH conditions. Food Chem. 2018, 239, 268–275. [Google Scholar] [CrossRef]
- Kurozawa, L.E.; Park, K.J.; Hubinger, M.D. Optimization of the Enzymatic Hydrolysis of Chicken Meat Using Response Surface Methodology. J. Food Sci. 2008, 73, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Khora, K.; Khora, S.S. Marine fish-derived proteins and peptides as potential antioxidants. In Marine Antioxidants: Preparations, Syntheses, and Applications; Kim, S.-K., Shin, K.-H., Venkatesan, J., Eds.; Elsevier: London, UK, 2023; pp. 221–232. [Google Scholar]
- García, A.J.; Esteban, M.B.; Márquez, M.C.; Ramos, P. Biodegradable municipal solid waste: Characterization and potential use as animal feedstuffs. Waste Manag. 2005, 25, 780–787. [Google Scholar] [CrossRef]
- Holwerda, A.M.; van Loon, L.J.C. The impact of collagen protein ingestion on musculoskeletal connective tissue remodeling: A narrative review. Nutr. Rev. 2022, 80, 1497–1514. [Google Scholar] [CrossRef]
- Richter, K.K.; Codlin, M.C.; Seabrook, M.; Warinner, C. A primer for ZooMS applications in archaeology. Proc. Natl. Acad. Sci. USA 2022, 119, e2109323119. [Google Scholar] [CrossRef]
- Ali, Z.; Waheed, A.; Iqbal, H.; Siddiqui, S.; Parveen, Z. Trans fat, fatty acids and characteristics of slaughtered buffalo waste fat by edible rendering. Buffalo Bull. 2016, 35, 199–207. [Google Scholar]
- Miltko, R.; Majewska, M.P.; Bełżecki, G.; Kula, K.; Kowalik, B. Growth performance, carcass and meat quality of lambs supplemented different vegetable oils. Asian-Australas J. Anim. Sci. 2019, 32, 767–775. [Google Scholar] [CrossRef] [Green Version]
- Moo-Huchin, V.; Chi-Kuk, M.; Sauri-Duch, E.; Moo-Huchin, M.; Estrada-Mota, I.; Estrada-León, R. Composición de ácidos grasos de la carne de ovinos de pelo. In Proceedings of the XL Reunión de la Asociación Mexicana para la Producción Animal y Seguridad Alimentaria, A.C. (AMPA) y IX Seminario Internacional de Ovinos en el Trópico, Villahermosa, Mexico, 22–24 May 2013; pp. 875–878. [Google Scholar]
- Cruz-González, M.I.; Sánchez-Machado, D.I.; López-Cervantes, J.; Munguia-Xochichua, J.A.; Molina-Barrios, R.M.; Rivera-Acuña, F.; Hernández-Chávez, J.F. Caracterización del perfil de ácidos grasos en carne de borrego de engorda utilizando cromatografía de gases. Nacameh 2014, 8, 39–49. [Google Scholar] [CrossRef]
