Stabilisation of Soft Clay, Quick Clay and Peat by Industrial By-Products and Biochars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Natural Soils
2.2. Binders
- BC1: originated from demolition wood, i.e., wood panels, furniture and composite wood materials, which hence contained some metals and glue remains.
- BC2: originated from municipal sewage which had been sedimented to a bottom sludge and thereafter left to decay for some time. Approximately 39 wt.% of limestone (CaCO3) was added for hygenisation and workability before the sludge was used for biochar production.
- BC3: originated from sewage and food waste. To speed up the sedimentation, iron chloride (FeCl3) was added for flocculation. The bottom sludge was used to produce the biochar.
- BC4: originated from garden waste, i.e., branches, leaves and grass, but also contained some soil and sand.
- The bioashes were one fly ash (FA) and one bottom ash (BA) obtained from the Bergene Holm’s combustion plant at Brandval, near Kongsvinger, Norway. This plant is a grate-fire combustion plant where the boiler temperature is 1000–1200 °C. The resulting fly and bottom ash account for approximately 10% and 90%, respectively, of the total ash generated. The biomass consisted of a mixture of ~35–40% dry wood chips and ~60–65% bark. Bioash is mostly used for agricultural purposes [45]; however, a few studies have also been made on soil stabilisation [46,47,48,49,50,51].
- One type of paper-sludge ash (PSA) was used, originating from the Norske Skog factory at Skogn, mid-Norway, where paper production and recycling is performed. A mixture of ~58% biofuel (demolition wood), ~25% deinked pulp sludge, ~14% bio sludge and ~3% plastic/juice cartons, etc., was combusted at a temperature of approximately 850 °C. In this study, fly ash from the combustion was used. PSA has been used as an alternative binder in both mortars and concrete [52,53,54] and in soil stabilisation [55,56,57,58,59,60,61].
- The two ladle slags originated from Celsa Steel Services, where the recycling of steel is carried out to produce reinforcement steel bars. Both electric arc furnace slag and steelmaking slag are generated from different stages of the melting process. The ladle slags used herein were a mixture of these slags and were extracted from two different locations: at the melt shop (LS1), i.e., a fresh ladle slag, and from an intermediate repository (LS2). Since LS is cooled rather slowly, it develops a high crystallinity and thus possesses relatively low hydraulic reactivity compared to GGBS [62]. LS can be alkali-activated using, e.g., sodium hydroxide, sodium silicate (‘waterglass’), QL, CEM or reactive magnesia [63,64,65], albeit somewhat less effectively than GGBS [65,66]. LS has also been used for research purposes in soil stabilisation [12,67,68,69,70,71].
2.3. Microstructural and Compositional Analyses
2.4. Geotechnical Testing
3. Results
3.1. The Characterisation of Natural Soils and Binders
3.2. Stabilisation Effect
4. Discussion
4.1. Stabilisation Effect for Different Binders in Clays
4.2. The Stabilisation Effect for Different Binders in Peat
4.3. The Strength Difference between the Onsøy and Tiller-Flotten Clays
5. Conclusions
- Two of the biochars (BC1 and BC4) had beneficial stabilisation effects (i.e., strength and stiffness) on the Onsøy clay with a relatively high water content (~73%). All four biochars had negative stabilisation effects on the Tiller-Flotten clay with a relatively low water content (~42%); however, BC1 and BC4 had the least negative effect.
- Almost all of the IBPs had positive stabilisation effects on the two clays. The greatest effect was observed with the paper sludge ash (PSA) and bottom ash (BA). The ladle slags (LS1 and LS2) had a negligible effect on strength and stiffness development.
- Three biochars (BC1, BC3 and BC4) had a positive stabilisation effect on the peat. Three IBPs had negative stabilisation effects, whilst the ladle slags LS1 and LS2 again had a negligible effect.
