Personal Protective Equipment as a Potential Source of Phthalate Exposure during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Collection and Preparation
2.3. The GC–MS Instrument and Procedure
2.4. Quality Assurance and Quality Control
2.5. Health Risk Assessment
3. Results
3.1. Phthalate Concentrations in Face Masks and Face Shields
3.2. Phthalate Concentrations in Disposable Plastic Gloves
3.3. Identification of Other Plasticizers and Plastic Additives in PPE
3.4. Health Risk Assessment
4. Discussion
4.1. Phthalate Concentrations in Face Masks and Face Shields
4.2. Phthalate Concentrations in Disposable Plastic Gloves
4.3. Identification of Other Plasticizers and Plastic Additives in PPE
4.4. Health Risk Assessment
4.5. Environmental Impact
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 1 April 2023).
- Islam, A.; Ahmed, A.; Naqvi, I.H.; Parveen, S. Emergence of deadly severe acute respiratory syndrome coronavirus-2 during 2019–2020. Virusdisease 2020, 31, 128–136. [Google Scholar] [CrossRef]
- WHO. COVID-19 Weekly Epidemiological Update, 116th ed.; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Di Gennaro, F.; Pizzol, D.; Marotta, C.; Antunes, M.; Racalbuto, V.; Veronese, N.; Smith, L. Coronavirus diseases (COVID-19) current status and future perspectives: A narrative review. Int. J. Environ. Res. Public Health 2020, 17, 2690. [Google Scholar] [CrossRef] [Green Version]
- Sahu, K.K.; Kumar, R. Preventive and treatment strategies of COVID-19: From community to clinical trials. J. Fam. Med. Prim. Care 2020, 9, 2149. [Google Scholar] [CrossRef]
- WHO. Mask Use in the Context of COVID-19: Interim Guidance, 1 December 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- International Finance Corporation. COVID-19—PPE Demand & Supply Perspectives. Available online: https://www.ifc.org/wps/wcm/connect/1d32e536-76cc-4023-9430-1333d6b92cc6/210402_FCDO_GlobalPPE_Final+report_v14updated_gja.pdf?MOD=AJPERES&CVID=nyiUnTU (accessed on 3 June 2022).
- Croft, N.H.; Bamopoulos, G. Technical Benchmarking Guide on COVID-19-Related Personal Protective Equipment: Technical Regulations and Standards for PPE in Select Markets; International Finance Corporation: Washington, DC, USA, 2022. [Google Scholar]
- De-la-Torre, G.E.; Pizarro-Ortega, C.I.; Dioses-Salinas, D.C.; Ammendolia, J.; Okoffo, E.D. Investigating the current status of COVID-19 related plastics and their potential impact on human health. Curr. Opin. Toxicol. 2021, 27, 47–53. [Google Scholar] [CrossRef]
- Singh, S.K.; Khawale, R.P.; Chen, H.; Zhang, H.; Rai, R. Personal protective equipments (PPEs) for COVID-19: A product lifecycle perspective. Int. J. Prod. Res. 2021, 60, 3282–3303. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, X.; Zhang, W.; Xu, R.; Kim, S.C.; Cui, Y.; Howard, T.T.; Wu, E. Air-filtering masks for respiratory protection from PM2.5 and pandemic pathogens. One Earth 2020, 3, 574–589. [Google Scholar] [CrossRef]
- Siwal, S.S.; Chaudhary, G.; Saini, A.K.; Kaur, H.; Saini, V.; Mokhta, S.K.; Chand, R.; Chandel, U.; Christie, G.; Thakur, V.K. Key ingredients and recycling strategy of personal protective equipment (PPE): Towards sustainable solution for the COVID-19 like pandemics. J. Environ. Chem. Eng. 2021, 9, 106284. [Google Scholar] [CrossRef]
- Perencevich, E.N.; Diekema, D.J.; Edmond, M.B. Moving personal protective equipment into the community: Face shields and containment of COVID-19. JAMA 2020, 323, 2252–2253. [Google Scholar] [CrossRef]
- Mostaghimi, A.; Antonini, M.-J.; Plana, D.; Anderson, P.D.; Beller, B.; Boyer, E.W.; Fannin, A.; Freake, J.; Oakley, R.; Sinha, M.S. Regulatory and safety considerations in deploying a locally fabricated, reusable face shield in a hospital responding to the COVID-19 pandemic. Med 2020, 1, 139–151.e4. [Google Scholar] [CrossRef]
- Roberge, R.J. Face shields for infection control: A review. J. Occup. Environ. Hyg. 2016, 13, 235–242. [Google Scholar] [CrossRef]