- Ferreira, A.; Duarte, J.; Neto, A.J.; Fiorentini, G.; Berchielli, T.T. Fatty acid profile, meat quality, and carcass traits of Nellore young bulls fed different sources of forage in high-concentrate diets with crude glycerin. Rev. Bras. Zootec. 2016, 45, 165–173. [Google Scholar]
- Sucu, E.; Akbay, K.C.; Şengül, Ö.; Yavuz, M.T.; İbrahim, A.K. Effects of stoned olive pomace on carcass characteristics and meat quality of lambs. Turk. J. Vet. Anim. Sci. 2018, 42, 533–542. [Google Scholar] [CrossRef]
- Esquivelzeta, C.; Casellas, J.; Fina, M.; Campo, M.M.; Piedrafita, J. Carcass traits and meat fatty acid composition in Mediterranean light lambs. Can. J. Anim. Sci. 2017, 97, 734–741. [Google Scholar] [CrossRef] [Green Version]
- Daza, A.; Rey, A.I.; Lopez-Carrasco, C.; Lopez-Bote, C.J. Influence of feeding system on growth performance, carcass characteristics and meat and fat quality of Avileña-Negra Ibérica calves’ breed. Span. J. Agric. Res. 2014, 12, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Real, M. Caracterización en ácidos grasos de la carne de corderos del Partido de Puan (Buenos Aires, Argentina). Rev. Vet. Argent. 2018, XXXV, 1–10. [Google Scholar]
- Ladeira, M.M.; Santarosa, L.C.; Chizzotti, M.L.; Ramos, E.M.; Machado, O.R.; Oliveira, D.M.; Carvalho, J.R.R.; Lopes, L.S.; Ribeiro, J.S. Fatty acid profile, color and lipid oxidation of meat from young bulls fed ground soybean or rumen protected fat with or without monensin. Meat Sci. 2014, 96, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; You, S.H.; Bao, J.G.; Jia, Y.S. Effect of different nutritional levels on growth performande, carcass characteristics and meat quality of Wuzhumuqin lamb. Acta Prataculturae Sin. 2019, 28, 196–203. [Google Scholar]
- Montoya, C.; García, J.F.; Barahona, R. Contenido de ácidos grasos en carne de bovinos cebados en diferentes sistemas de producción en el trópico colombiano. Vitae 2015, 22, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yang, C.; Ran, J.; Yu, C.; Yin, L.; Li, Z.; Liu, Y. The age-dependent variations for fatty acid composition and sensory quality of chicken meat and associations between gene expression patterns and meat quality. Livest. Sci. 2021, 254, 104736. [Google Scholar] [CrossRef]
- Sosa, A.R.; Montero, M.; Juárez, F. Contenido de ácidos grasos y conjugados del ácido linoleico en carne de bovinos. Rev. Electron. Vet. 2009, 10, 1–84. [Google Scholar]
- Berthelot, V.; Bas, P.; Pottier, E.; Normand, J. The effect of maternal linseed supplementation and/or lamb linseed supplementation on muscle and subcutaneous adipose tissue fatty acid composition of indoor lambs. Meat Sci. 2012, 90, 548–557. [Google Scholar] [CrossRef]