- The stiffness-to-strength ratios () of most of the mixtures ranged between 200 and 400, except for all peat samples, which had values of approximately 50. The low values also applied to some mixtures with biochar and all PSA-stabilised specimens.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrew, R.M. Global CO2 emissions from cement production, 1928–2018. In Earth System Science Data; Copernicus GmbH: Göttingen, Germany, 2019; Volume 11, pp. 1675–1710. [Google Scholar] [CrossRef] [Green Version]
- Gao, T.; Shen, L.; Shen, M.; Chen, F.; Liu, L.; Gao, L. Analysis on differences of carbon dioxide emission from cement production and their major determinants. J. Clean. Prod. 2015, 103, 160–170. [Google Scholar] [CrossRef]
- Miller, G.A.; Azad, S. Influence of soil type on stabilization with cement kiln dust. Constr. Build. Mater. 2000, 14, 89–97. [Google Scholar] [CrossRef]
- Yoobanpot, N.; Jamsawang, P.; Horpibulsuk, S. Strength behavior and microstructural characteristics of soft clay stabilized with cement kiln dust and fly ash residue. Appl. Clay Sci. 2017, 141, 146–156. [Google Scholar] [CrossRef]
- Jegandan, S.; Liska, M.; Osman, A.A.M.; Al-Tabbaa, A. Sustainable binders for soil stabilisation. Proc. Inst. Civ. Eng. Ground Improv. 2010, 163, 53–61. [Google Scholar] [CrossRef]
- Hov, S.; Paniagua, P.; Sætre, C.; Rueslåtten, H.; Størdal, I.; Mengede, M.; Mevik, C. Lime-cement stabilisation of Trondheim clays and its impact on carbon dioxide emissions. Soils Found. 2022, 1, 62. [Google Scholar] [CrossRef]
- Ramírez, A.L.; Korkiala-Tanttu, L. Stabilisation of Malmi soft clay with traditional and low-CO2 binders. Transp. Geotech. 2023, 38, 100920. [Google Scholar] [CrossRef]
- Mypati, V.N.K.; Saride, S. Feasibility of Alkali-Activated Low-Calcium Fly Ash as a Binder for Deep Soil Mixing. J. Mater. Civil. Eng. 2022, 34, 04021410. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sivapullaiah, P.V. Strength development in fly ash and slag mixtures with lime. Proc. Inst. Civ. Eng. Ground Improv. 2016, 169, 194–205. [Google Scholar] [CrossRef]
- Sukmak, P.; Horpibulsuk, S.; Shen, S.L. Strength development in clay-fly ash geopolymer. Constr. Build. Mater. 2013, 40, 566–574. [Google Scholar] [CrossRef]
- Wu, J.; Deng, Y.; Zhang, G.; Zhou, A.; Tan, Y.; Xiao, H. A Generic Framework of Unifying Industrial By-products for Soil Stabilization. J. Clean. Prod. 2021, 25, 321. [Google Scholar] [CrossRef]
- Xu, B.; Yi, Y. Soft Clay Stabilization Using Three Industry Byproducts. J. Mater. Civil. Eng. 2021, 33, 06021002. [Google Scholar] [CrossRef]
- Åhnberg, H.; Johansson, S.-E.; Pihl, H.; Carlsson, T. Stabilising effects of different binders in some Swedish soils. Proc. Inst. Civ. Eng. Ground Improv. 2003, 7, 9–23. [Google Scholar] [CrossRef]
- James, R.; Kamruzzaman, A.H.M.; Haque, A.; Wilkinson, A. Behaviour of lime—Slag-treated clay. Proc. Inst. Civ. Eng. Ground Improv. 2008, 161, 207–216. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Song, Z.; Li, J. Engineering properties of marine soft clay stabilized by alkali residue and steel slag: An experimental study and ANN model. Acta Geotech. 2022, 17, 5089–5112. [Google Scholar] [CrossRef]
- Wilkinson, A.; Haque, A.; Kodikara, J. Stabilisation of clayey soils with industrial by-products: Part, A. Proc. Inst. Civ. Eng. Ground Improv. 2010, 163, 149–163. [Google Scholar] [CrossRef]
- Wilkinson, A.; Haque, A.; Kodikara, J. Stabilisation of clayey soils with industrial by-products: Part B. Proc. Inst. Civ. Eng. Ground Improv. 2010, 163, 165–172. [Google Scholar] [CrossRef]
- Yi, Y.; Gu, L.; Liu, S.; Puppala, A.J. Carbide slag-activated ground granulated blastfurnace slag for soft clay stabilization. Can. Geotech. J. 2015, 52, 656–663. [Google Scholar] [CrossRef]
- Armistead, S.J.; Smith, C.C.; Staniland, S.S. Sustainable biopolymer soil stabilisation: The effect of microscale chemical characteristics on macroscale mechanical properties. Acta Geotech. 2022, 18, 3213–3227. [Google Scholar] [CrossRef]
- Soldo, A.; Miletić, M.; Auad, M.L. Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Sci. Rep. 2020, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Voottipruex, P.; Teerawattanasuk, C.; Sramoon, W.; Meepon, I. Stabilization of Soft Clay Using Perlite Geopolymer Activated by Sodium Hydroxide. Int. J. Geosynth. Ground Eng. 2022, 8, 5. [Google Scholar] [CrossRef]
