Drosophila Infestations of California Strawberries and Identification of Drosophila suzukii Using a TaqMan Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strawberry Sampling and Fly Collection
2.2. DNA Extraction
2.3. TaqMan Assay
2.4. Data Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zalom, F.G.; Shaw, D.V.; Larson, K.D. Encyclopedia of Pest Management. In Strawberry Insects and Mites in California, Ecology and Control; Pimentel, D., Ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2006; pp. 634–636. [Google Scholar]
- Molina, J.J.; Harrison, M.D.; Brewer, J.W. Transmission of Erwinia carotovora var. atroseptica by Drosophila melanogaster Meig. I. acquisition and transmission of the bacterium. Am. Potato J. 1974, 51, 245–250. [Google Scholar] [CrossRef]
- Zalom, F.G.; Walsh, D.B.; Toscano, N.C.; Beehler, L. Vinegar Flies, Drosophila spp. and Strawberries; The Pink Sheet, California Strawberry Commission: Watsonville, CA, USA, 1995; pp. 95–98. [Google Scholar]
- Bolda, M.P.; Goodhue, R.E.; Zalom, F.G. Spotted wing drosophila: Potential economic impact of a newly established pest. Agric. Resour. Econ. Update 2010, 13, 5–8. [Google Scholar]
- Walsh, D.B.; Bolda, M.P.; Goodhue, R.E.; Dreves, A.J.; Lee, J.; Bruck, D.J.; Walton, V.M.; O’Neal, S.D.; Zalom, F.G. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manag. 2011, 2, G1–G7. [Google Scholar] [CrossRef]
- Gress, B.E.; Zalom, F.G. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest Managem. Sci. 2019, 75, 1270–1276. [Google Scholar] [CrossRef]
- Ganjisaffar, F.; Gress, B.E.; Demkovich, M.R.; Nicola, N.L.; Chiu, J.C.; Zalom, F.G. Spatio-temporal variation of spinosad susceptibility in Drosophila suzukii, a three-year study in California’s Monterey Bay region. J. Econ. Entomol. 2022, 115, 972–980. [Google Scholar] [CrossRef]
- Gress, B.E.; Zalom, F.G. Development and validation of a larval bioassay and selection protocol for insecticide resistance in Drosophila suzukii. PLoS ONE 2022, 17, e0270747. [Google Scholar] [CrossRef]
- Ganjisaffar, F.; Demkovich, M.R.; Chiu, J.C.; Zalom, F.G. Characterization of field-derived Drosophila suzukii (Diptera: Drosophilidae) resistance to pyrethroids in California berry production. J. Econ. Entomol. 2022, 115, 1676–1684. [Google Scholar] [CrossRef]
- Dancau, T.; Stemberger, T.L.; Clarke, P.; Gillespie, D.R. Can competition be superior to parasitism for biological control? The case of spotted wing drosophila (Drosophila suzukii), Drosophila melanogaster and Pachycrepoideus vindemmiae. Biocontrol Sci. Technol. 2017, 27, 3–16. [Google Scholar] [CrossRef]
- Murphy, K.A.; Unruh, T.R.; Zhou, L.M.; Zalom, F.G.; Shearer, P.W.; Beers, E.H.; Walton, V.M.; Miller, B.; Chiu, J.C. Using comparative genomics to develop a molecular diagnostic for the identification of an emerging pest Drosophila suzukii. Bull. Entomol. Res. 2015, 105, 364–372. [Google Scholar] [CrossRef]
- California Department of Food and Agriculture. Available online: https://www.cdfa.ca.gov/Statistics/PDFs/2020_Ag_Stats_Review.pdf (accessed on 28 June 2023).
- Tabuloc, C.A.; Lewald, K.M.; Conner, W.R.; Lee, Y.; Lee, E.K.; Cain, A.B.; Godfrey, K.E.; Arnó, J.; Agustí, N.; Perini, C.R.; et al. Reducing Drosophila suzukii emergence through inter-species competition. J. Pest Sci. 2019, 92, 1397–1407. [Google Scholar] [CrossRef] [Green Version]
- R Foundation for Statistical Computing; R Development Core Team: Vienna, Austria, 2022.