- Ripoll, G.; Albertí, P.; Álvarez-Rodríguez, J.; Blasco, I.; Sanz, A. Body size, carcass and meat quality of three commercial beef categories of ‘Serrana de Teruel’ breed. Span. J. Agric. Res. 2016, 14, e0604. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, C.G.; Salas-Mellado, M. Influência da ação das enzimas alcalase e flavourzyme no grau de hidrólise das proteínas de carne de frango. Quim. Nova 2009, 32, 1144–1150. [Google Scholar] [CrossRef]
- Novozymes. Alcalase; Product Data Sheet No. 2008-15062; Novozymes Switzerland AG: Neumatt, Denmark, 2008. [Google Scholar]
- Salvatore, S.; Vandenplas, Y. Hydrolyzed proteins in allergy. Nestlé Nutr. Inst. Workshop Ser. 2016, 86, 11–27. [Google Scholar]
- Breternitz, N.R.; Bolini, H.M.A.; Hubinger, M.D. Sensory acceptance evaluation of a new food flavoring produced by microencapsulation of a mussel (Perna perna) protein hydrolysate. LWT—Food Sci. Technol. 2017, 83, 141–149. [Google Scholar] [CrossRef]
- Grimble, G.K. Adverse Gastrointestinal Effects of Arginine and Related amino Acids. J. Nutr. 2007, 137, 1693–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hema, G.S.; Joshy, C.G.; Shyni, K.; Chatterjee, N.S.; Ninan, G. Optimization of process parameters for the production of collagen peptides from fish skin (Epinephelus malabaricus) using response surface methodology and its characterization. J. Food Sci. Technol. 2017, 54, 488–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.; Tang, Q.; Fan, L.; Xu, X.; Song, Z.; Hayat, K.; Feng, T.; Wang, Y. Identification of pork flavour precursors from enzyme-treated lard using Maillard model system assessed by GC-MS and partial least squares regression. Meat Sci. 2017, 124, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Andrade, T.A.; Errico, M.; Christensen, K.V. Castor oil transesterification catalysed by liquid enzymes: Feasibility of reuse under various reaction conditions. Chem. Eng. Trans. 2017, 57, 913–918. [Google Scholar]
- Gong, X.; Wu, M.; Jiang, Y.; Wang, H. Effects of different temperatures and pH values on volatile fatty acids production during codigestion of food waste and thermal-hydrolysed sewage sludge and subsequent volatile fatty acids for polyhydroxyalkanoates production. Bioresour. Technol. 2021, 333, 125149. [Google Scholar] [CrossRef]