- Correia, A.A.S.; Venda Oliveira, P.J.; Custódio, D.G. Effect of polypropylene fibres on the compressive and tensile strength of a soft soil, artificially stabilised with binders. Geotext. Geomembr. 2015, 43, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Liu, G.; Zhang, C.; Guo, W.; Luo, Q. State-of-the-art of colloidal silica-based soil liquefaction mitigation: An emerging technique for ground improvement. Appl. Sci. 2020, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi Chenarboni, H.; Hamid Lajevardi, S.; MolaAbasi, H.; Zeighami, E. The effect of zeolite and cement stabilization on the mechanical behavior of expansive soils. Constr. Build. Mater. 2021, 272, 121630. [Google Scholar] [CrossRef]
- Eyo, E.U.; Ngambi, S.; Abbey, S.J. Performance of clay stabilized by cementitious materials and inclusion of zeolite/alkaline metals-based additive. Transp. Geotech. 2020, 23, 100330. [Google Scholar] [CrossRef]
- Sørmo, E.; Silvani, L.; Thune, G.; Gerber, H.; Schmidt, H.P.; Smebye, A.B. Waste timber pyrolysis in a medium-scale unit: Emission budgets and biochar quality. Sci. Total Environ. 2020, 718, 137335. [Google Scholar] [CrossRef]
- Ritter, S.; Paniagua, P.; Hansen, C.B.; Cornelissen, G. Biochar amendment for improved and more sustainable peat stabilisation. Proc. Inst. Civil. Eng. Ground Improv. 2022; ahead of print. [Google Scholar] [CrossRef]
- Jeffery, S.; Bezemer, T.M.; Cornelissen, G.; Kuyper, T.W.; Lehmann, J.; Mommer, L. The way forward in biochar research: Targeting trade-offs between the potential wins. GCB Bioenergy 2015, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ritter, S.; Paniagua, P.; Cornelissen, G. Biochar in Quick Clay Stabilization: Reducing Carbon Footprint and Improving Shear Strength. Proc. Geo-Congr. 2023, 15–24. [Google Scholar] [CrossRef]
- GuhaRay, A.; Guoxiong, M.; Sarkar, A.; Bordoloi, S.; Garg, A.; Pattanayak, S. Geotechnical and chemical characterization of expansive clayey soil amended by biochar derived from invasive weed species Prosopis juliflora. Innov. Infrastruct. Solut. 2019, 4, 44. [Google Scholar] [CrossRef]
- Lau, J. Static and Dynamic Performance of Biochar Enhanced Cement Stabilised Peat. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2018. [Google Scholar]
- Lau, J.; Biscontin, G.; Berti, D. Effects of biochar on cement-stabilised peat soil. Proc. Inst. Civ. Eng. Ground Improv. 2021, 176, 76–87. [Google Scholar] [CrossRef]
- Pardo, G.S.; Sarmah, A.K.; Orense, R.P. Mechanism of improvement of biochar on shear strength and liquefaction resistance of sand. Geotechnique 2019, 69, 471–480. [Google Scholar] [CrossRef]
- Pardo, G.S.; Orense, R.P.; Sarmah, A.K. Cyclic strength of sand mixed with biochar: Some preliminary results. Soils Found. 2018, 58, 241–247. [Google Scholar] [CrossRef]
- Vincevica-gaile, Z.; Teppand, T.; Kriipsalu, M.; Krievans, M.; Jani, Y.; Klavins, M. Towards sustainable soil stabilization in peatlands: Secondary raw materials as an alternative. Sustainability 2021, 13, 6726. [Google Scholar] [CrossRef]
- Lu, S.G.; Sun, F.F.; Zong, Y.T. Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). Catena 2014, 114, 37–44. [Google Scholar] [CrossRef]
- Zong, Y.; Chen, D.; Lu, S. Impact of biochars on swell–shrinkage behavior, mechanical strength, and surface cracking of clayey soil. J. Plant Nutr. Soil. Sci. 2014, 177, 920–926. [Google Scholar] [CrossRef]
- William, J.; Latifi, N.; Vahedifard, F. Effects of Biochar Amendment on Mechanical Properties of Buckshot Clay. In Proceedings of the IFCEE 2018: Innovations in Ground Improvement for Soils, Pavements, and Subgrades, Orlando, FL, USA, 5–10 March 2018; pp. 125–134. [Google Scholar]
- Sadasivam, Y.; Reddy, K. Shear strength of waste-wood biochar and biochar-amended soil used for sustainable landfill cover systems. In Proceedings of the 15th Pan-American Conference on Soil. Mechanics and Geotechnical Engineering, Buenos Aires, Argentina, 15–18 November 2015; pp. 745–752. [Google Scholar]
- Gundersen, A.S.; Hansen, R.C.; Lunne, T.; L’Heureux, J.S.; Strandvik, S.O. Characterization and engineering properties of the NGTS Onsøy soft clay site. AIMS Geosci. 2019, 5, 665–703. [Google Scholar] [CrossRef]
- L’Heureux, J.S.; Lindgård, A.; Emdal, A. The Tiller-Flotten research site: Geotechnical characterization of a very sensitive clay deposit. AIMS Geosci. 2019, 5, 831–867. [Google Scholar] [CrossRef]
- Long, M.; Paniagua, P.; Grimstad, G.; Trafford, A.; Degago, S.; L’Heureux, J.S. Engineering properties of Norwegian peat for calculation of settlements. Eng. Geol. 2022, 308, 106799. [Google Scholar] [CrossRef]
- von Post, L.; Granlund, E. Peat Resources in Southern Sweden; Swedish Geological Survey: Uppsala, Sweden, 1926. (In Swedish) [Google Scholar]
- EN 197-1:2011; Cement Part 1: Composition, Specifications and Conformity for Common Cements. European Committe for Standardization: Brussels, Belgium, 2011.