- Goodhue, R.E.; Bolda, M.; Farnsworth, D.; Williams, J.C.; Zalom, F.G. Spotted wing drosophila infestation of California strawberries and raspberries: Economic analysis of potential revenue losses and control costs. Pest Managem. Sci. 2011, 67, 1396–1402. [Google Scholar] [CrossRef]
- Tait, G.; Mermer, S.; Stockton, D.; Lee, J.; Avosani, S.; Abrieux, A.; Anfora, G.; Beers, E.; Biondi, A.; Burrack, H.; et al. Drosophila suzukii (Diptera: Drosophilidae): A decade of research towards a sustainable integrated pest management program. J. Econ. Entomol. 2021, 114, 1950–1974. [Google Scholar] [CrossRef] [PubMed]
- Karageorgi, M.; Bräcker, L.B.; Lebreton, S.; Minervino, C.; Cavey, M.; Siju, K.P.; Grunwald Kadow, I.C.; Gompel, N.; Prud’homme, B. Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest Drosophila suzukii. Curr. Biol. 2017, 27, 847–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, B.A.; Whitener, A.B.; Leinweber, Y.; Revadi, S.; Beers, E.H.; Witzgall, P.; Becher, P.G. Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J. Appl. Ecol. 2016, 54, 170–177. [Google Scholar] [CrossRef]
- Littler, A.; Pandey, P.; O’Dell, K.L., Jr.; Syed, Z. Chemical ecology of oviposition dynamics in Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol. 2022, 115, 1029–1035. [Google Scholar] [CrossRef]
- Miller, R.S. Larval competition in Drosophila melanogaster and D. simulans. Ecology 1964, 45, 132–148. [Google Scholar] [CrossRef]
- De Miranda, J.R.; Hemmat, M.; Eggleston, P. The competition diallel and the exploitation and interference components of larval competition in Drosophila melanogaster. Heredity 1991, 66, 333–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, J.P.; Singh, B.N. Coexistence of three different Drosophila species by rescheduling their life history traits in a natural population. J. Genet. 2005, 84, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Rouzes, R.; Delbac, L.; Ravidat, M.L.; Thiery, D.D. First occurrence of Drosophila suzukii in the Sauternes vineyards. J. Int. Sci. Vigne Vin 2012, 46, 145–147. [Google Scholar] [CrossRef] [Green Version]
- Bakker, K. Feeding period, growth, and pupation in larvae of Drosophila melanogaster. Entomol. Exp. Appl. 1959, 2, 171–186. [Google Scholar] [CrossRef]
- Werenkraut, V.; Hasson, E.; Oklander, L.; Fanara, J.J. A comparative study of competitive ability between two cactophilic species in their natural hosts. Austral. Ecol. 2008, 33, 663–671. [Google Scholar] [CrossRef]
- Budnik, M.; Brncic, D. Preadult competition between Drosophila pavani and Drosophila melanogaster, Drosophila simulans, and Drosophila willistoni. Ecology 1974, 55, 657–661. [Google Scholar] [CrossRef]
- Takahashi, K.H.; Kimura, M.T. Intraspecific and interspecific larval interaction in Drosophila assessed by integrated fitness measure. Oikos 2005, 111, 574–581. [Google Scholar] [CrossRef]
- Shaw, B.; Brain, P.; Wijnen, H.; Fountain, M.T. Reducing Drosophila suzukii emergence through inter-species competition. Pest Manag. Sci. 2018, 74, 1466–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaramillo, S.L.; Mehlferber, E.; Moore, P.J. Life-history trade-offs under different larval diets in Drosophila suzukii (Diptera: Drosophilidae). Physiol. Entomol. 2015, 40, 2–9. [Google Scholar] [CrossRef]
- Bellamy, D.E.; Sisterson, M.S.; Walse, S.S. Quantifying host potentials: Indexing postharvest fresh fruits for spotted wing drosophila, Drosophila suzukii. PLoS ONE 2013, 8, e61227. [Google Scholar] [CrossRef] [Green Version]
Area | Date | Site | Fruit Ripeness | Sample Size (Fruit) | SWD | Non-SWD | Drosophila per Fruit | p | |
---|---|---|---|---|---|---|---|---|---|
Oxnard | May 2019 | OXN 1 | Ripe | 31 | 114 | 42 | 5.0 | 136.27 | <0.0001 |