- Sharma, A.; Chaurasia, S.P.; Dalai, A.K. Enzymatic hydrolysis of cod liver oil for the fatty acids production. Catal. Today 2013, 207, 93–100. [Google Scholar] [CrossRef]
- Dias, M.C.A.F. Fat Splitting Using Lipases. Ph.D. Thesis, Instituto Superior Técnico de Lisboa, Lisboa, Portugal, 2015. [Google Scholar]
- Morales-Medina, R.; Munio, M.; Guadix, A.; Guadix, E.M.; Camacho, F. A lumped model of the lipase catalyzed hydrolysis of sardine oil to maximize polyunsaturated fatty acids content in acylglycerols. Food Chem. 2018, 240, 286–294. [Google Scholar] [CrossRef]
- Meng, Z.; Wei, S.; Qi, K.; Guo, Y.; Wang, Y.; Liu, Y. Secondary structure of proteins on oil release in aqueous enzymatic extraction of rapeseed oil as affected hydrolysis state. Int. J. Food Prop. 2018, 21, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Minh, N.P.; Dao, D.T.A. Optimization of proteolytic hydrolysis from raw lean pork meat by enzymatic method to produce functional powder. Int. J. Multidiscip. Res. Dev. 2014, 1, 56–65. [Google Scholar]
Fatty Acid | Meat Waste Mean ± SD (%) | Bibliographic Values Minimum–Maximum (%) | Sources |
---|---|---|---|
Saturated fatty acid | |||
C14:0 | 4.25 ± 0.09 | 1.70–30.20 | [46,47,48] |
C15:0 | 0.27 ± 0.03 | 0.00–0.60 | [49,50,51] |
C16:0 | 25.45 ± 0.26 | 2.28–36.89 | [46,48,52] |
C17:0 | 3.48 ± 0.10 | 0.00–3.90 | [47,48,53] |
C18:0 | 12.85 ± 0.24 | 0.40–32.73 | [46,50,53] |
C20:0 | 0.34 ± 0.02 | 0.06–4.69 | [46,51,54] |
Unsaturated fatty acids | |||
C14:1 | 0.00 ± 0.00 | 0.00–1.16 | [50,51,55] |
C15:1 | 0.00 ± 0.00 | 0.00–1.70 | [47,51,56] |
C16:1 | 0.30 ± 0.01 | 0.00–37.9 | [48,55,57] |
C17:1 | 0.32 ± 0.02 | 0.00–0.90 | [47,52,58] |
C18:1n9c + t | 24.64 ± 0.34 | 0.84–46.29 | [46,52,59] |
C20:1 | 0.00 ± 0.00 | 0.00–2.78 | [51,53,58] |
C18:2n6c + t | 10.50 ± 0.27 | 0.49–38.28 | [46,48,54] |
C20:2 | 1.76 ± 0.05 | 0.00–2.57 | [51,52,60] |
C18:3 | 3.31 ± 0.06 | 0.03–4.71 | [46,54,60] |
C20:3n3 | 4.86 ± 0.05 | 0.07–4.82 | [47,51,53] |
C20:3n6 + c21:0 | 3.88 ± 0.08 | 0.07–4.82 | [47,51,53] |
C20:4n6 | 3.78 ± 0.07 | 0.03–6.16 | [52,53,61] |
pH | Hydrolyzed Protein (%) | Unhydrolyzed Collagen (%) |
---|---|---|
7.0 | 40.30 ± 0.14 | 48.18 ± 0.71 |
7.5 | 41.05 ± 0.11 | 45.41 ± 0.94 |
8.0 | 45.03 ± 0.20 | 43.10 ± 0.10 |
8.5 | 58.65 ± 0.38 | 42.18 ± 0.45 |
9.0 | 59.30 ± 0.62 | 38.18 ± 0.44 |
T (°C) | Hydrolyzed Protein (%) | Unhydrolyzed Collagen (%) |
---|---|---|
40 | 46.76 ± 0.20 | 35.94 ± 0.70 |
45 | 45.82 ± 0.27 | 39.23 ± 0.08 |
50 | 45.03 ± 0.20 | 43.10 ± 0.10 |