- Silva, F.C.; Cruz, N.C.; Tarelho, L.A.C.; Rodrigues, S.M. Use of biomass ash-based materials as soil fertilisers: Critical review of the existing regulatory framework. J. Clean. Prod. 2019, 214, 112–124. [Google Scholar] [CrossRef]
- Paniagua, P.; Ritter, S.; Moseid, M.; Okkenhaug, G. Bioashes and steel slag as alternative binders in ground improvement of quick clays. In Proceedings of the Geo-Congress 2023, Los Angeles, CA, USA, 26–29 March 2023. [Google Scholar] [CrossRef]
- Jafarbiglookarami, A. Alternative Binders for Improvement of Soft Soils—A Geoenvironmental Approach. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2021. [Google Scholar]
- Liu, Y.; Chang, C.W.; Namdar, A.; She, Y.; Lin, C.H.; Yuan, X. Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue. Constr. Build. Mater. 2019, 221, 1–11. [Google Scholar] [CrossRef]
- Okagbue, C.O. Stabilization of Clay Using Woodash. J. Mater. Civ. Eng. 2007, 19, 14–18. [Google Scholar] [CrossRef]
- Nath, B.D.; Sarkar, G.; Siddiqua, S.; Rokunuzzaman, M.; Islam, M.R. Geotechnical Properties of Wood Ash-Based Composite Fine-Grained Soil. Adv. Civil. Eng. 2018, 2018, 9456019. [Google Scholar] [CrossRef] [Green Version]
- Ayobami, A.B. Performance of wood bottom ash in cement-based applications and comparison with other selected ashes: Overview. Resour. Conserv. Recycl. 2021, 166, 105351. [Google Scholar] [CrossRef]
- Azrizal, M.F.; Noorsuhada, M.N.; Latif, M.F.; Arshad, M.F.; Sulaiman, H. The properties of wastepaper sludge ash and its generic applications. J. Phys. Conf. Ser. 2019, 1349, 012087. [Google Scholar] [CrossRef]
- Zmamou, H.; Leblanc, N.; Levacher, D.; Kubiak, J. Recycling of high quantities of wastepaper sludge ash for production of blended cements and alternative materials. Environ. Technol. Innov. 2021, 23, 101524. [Google Scholar] [CrossRef]
- Bai, J.; Chaipanich, A.; Kinuthia, J.M.; O’Farrell, M.; Sabir, B.B.; Wild, S. Compressive strength and hydration of wastepaper sludge ash–ground granulated blastfurnace slag blended pastes. Cem. Concr. Res. 2003, 33, 1189–1202. [Google Scholar] [CrossRef]
- Baloochi, H.; Aponte, D.; Barra, M. Soil Stabilization Using Waste Paper Fly Ash: Precautions for Its Correct Use. Appl. Sci. 2020, 10, 8750. [Google Scholar] [CrossRef]
- Mavrouhdou, M.; Ziniatis, A.; Gray, C.; Ebad, Z.; del Rosario, J.; Kanak, S. Alternative calcium-based chemical stabilisers for ground improvement: Paper Sludge Ash treatment of London Clay. In Proceedings of the 15th International Conference on Environmental Science and Technology, Rhodes, Greece, 31 August–2 September 2017. [Google Scholar]
- Mavroulidou, M. Use of waste paper sludge ash as a calcium-based stabiliser for clay soils. Waste Manag. Res. J. A Sustain. Circ. Econ. 2018, 36, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
- Bujulu, P.M.S.; Sorta, A.R.; Priol, A.; Emdal, A. Potential of wastepaper sludge ash to replace cement in deep stabilization of quick clay. In Proceedings of the “Characterization and Improvement of Soils and Materials” Session of the 2007 Annual Conference of the Transportation Association of Canada, Saskatoon, SK, Canada, 14–17 October 2007; pp. 1–16. [Google Scholar]
- Bujulu, P.M.S. Deep-Mix Stabilization of Quick Clay: A Potential Area for Utilization of Wastepaper Sludge Ash. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2008. [Google Scholar]