Overripe | 23 | 36 | 209 | 10.7 | |||||
OXN 2 | Ripe | 22 | 3 | 39 | 1.9 | 0.00 | 0.9635 | ||
Overripe | 23 | 3 | 58 | 2.7 | |||||
OXN 3 | Ripe | 20 | 27 | 20 | 2.4 | 14.37 | 0.0002 | ||
Overripe | 28 | 60 | 158 | 7.8 | |||||
OXN 4 | Ripe | 35 | 33 | 117 | 4.3 | 1.06 | 0.3023 | ||
Overripe | 22 | 37 | 95 | 6.0 | |||||
June 2019 | OXN 1 | Ripe | 26 | 2 | 452 | 17.5 | 0.00 | 0.9637 | |
Overripe | 13 | 0 | 163 | 12.5 | |||||
OXN 2 | Ripe | 28 | 87 | 70 | 5.6 | 31.03 | <0.0001 | ||
Overripe | 15 | 39 | 122 | 10.7 | |||||
OXN 3 | Ripe | 28 | 147 | 82 | 8.2 | 7.68 | 0.0056 | ||
Overripe | 15 | 133 | 126 | 17.3 | |||||
OXN 5 | Ripe | 24 | 19 | 9 | 1.2 | 31.00 | <0.0001 | ||
Overripe | 16 | 22 | 116 | 8.6 | |||||
Santa Maria | August 2019 | SAT 1 | Ripe | 38 | 193 | 4 | 5.2 | 108.22 | <0.0001 |
Overripe | 17 | 115 | 103 | 12.8 | |||||
SAT 2 | Ripe | 39 | 50 | 18 | 1.7 | 33.45 | <0.0001 | ||
Overripe | 19 | 10 | 43 | 2.8 | |||||
SAT 3 | Ripe | 40 | 105 | 0 | 2.6 | 0.12 | 0.7341 | ||
Overripe | 20 | 53 | 1 | 2.7 | |||||
August 2020 | SAT 4 | Ripe | 40 | 0 | 49 | 1.2 | 20.73 | <0.0001 | |
Overripe | 20 | 14 | 21 | 1.8 | |||||
SAT 5 | Ripe | 40 | 3 | 3 | 0.2 | 0.62 | 0.4306 | ||
Overripe | 20 | 1 | 6 | 0.4 | |||||
Monterey Bay | October 2019 | MON 1 | Ripe | 20 | 1070 | 50 | 56.0 | 147.76 | <0.0001 |
Overripe | 10 | 418 | 135 | 55.3 | |||||
MON 2 | Ripe | 20 | 103 | 43 | 7.3 | 10.67 | 0.0011 | ||
Overripe | 10 | 48 | 50 | 9.8 | |||||
MON 3 | Ripe | 20 | 191 | 1 | 9.6 | 26.69 | <0.0001 | ||
Overripe | 10 | 52 | 11 | 6.3 | |||||
November 2019 | MON 1 | Ripe | 40 | 18 | 0 | 0.5 | N/A | N/A | |
Overripe | 20 | 6 | 0 | 0.3 | |||||
MON 2 | Ripe | 40 | 425 | 0 | 10.6 | N/A | N/A | ||
Overripe | 20 | 222 | 0 | 11.1 | |||||
MON 3 | Ripe | 40 | 6 | 0 | 0.2 | 0.00 | 1.0000 | ||
Overripe | 20 | 11 | 1 | 0.6 | |||||
October 2020 | MON 4 | Ripe | 40 | 5 | 0 | 0.1 | 3.61 | 0.0574 | |
Overripe | 20 | 17 | 22 | 2.0 | |||||
MON 5 | Ripe | 40 | 76 | 0 | 1.9 | 152.18 | <0.0001 | ||
Overripe | 20 | 28 | 149 | 8.9 | |||||
MON 6 | Ripe | 40 | 476 | 2 | 12.0 | 11.60 | 0.0007 | ||
Overripe | 20 | 399 | 16 | 20.8 | |||||
MON 7 | Ripe | 40 | 858 | 0 | 21.5 | N/A | N/A | ||
Overripe | 20 | 369 | 0 | 18.5 | |||||
November 2020 | MON 4 | Ripe | 40 | 6 | 21 | 0.7 | 3.89 | 0.0485 | |
Overripe | 20 | 14 | 13 | 1.4 | |||||
MON 5 | Ripe | 40 | 3 | 0 | 0.1 | 1.11 | 0.2931 | ||
Overripe | 20 | 24 | 23 | 2.4 | |||||
MON 6 | Ripe | 40 | 955 | 49 | 25.1 | 55.87 | <0.0001 | ||
Overripe | 20 | 1166 | 197 | 68.2 | |||||
MON 7 | Ripe | 40 | 1523 | 107 | 40.8 | 13.29 | <0.0001 | ||
Overripe | 20 | 586 | 15 | 30.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganjisaffar, F.; Abrieux, A.; Gress, B.E.; Chiu, J.C.; Zalom, F.G. Drosophila Infestations of California Strawberries and Identification of Drosophila suzukii Using a TaqMan Assay. Appl. Sci. 2023, 13, 8783. https://doi.org/10.3390/app13158783
Ganjisaffar F, Abrieux A, Gress BE, Chiu JC, Zalom FG. Drosophila Infestations of California Strawberries and Identification of Drosophila suzukii Using a TaqMan Assay. Applied Sciences. 2023; 13(15):8783. https://doi.org/10.3390/app13158783
Chicago/Turabian StyleGanjisaffar, Fatemeh, Antoine Abrieux, Brian E. Gress, Joanna C. Chiu, and Frank G. Zalom. 2023. "Drosophila Infestations of California Strawberries and Identification of Drosophila suzukii Using a TaqMan Assay" Applied Sciences 13, no. 15: 8783. https://doi.org/10.3390/app13158783
APA StyleGanjisaffar, F., Abrieux, A., Gress, B. E., Chiu, J. C., & Zalom, F. G. (2023). Drosophila Infestations of California Strawberries and Identification of Drosophila suzukii Using a TaqMan Assay. Applied Sciences, 13(15), 8783. https://doi.org/10.3390/app13158783