55 | 41.62 ± 0.38 | 43.17 ± 0.34 |
60 | 40.83 ± 0.62 | 47.47 ± 0.73 |
pH | T (°C) | PCL | MM (Daltons) |
---|---|---|---|
7.0 | 50 | 4.74 | 616.55 |
7.5 | 50 | 3.90 | 506.43 |
8.0 | 50 | 3.63 | 471.95 |
8.5 | 50 | 3.34 | 434.13 |
9.0 | 50 | 2.82 | 366.77 |
8.0 | 40 | 2.96 | 385.13 |
8.0 | 45 | 3.25 | 422.28 |
8.0 | 50 | 3.63 | 471.95 |
8.0 | 55 | 3.86 | 501.16 |
8.0 | 60 | 4.51 | 586.77 |
Eo/So (AU/g) | Hydrolyzed Protein (%) | Unhydrolyzed Collagen (%) |
---|---|---|
0.09 | 29.79 ± 0.17 | 59.37 ± 0.11 |
0.11 | 35.42 ± 0.40 | 53.85 ± 0.06 |
0.16 | 45.03 ± 0.16 | 43.26 ± 0.11 |
0.21 | 49.93 ± 0.26 | 34.39 ± 0.05 |
0.27 | 64.42 ± 0.24 | 31.54 ± 0.06 |
Eo/So (AU/g) | PCL | MM (Daltons) |
---|---|---|
0.09 | 4.35 | 566.08 |
0.11 | 4.17 | 542.34 |
0.16 | 3.63 | 471.95 |
0.21 | 3.45 | 449.05 |
0.27 | 3.08 | 401.05 |
pH | Recovered Lipids (%) |
---|---|
7.0 | 77.36 ± 0.01 |
7.5 | 91.31 ± 0.12 |
8.0 | 95.40 ± 0.33 |
8.5 | 96.45 ± 0.08 |
9.0 | 97.68 ± 0.02 |
T (°C) | Recovered Lipids (%) |
---|---|
40 | 98.89 ± 0.05 |
45 | 97.29 ± 0.06 |
50 | 95.39 ± 0.34 |
55 | 87.01 ± 0.01 |
60 | 68.12 ± 0.10 |
Fatty Acid | pH | ||||
---|---|---|---|---|---|
7.0 | 7.5 | 8.0 | 8.5 | 9.0 | |
C14:0 | 20.17 ± 0.12 | 23.14 ± 0.50 | 27.08 ± 1.14 | 28.23 ± 1.26 | 29.82 ± 0.02 |
C15:0 | 0.76 ± 0.00 | 0.91 ± 0.01 | 0.97 ± 0.04 | 0.99 ± 0.03 | 1.02 ± 0.03 |
C16:0 | 171.00 ± 0.05 | 186.10 ± 0.29 | 204.22 ± 8.54 | 212.69 ± 3.56 | 215.47 ± 1.03 |
C17:0 | 17.29 ± 0.20 | 18.97 ± 0.63 | 20.80 ± 0.95 | 22.00 ± 0.13 | 22.53 ± 0.10 |
C18:0 | 101.72 ± 2.49 | 116.64 ± 1.72 | 129.86 ± 5.47 | 135.69 ± 0.09 | 140.49 ± 0.38 |
C20:0 | 0.85 ± 0.01 | 0.92 ± 0.05 | 0.99 ± 0.03 | 1.07 ± 0.01 | 1.13 ± 0.01 |
SFA | 311.79 ± 2.23 | 346.68 ± 3.09 | 383.92 ± 1.18 | 400.65 ± 2.37 | 410.46 ± 1.50 |
C16:1 | 1.02 ± 0.01 | 1.08 ± 0.05 | 1.07 ± 0.00 | 1.09 ± 0.02 | 1.15 ± 0.00 |
C17:1 | 2.89 ± 0.06 | 3.05 ± 0.13 | 3.40 ± 0.13 | 3.74 ± 0.01 | 3.84 ± 0.03 |
C18:1 | 183.71 ± 2.21 | 195.39 ± 3.98 | 225.59 ± 7.82 | 231.68 ± 0.17 | 234.26 ± 1.15 |
C18:2 | 86.15 ± 0.92 | 101.76 ± 0.88 | 121.08 ± 5.10 | 126.66 ± 0.17 | 131.24 ± 0.60 |
C18:3n3 | 28.79 ± 0.15 | 30.28 ± 0.13 | 30.80 ± 1.10 | 32.40 ± 0.05 | 33.04 ± 0.17 |
C18:3n6 | 1.07 ± 0.03 | 1.15 ± 0.03 | 1.09 ± 0.04 | 1.21 ± 0.06 | 1.17 ± 0.04 |
C20:2 | 10.57 ± 0.04 | 11.48 ± 0.29 | 13.09 ± 0.53 | 13.45 ± 0.03 | 13.70 ± 0.08 |
C20:3n3 | 24.05 ± 0.03 | 25.48 ± 0.69 | 29.42 ± 1.07 | 30.64 ± 0.03 | 31.44 ± 0.12 |