- Rahmat, M.N.; Kinuthia, J.M. Effects of mellowing sulfate-bearing clay soil stabilized with wastepaper sludge ash for road construction. Eng. Geol. 2011, 117, 170–179. [Google Scholar] [CrossRef]
- Rahmat, N. Soil Stabilization Utilising Wastepaper Sludge Ash. Ph.D. Thesis, University of Glamorgan, Pontypridd, UK, 2004. [Google Scholar]
- Pinheiro, C.; Rios, S.; Viana da Fonseca, A.; Fernández-Jiménez, A.; Cristelo, N. Application of the response surface method to optimize alkali activated cements based on low-reactivity ladle furnace slag. Constr. Build. Mater. 2020, 264, 120271. [Google Scholar] [CrossRef]
- Yi, Y.; Li, C.; Liu, S. Alkali-Activated Ground-Granulated Blast Furnace Slag for Stabilization of Marine Soft Clay. J. Mater. Civil. Eng. 2015, 27, 04014146. [Google Scholar] [CrossRef]
- Yi, Y.; Liska, M.; Jin, F.; Al-Tabbaa, A. Mechanism of reactive magnesia—Ground granulated blastfurnace slag (GGBS) soil stabilization. Can. Geotech. J. 2016, 53, 773–782. [Google Scholar] [CrossRef]
- Najm, O.; El-Hassan, H.; El-Dieb, A. Ladle slag characteristics and use in mortar and concrete: A comprehensive review. J. Clean. Prod. 2021, 288, 125584. [Google Scholar] [CrossRef]
- Manso, J.M.; Losañez, M.; Polanco, J.A.; Gonzalez, J.J. Ladle Furnace Slag in Construction. J. Mater. Civ. Eng. 2005, 17, 5. [Google Scholar] [CrossRef]
- Xu, B.; Yi, Y. Stabilisation/solidification of lead-contaminated soil by using ladle furnace slag and carbon dioxide. Soils Found. 2022, 62, 101205. [Google Scholar] [CrossRef]
- Xu, B.; Yi, Y. Soft clay stabilization using ladle slag-ground granulated blastfurnace slag blend. Appl. Clay Sci. 2019, 178, 105136. [Google Scholar] [CrossRef]
- Brand, A.S.; Singhvi, P.; Fanijo, E.O.; Tutumluer, E. Stabilization of a clayey soil with ladle metallurgy furnace slag fines. Materials 2020, 13, 4251. [Google Scholar] [CrossRef]
- Manso, J.M.; Ortega-López, V.; Polanco, J.A.; Setién, J. The use of ladle furnace slag in soil stabilization. Constr. Build. Mater. 2013, 40, 126–134. [Google Scholar] [CrossRef]
- Espinosa, A.; Revilla-Cuesta, V.; Lopez-Ausin, V.; Serrano-Lopez, V.; Fiol, F. Study of clayey soils stabilized with ladle furnace slag as alternative binder for use in road works. Key Eng. Mater. 2022, 929, 187–192. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmet, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Plante, A.F.; Fernández, J.M.; Leifeld, J. Application of thermal analysis techniques in soil science. Geoderma 2009, 153, 1–10. [Google Scholar] [CrossRef]
- Mitchell, J.; Soga, K. Fundamentals of Soil Behavior, 3rd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kitazume, M.; Grisolia, M.; Leder, E.; Marzano, I.P.; Correia, A.A.S.; Venda Oliveira, P.J.; Åhnberg, H.; Andersson, M. Applicability of molding procedures in laboratory mix tests for quality control and assurance of the deep mixing method. Soils Found. 2015, 55, 761–777. [Google Scholar] [CrossRef] [Green Version]
- Hov, S.; Falle, F.; Paniagua, P. Optimization of Laboratory Molding Techniques for Nordic Dry Deep Mixing. ASTM Geotech. Test. J. 2022, 1, 45. [Google Scholar] [CrossRef]
- Bache, B.K.; Wiersholm, P.; Paniagua, P.; Emdal, A. Effect of Temperature on the Strength of Lime–Cement Stabilized Norwegian Clays. J. Geotech. Geoenvironmental. Eng. 2022, 148, 04021198. [Google Scholar] [CrossRef]
- ASTM C311-07; Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete. ASTM International: West Conshohocken, PA, USA, 2022.