C20:3n6 + C21:0 | 37.45 ± 0.11 | 39.88 ± 0.10 | 42.24 ± 0.08 | 43.05 ± 0.04 | 43.74 ± 0.13 |
C20:4n6 | 17.55 ± 0.41 | 19.64 ± 0.06 | 22.46 ± 0.96 | 23.09 ± 0.07 | 23.58 ± 0.10 |
UFA | 393.26 ± 2.63 | 429.19 ± 4.00 | 490.39 ± 1.61 | 507.05 ± 0.26 | 517.17 ± 0.83 |
Fatty Acid | Temperature (°C) | ||||
---|---|---|---|---|---|
40 | 45 | 50 | 55 | 60 | |
C14:0 | 28.26 ± 0.43 | 27.36 ± 1.01 | 27.08 ± 1.14 | 26.70 ± 0.41 | 24.55 ± 0.72 |
C15:0 | 1.10 ± 0.03 | 1.05 ± 0.03 | 0.97 ± 0.04 | 0.90 ± 0.04 | 0.65 ± 0.01 |
C16:0 | 230.67 ± 1.21 | 216.64 ± 4.08 | 204.22 ± 8.54 | 189.61 ± 4.45 | 149.47 ± 0.55 |
C17:0 | 23.14 ± 0.09 | 22.07 ± 0.59 | 20.80 ± 0.95 | 20.03 ± 0.52 | 15.32 ± 0.07 |
C18:0 | 143.01 ± 0.90 | 135.78 ± 1.00 | 129.86 ± 5.47 | 125.41 ± 0.55 | 97.31 ± 0.59 |
C20:0 | 1.13 ± 0.01 | 1.02 ± 0.03 | 0.99 ± 0.03 | 0.90 ± 0.01 | 0.70 ± 0.00 |
SFA | 427.30 ± 1.60 | 403.92 ± 4.79 | 383.92 ± 1.68 | 363.55 ± 3.03 | 288.00 ± 0.84 |
C16:1 | 1.19 ± 0.01 | 1.13 ± 0.03 | 1.07 ± 0.00 | 1.03 ± 0.05 | 0.83 ± 0.01 |
C17:1 | 4.19 ± 0.01 | 3.75 ± 0.24 | 3.40 ± 0.13 | 2.96 ± 0.08 | 2.01 ± 0.04 |
C18:1 | 233.49 ± 2.65 | 230.18 ± 0.13 | 225.59 ± 7.82 | 215.25 ± 4.58 | 192.38 ± 4.25 |
C18:2 | 135.57 ± 1.70 | 127.44 ± 0.13 | 121.08 ± 5.10 | 114.50 ± 1.80 | 85.30 ± 0.03 |
C18:3n3 | 40.50 ± 0.05 | 35.89 ± 1.23 | 30.80 ± 1.10 | 27.14 ± 0.75 | 11.72 ± 0.69 |
C18:3n6 | 1.19 ± 0.02 | 1.16 ± 0.01 | 1.09 ± 0.04 | 1.11 ± 0.06 | 0.94 ± 0.02 |
C20:2 | 14.11 ± 0.06 | 13.61 ± 0.22 | 13.09 ± 0.53 | 12.67 ± 0.01 | 10.13 ± 0.22 |
C20:3n3 | 33.10 ± 0.16 | 31.69 ± 0.26 | 29.42 ± 1.07 | 28.04 ± 0.07 | 21.45 ± 0.13 |
C20:3n6 + C21:0 | 43.88 ± 0.16 | 43.36 ± 0.60 | 42.24 ± 0.08 | 39.43 ± 1.19 | 31.71 ± 0.18 |
C20:4n6 | 24.98 ± 0.47 | 23.50 ± 0.01 | 22.46 ± 0.96 | 20.62 ± 0.21 | 13.46 ± 0.07 |
UFA | 532.21 ± 4.18 | 511.71 ± 2.05 | 490.24 ± 4.57 | 462.75 ± 6.73 | 369.90 ± 4.33 |
Eo’/So’ (kLU/g) | Recovered Lipids (%) |
---|---|
0.28 | 65.00 ± 0.75 |
0.55 | 79.05 ± 0.48 |
0.83 | 95.40 ± 0.33 |
1.11 | 97.07 ± 0.76 |
1.19 | 97.45 ± 0.01 |
Fatty Acid | Eo’/So’ (kLU/g) | ||||
---|---|---|---|---|---|
0.28 | 0.55 | 0.83 | 1.11 | 1.19 | |
C14:0 | 18.78 ± 0.09 | 22.46 ± 1.09 | 27.08 ± 1.14 | 29.06 ± 0.95 | 32.49 ± 0.04 |
C14:1 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
C15:0 | 0.79 ± 0.01 | 0.84 ± 0.00 | 0.97 ± 0.04 | 1.07 ± 0.01 | 1.08 ± 0.03 |
C15:1 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
C16:0 | 146.43 ± 0.338 | 164.41 ± 0.81 | 204.22 ± 8.54 | 218.87 ± 0.67 | 222.16 ± 7.27 |