- Setién, J.; Hernández, D.; González, J.J. Characterization of ladle furnace basic slag for use as a construction material. Constr. Build. Mater. 2009, 23, 1788–1794. [Google Scholar] [CrossRef]
- Zhang, W.; Henschel, T.; Söderlind, U.; Tran, K.Q.; Han, X. Thermogravimetric and Online Gas Analysis on various Biomass Fuels. In Energy Procedia; Elsevier: Amsterdam, The Netherlands, 2017; pp. 162–167. [Google Scholar] [CrossRef]
- Ashraf, M.S.; Ghouleh, Z.; Shao, Y. Production of eco-cement exclusively from municipal solid waste incineration residues. Resour. Conserv. Recycl. 2019, 149, 332–342. [Google Scholar] [CrossRef]
- Paniagua, P.; Bache, B.K.; Karlsrud, K.; Lund, A.K. Strength and stiffness of laboratory-mixed specimens of stabilised Norwegian clays. Proc. Inst. Civ. Eng. Ground Improv. 2022, 175, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Hov, S.; Larsson, S. Strength and Stiffness Properties of Laboratory-Improved Soft Swedish Clays. Int. J. Geosynth. Ground Eng. 2023, 9, 11. [Google Scholar] [CrossRef]
- Sadasivam, B.Y.; Reddy, K.R. Engineering properties of waste wood-derived biochars and biochar-amended soils. Int. J. Geotech. Eng. 2015, 9, 521–535. [Google Scholar] [CrossRef]
- Zhang, Y.; He, M.; Wang, L.; Yan, J.; Ma, B.; Zhu, X. Biochar as construction materials for achieving carbon neutrality. Biochar 2022, 4, 59. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W. Effect of water entrainment by pre-soaked biochar particles on strength and permeability of cement mortar. Constr. Build. Mater. 2018, 159, 107–125. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Labianca, C.; Wang, L.; Ruan, S.; Poon, C.S. Carbon-negative cement-bonded biochar particleboards. Biochar 2022, 4, 58. [Google Scholar] [CrossRef]
- Danish, A.; Ali Mosaberpanah, M.; Usama Salim, M.; Ahmad, N.; Ahmad, F.; Ahmad, A. Reusing biochar as a filler or cement replacement material in cementitious composites: A review. Constr. Build. Mater. 2021, 300, 124295. [Google Scholar] [CrossRef]
- Dixit, A.; Gupta, S.; Pang, S.D.; Kua, H.W. Cement Replacement and Improved Hydration in Ultra-High Performance Concrete Using Biochar. In Proceedings of the 3rd International Conference on the Application of Superabsorbent Polymers (SAP) and Other New Admixtures Towards Smart Concrete, Skukuza, South Africa, 25–27 November 2019; pp. 222–229. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.Y. Hydration-strength-durability-workability of biochar-cement binary blends. J. Build. Eng. 2021, 42, 103064. [Google Scholar] [CrossRef]
- Wang, Y.S.; Wang, X.Y. Multi-characterizations of the hydration, microstructure, and mechanical properties of a biochar–limestone calcined clay cement (LC3) mixture. J. Mater. Res. Technol. 2023, 24, 3691–3703. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W.; Pang, S.D. Biochar-mortar composite: Manufacturing, evaluation of physical properties and economic viability. Constr. Build. Mater. 2018, 167, 874–889. [Google Scholar] [CrossRef]
- Larsson, S. State of Practice Report—Execution, monitoring and quality control. In Proceedings of the International Conference on Deep Mixing: Best Practice and Recent Advances, Stockholm, Sweden, 23–25 May 2005; pp. 732–785. [Google Scholar]
- Marinho, B.; Santos, M.; Franco De Carvalho, M.; Mendes, J.C.; Brigolini, J.; Peixoto, F. Ladle Furnace Slag as Binder for Cement-Based Composites. J. Mater. Civ. Eng. 2017, 29, 04017207. [Google Scholar] [CrossRef]
- Hernandez-Martinez, F.G.; Al-Tabbaa, A.; Medina-Cetina, Z.; Yousefpour, N. Stiffness and Strength of Stabilized Organic Soils—Part I/II: Experimental Database and Statistical Description for Machine Learning Modelling. Geosciences 2021, 11, 243. [Google Scholar] [CrossRef]
- Berti, D.; Biscontin, G.; Asce, A.M.; Lau, J. Effect of Biochar Filler on the Hydration Products and Microstructure in Portland Cement–Stabilized Peat. J. Mater. Civ. Eng. 2021, 33, 04021263. [Google Scholar] [CrossRef]
- Timoney, M.J.; Mccabe, B.A.; Bell, A.L. Experiences of dry soil mixing in highly organic soils. Proc. Inst. Civ. Eng. Ground Improv. 2012, 165, 3–14. [Google Scholar] [CrossRef]
- Correia, A.A.S.; Venda Oliveira, P.J.; Lemos, L.J.L. Strength assessment of chemically stabilised soft soils. Proc. Inst. Civ. Eng. Geotech. Eng. 2019, 172, 218–227. [Google Scholar] [CrossRef]
- Kitazume, M.; Terashi, M. The Deep Mixing Method; Taylor & Francis Group: London, UK, 2013. [Google Scholar]
- Horpibulsuk, S.; Rachan, R.; Suddeepong, A. State of the art in strength development of soil-cement columns. Proc. Inst. Civ. Eng. Ground Improv. 2012, 165, 201–215. [Google Scholar] [CrossRef]
- Åhnberg, H.; Pihl, H. Type of Lime and Its Effect on Stabilisation Effect; Swedish Deep Stabilization Research Centre: Linköping, Sweden, 1997. (In Swedish) [Google Scholar]
Binder | Onsøy Clay | Tiller-Flotten Clay | Peat | |
---|---|---|---|---|
Cement | CEM I | CEM-30 | CEM-30 | CEM-100 |
CEM-50 | CEM-50 | |||
CEM-60 | CEM-60 | |||
Sludge | PSA | CEM-30/PSA-30 | CEM-30/PSA-30 | CEM-100/PSA-200 |
Bioash | FA | CEM-30/FA-30 | CEM-30/FA-30 | CEM-100/FA-200 |
BA | CEM-30/BA-30 | CEM-30/BA-30 | CEM-100/BA-200 | |
Ladle slag | LS1 | CEM-30/LS1-30 | CEM-30/LS1-30 | CEM-100/LS1-200 |
LS2 | CEM-30/LS2-30 | CEM-30/LS2-30 | CEM-100/LS2-200 | |
Biochar | BC1 | CEM-50/BC1-100 | CEM-50/BC1-100 | CEM-100/BC1-200 |
BC2 | CEM-50/BC2-100 | CEM-50/BC2-100 | CEM-100/BC2-200 | |
BC3 | CEM-50/BC3-100 | CEM-50/BC3-100 | CEM-100/BC3-200 | |
BC4 | CEM-50/BC4-100 | CEM-50/BC4-100 | CEM-100/BC4-200 |
Material | Water Content [%] | Particle Density [t/m3] | SFA [m2/g] | |
---|---|---|---|---|
Natural soils | Tiller-Flotten quick clay | 42 | 2.85 | 23.26 |
Tiller-Flotten peat | 886 | ~1.45 | 1.28 | |
Onsøy clay | 73 | 2.7 | 25.24 | |
Cement | CEM I | ~0 | 2.55 | 1.54 |
Sludge | PSA | ~0 | 2.68 | 3.9 |
Bioash | FA | 42.5 | 2.85 | 3.0 |
BA | ~0 | 2.69 | 0.5 | |
Ladle slag | LS1 | ~0 | 3.02 | 0.8 |
LS2 | 19.8 | 2.99 | 11.0 | |
Biochar | BC1 | 98.4 | 1.61 | 38.5 |
BC2 | ~0 | 2.44 | 54.8 | |
BC3 | 35.5 | 2.34 | 51.3 | |
BC4 | 85.3 | 1.67 | 5.3 |
Material | Al2O3 | SiO2 | CaO | MgO | SO3 | K2O | Fe2O3 | Na2O | LOI | |
---|---|---|---|---|---|---|---|---|---|---|