C16:1 | 0.77 ± 0.01 | 0.89 ± 0.01 | 1.07 ± 0.00 | 1.15 ± 0.03 | 1.22 ± 0.03 |
C17:0 | 15.46 ± 0.05 | 16.87 ± 0.02 | 20.80 ± 0.95 | 22.56 ± 0.28 | 23.19 ± 0.76 |
C17:1 | 2.72 ± 0.06 | 2.99 ± 0.01 | 3.40 ± 0.13 | 3.60 ± 0.03 | 3.72 ± 0.13 |
C18:0 | 95.90 ± 1.64 | 105.30 ± 0.52 | 129.86 ± 5.47 | 143.38 ± 0.84 | 140.78 ± 4.61 |
C18:1n9c + t | 160.44 ± 0.70 | 172.10 ± 0.86 | 225.59 ± 7.82 | 257.30 ± 1.34 | 236.92 ± 8.96 |
C18:2n6c + t | 88.54 ± 1.38 | 98.91 ± 0.17 | 121.08 ± 5.10 | 125.62 ± 2.95 | 136.27 ± 4.46 |
C18:3n3 | 27.90 ± 0.12 | 29.22 ± 0.09 | 30.80 ± 1.10 | 31.84 ± 0.67 | 33.35 ± 0.28 |
C18:3n6 | 0.37 ± 0.00 | 0.59 ± 0.03 | 1.09 ± 0.04 | 1.20 ± 0.01 | 1.29 ± 0.01 |
C20:0 | 0.68 ± 0.01 | 0.79 ± 0.01 | 0.99 ± 0.03 | 1.06 ± 0.04 | 1.10 ± 0.02 |
C20:1 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
C20:2 | 9.36 ± 0.02 | 10.53 ± 0.25 | 13.09 ± 0.53 | 14.14 ± 0.23 | 14.35 ± 0.87 |
C20:3n3 | 21.10 ± 0.23 | 23.74 ± 0.98 | 29.42 ± 1.07 | 32.40 ± 0.13 | 32.58 ± 0.13 |
C20:3n6 + c21:0 | 34.81 ± 0.17 | 38.19 ± 0.16 | 42.24 ± 0.08 | 43.58 ± 0.86 | 45.47 ± 1.49 |
C20:4n6 | 15.69 ± 0.30 | 17.20 ± 0.22 | 22.46 ± 0.96 | 24.05 ± 0.25 | 24.59 ± 0.10 |
Total | 639.74 ± 0.32 | 705.02 ± 1.98 | 874.16 ± 30.75 | 950.88 ± 3.48 | 950.57 ± 10.48 |
Fatty Acid | a | b | R2 |
---|---|---|---|
C14:0 | 14.01 | 14.88 | 0.97 |
C15:0 | 0.47 | 0.55 | 0.98 |
C16:0 | 87.71 | 121.75 | 0.97 |
C16:1 | 0.40 | 0.69 | 0.98 |
C17:0 | 89.30 | 12.71 | 0.98 |
C17:1 | 10.94 | 2.42 | 0.99 |
C18:0 | 54.98 | 79.50 | 0.96 |
C18:1 | 104.69 | 127.55 | 0.90 |
C18:2 | 50.73 | 73.90 | 0.96 |
C18:3 | 65.69 | 26.33 | 0.98 |
C20:0 | 0.17 | 0.55 | 0.98 |
C20:2 | 5.79 | 77.08 | 0.97 |
C20:3 | 24.65 | 49.18 | 0.99 |
C20:4 | 10.47 | 12.50 | 0.96 |
Experiment No. | pH | Temperature (°C) | Eo/So (AU/g) | Eo’/So’ (kLU/g) |
---|---|---|---|---|
1 | 7.5 | 45 | 0.11 | 0.55 |
2 | 8.0 | 50 | 0.11 | 0.83 |
3 | 8.5 | 55 | 0.11 | 1.11 |
4 | 8.0 | 55 | 0.16 | 0.55 |
5 | 8.5 | 45 | 0.16 | 0.83 |
6 | 7.5 | 50 | 0.16 | 1.11 |
7 | 8.5 | 50 | 0.21 | 0.55 |
8 | 7.5 | 55 | 0.21 | 0.83 |
9 | 8.0 | 45 | 0.21 | 1.11 |
Product | Amount of Product (kgprodut/kgdry meat waste) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Experiment No | |||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Protein hydrolysate | 0.1000 | 0.0950 | 0.1010 | 0.0960 | 0.1120 | 0.1280 | 0.1230 | 0.1260 | 0.1320 |
Unhydrolyzed collagen | 0.0047 | 0.0049 | 0.0045 | 0.0048 | 0.0041 | 0.0037 | 0.0038 | 0.0037 | 0.0034 |