Natural soils | Tiller-Flotten quick clay | 16.97 | 51.04 | 3.22 | 5.86 | 0.02 | 4.05 | 9.28 | 2.01 | 5.6 |
Tiller-Flotten peat | 1.17 | 1.28 | 0.24 | 0.23 | <0.01 | 0.10 | 0.38 | 0.03 | 96.4 | |
Onsøy clay | 17.55 | 53.18 | 1.00 | 3.38 | 0.02 | 4.79 | 8.38 | 2.35 | 7.5 | |
Cement | CEM I | 4.58 | 18.79 | 61.05 | 2.40 | 3.94 | 0.87 | 3.30 | 0,34 | 2.6 |
Sludge | PSA | 6.8 | 18.1 | 42.8 | 2.8 | 6.3 | 0.5 | 3.5 | ND | 16.3 |
Bioash | FA | 2.2 | 4.3 | 36.5 | 3.9 | 2.2 | 7.4 | 0.4 | ND | 35.2 |
BA | 3.4 | 10.9 | 57.2 | 4.8 | 1.2 | 3.5 | 1.3 | ND | 8.0 | |
Ladle slag | LS1 | 6.6 | 33.2 | 47.1 | 7.1 | 3.2 | ND | 1.8 | ND | 0.0 |
LS2 | 6.9 | 25.5 | 43.7 | 7.5 | 1.7 | ND | 3.2 | ND | 9.7 | |
Biochar | BC1 | 1.3 | 3.2 | 3.2 | ND | 0.7 | 0.5 | 0.8 | ND | 87.1 |
BC2 | 8.2 | 9.5 | 32.8 | 0.8 | 2.2 | 0.3 | 6.3 | ND | 32.2 | |
BC3 | 10.1 | 16.5 | 4.1 | 0.4 | 2.8 | 0.7 | 24.9 | ND | 32.4 | |
BC4 | 2.9 | 12.2 | 4.7 | 0.4 | 0.5 | 1.1 | 2.3 | ND | 74.5 |
Material | Illite + Mica | Chlorite | Quartz | K-Feldspar | Plagioclase | Amphibole | Calcite | Others 1 | Amorphous | |
---|---|---|---|---|---|---|---|---|---|---|
Natural soils | Tiller-Flotten quick clay | 30.5 | 14.3 | 13.2 | 5.6 | 17.7 | 7.3 | 2.1 | - | 9.3 |
Tiller-Flotten peat | 1.2 | - | 0.3 | - | - | - | - | - | 98.6 | |
Onsøy clay | 30.2 | 10.9 | 14.3 | 5.3 | 11.6 | 2.5 | - | 0.7 | 24.6 |
Material | C2S 2 | C3S 3 | C4AF 4 | Calcite | Portlandite | Quartz | Merwinite | CaO-Lime | Others 1 | Amorphous | |
---|---|---|---|---|---|---|---|---|---|---|---|
Cement | CEM I | 8.1 | 47.4 | 10.2 | - | - | - | - | - | 7.2 | 27.2 |
Sludge | PSA | - | - | - | 19.4 | 2.3 | 12.9 | 13.7 | 4.8 | 4.8 | 42.2 |
Bioash | FA | - | - | - | 48.5 | 3.8 | - | - | - | 13.1 | 32.5 |
BA | - | - | 13.3 | 0.1 | 6.9 | - | - | 16.0 | 3.8 | 59.9 | |
Ladle slag | LS1 | - | - | - | - | - | - | 20.5 | - | 42.3 | 37.2 |
LS2 | - | - | - | - | 4.8 | - | 11.7 | - | 24.1 | 59.4 | |
Biochar | BC1 | - | - | - | 1.3 | - | 0.6 | - | - | 0.6 | 97.5 |
BC2 | - | - | - | 35.3 | - | 3.1 | - | - | 6.6 | 55.0 | |
BC3 | - | - | - | - | - | 6.4 | - | - | 10.0 | 83.7 | |
BC4 | - | - | - | 2.6 | - | 7.5 | - | - | 11.1 | 78.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hov, S.; Paniagua, P.; Sætre, C.; Long, M.; Cornelissen, G.; Ritter, S. Stabilisation of Soft Clay, Quick Clay and Peat by Industrial By-Products and Biochars. Appl. Sci. 2023, 13, 9048. https://doi.org/10.3390/app13169048
Hov S, Paniagua P, Sætre C, Long M, Cornelissen G, Ritter S. Stabilisation of Soft Clay, Quick Clay and Peat by Industrial By-Products and Biochars. Applied Sciences. 2023; 13(16):9048. https://doi.org/10.3390/app13169048
Chicago/Turabian StyleHov, Solve, Priscilla Paniagua, Christian Sætre, Mike Long, Gerard Cornelissen, and Stefan Ritter. 2023. "Stabilisation of Soft Clay, Quick Clay and Peat by Industrial By-Products and Biochars" Applied Sciences 13, no. 16: 9048. https://doi.org/10.3390/app13169048
APA StyleHov, S., Paniagua, P., Sætre, C., Long, M., Cornelissen, G., & Ritter, S. (2023). Stabilisation of Soft Clay, Quick Clay and Peat by Industrial By-Products and Biochars. Applied Sciences, 13(16), 9048. https://doi.org/10.3390/app13169048