C14:0 | 0.0189 | 0.0189 | 0.0201 | 0.0194 | 0.0212 | 0.0215 | 0.0211 | 0.0213 | 0.0209 |
C15:0 | 0.0008 | 0.0008 | 0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009 |
C16:0 | 0.1303 | 0.1282 | 0.1467 | 0.1442 | 0.1545 | 0.1586 | 0.1591 | 0.1525 | 0.1593 |
C16:1 | 0.0006 | 0.0006 | 0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007 |
C17:0 | 0.0113 | 0.0120 | 0.0126 | 0.0125 | 0.0134 | 0.0135 | 0.0131 | 0.0135 | 0.0133 |
C17:1 | 0.0026 | 0.0027 | 0.0027 | 0.0028 | 0.0031 | 0.0031 | 0.0030 | 0.0031 | 0.0031 |
C18:0 | 0.0923 | 0.0939 | 0.0947 | 0.0935 | 0.0988 | 0.0975 | 0.0972 | 0.0986 | 0.0981 |
C18:1 | 0.1615 | 0.1641 | 0.1634 | 0.1667 | 0.1664 | 0.1721 | 0.1619 | 0.1660 | 0.1749 |
C18:2 | 0.0899 | 0.0902 | 0.0931 | 0.0942 | 0.0948 | 0.0998 | 0.0995 | 0.0984 | 0.0979 |
C18:3n3 | 0.0228 | 0.0244 | 0.0255 | 0.0258 | 0.0273 | 0.0281 | 0.0274 | 0.0277 | 0.0276 |
C18:3n6 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 |
C20:0 | 0.0022 | 0.0022 | 0.0023 | 0.0023 | 0.0024 | 0.0024 | 0.0024 | 0.0023 | 0.0024 |
C20:2 | 0.0194 | 0.0196 | 0.0201 | 0.0202 | 0.0207 | 0.0211 | 0.0206 | 0.0208 | 0.0207 |
C20:3n3 | 0.0199 | 0.0202 | 0.0203 | 0.0200 | 0.0210 | 0.0208 | 0.0210 | 0.0208 | 0.0208 |
C20:3n6 | 0.0121 | 0.0121 | 0.0132 | 0.0131 | 0.0149 | 0.0152 | 0.0144 | 0.0137 | 0.0147 |
C20:4n6 | 0.0113 | 0.0120 | 0.0131 | 0.0132 | 0.0140 | 0.0154 | 0.0145 | 0.0141 | 0.0153 |
Total | 0.7009 | 0.7021 | 0.7352 | 0.7306 | 0.7706 | 0.8028 | 0.784 | 0.7845 | 0.8064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angulo, M.; Márquez, M.C. A Green Technology Approach Using Enzymatic Hydrolysis to Valorize Meat Waste as a Way to Achieve a Circular Economy. Appl. Sci. 2023, 13, 8763. https://doi.org/10.3390/app13158763
Angulo M, Márquez MC. A Green Technology Approach Using Enzymatic Hydrolysis to Valorize Meat Waste as a Way to Achieve a Circular Economy. Applied Sciences. 2023; 13(15):8763. https://doi.org/10.3390/app13158763
Chicago/Turabian StyleAngulo, Miguel, and Mª Carmen Márquez. 2023. "A Green Technology Approach Using Enzymatic Hydrolysis to Valorize Meat Waste as a Way to Achieve a Circular Economy" Applied Sciences 13, no. 15: 8763. https://doi.org/10.3390/app13158763
APA StyleAngulo, M., & Márquez, M. C. (2023). A Green Technology Approach Using Enzymatic Hydrolysis to Valorize Meat Waste as a Way to Achieve a Circular Economy. Applied Sciences, 13(15), 8763. https://doi.org/10.3390/app13158763