- Khubchandani, J.; Saiki, D.; Kandiah, J. Masks, gloves, and the COVID-19 pandemic: Rapid assessment of public behaviors in the United States. Epidemiologia 2020, 1, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Nakat, Z.; Bou-Mitri, C. COVID-19 and the food industry: Readiness assessment. Food Control 2021, 121, 107661. [Google Scholar] [CrossRef] [PubMed]
- Jędruchniewicz, K.; Ok, Y.S.; Oleszczuk, P. COVID-19 discarded disposable gloves as a source and a vector of pollutants in the environment. J. Hazard. Mater. 2021, 417, 125938. [Google Scholar] [CrossRef]
- Esmizadeh, E.; Chang, B.P.; Jubinville, D.; Seto, C.; Ojogbo, E.; Tzoganakis, C.; Mekonnen, T.H. Stability of nitrile and vinyl latex gloves under repeated disinfection cycles. Mater. Today Sustain. 2021, 11, 100067. [Google Scholar] [CrossRef]
- Vimalkumar, K.; Zhu, H.; Kannan, K. Widespread occurrence of phthalate and non-phthalate plasticizers in single-use facemasks collected in the United States. Environ. Int. 2022, 158, 106967. [Google Scholar] [CrossRef] [PubMed]
- Oteef, M.D.Y.; Elhassan, M.S. Plastic toys and child care articles as a source of children exposure to phthalates and other plasticisers in Saudi Arabia. Int. J. Environ. Anal. Chem. 2022, 102, 4316–4330. [Google Scholar] [CrossRef]
- Demeneix, B. Endocrine Disruptors: From Scientific Evidence to Human Health Protection; European Parliament: Strasbourg, France, 2019. [Google Scholar]
- Wang, Y.; Qian, H. Phthalates and their impacts on human health. Healthcare 2021, 9, 603. [Google Scholar] [CrossRef]
- Luís, C.; Algarra, M.; Câmara, J.S.; Perestrelo, R. Comprehensive insight from phthalates occurrence: From health outcomes to emerging analytical approaches. Toxics 2021, 9, 157. [Google Scholar] [CrossRef]
- Testai, E.; Hartemann, P.; Rastogi, S.C.; Bernauer, U.; Piersma, A.; De Jong, W.; Gulliksson, H.; Sharpe, R.; Schubert, D.; Rodríguez-Farre, E. The safety of medical devices containing DEHP plasticized PVC or other plasticizers on neonates and other groups possibly at risk (2015 update). Regul. Toxicol. Pharmacol. RTP 2016, 76, 209–210. [Google Scholar] [CrossRef]
- Quinete, N.; Hauser-Davis, R.A. Drinking water pollutants may affect the immune system: Concerns regarding COVID-19 health effects. Environ. Sci. Pollut. Res. 2021, 28, 1235–1246. [Google Scholar] [CrossRef]
- Korkmaz, S.D.; Küplülü, Ö. Determination of phthalates in some milk products by liquid chromatography/tandem mass spectrometry. Ank. Üniv. Vet. Fak. Derg. 2019, 66, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Lund, B.W.; Borggaard, C.; Birkler, R.I.D.; Jensen, K.; Støier, S. High throughput method for quantifying androstenone and skatole in adipose tissue from uncastrated male pigs by laser diode thermal desorption-tandem mass spectrometry. Food Chem. X 2021, 9, 100113. [Google Scholar] [CrossRef]
- USEPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; US Environmental Protection Agency: Washington, DC, USA, 2002. [Google Scholar]
- DoE, U. The Risk Assessment Information System (RAIS); US Department of Energy’s Oak Ridge Operations Office (ORO): Argonne, IL, USA, 2011. [Google Scholar]
- Xie, H.; Han, W.; Xie, Q.; Xu, T.; Zhu, M.; Chen, J. Face mask—A potential source of phthalate exposure for human. J. Hazard. Mater. 2022, 422, 126848. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Qi, Z.; Ma, S.; Li, G.; Long, C.; Yu, Y. A critical review on human internal exposure of phthalate metabolites and the associated health risks. Environ. Pollut. 2021, 279, 116941. [Google Scholar] [CrossRef] [PubMed]
- Garí, M.; Koch, H.M.; Pälmke, C.; Jankowska, A.; Wesołowska, E.; Hanke, W.; Nowak, D.; Bose-O’Reilly, S.; Polańska, K. Determinants of phthalate exposure and risk assessment in children from Poland. Environ. Int. 2019, 127, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Pälmke, C.; Ringbeck, B.; Ihn, Y.; Gotthardt, A.; Lee, G.; Alakeel, R.; Alrashed, M.; Tosepu, R.; Jayadipraja, E.A. Urinary concentrations of major phthalate and alternative plasticizer metabolites in children of Thailand, Indonesia, and Saudi Arabia, and associated risks. Environ. Sci. Technol. 2021, 55, 16526–16537. [Google Scholar] [CrossRef]
- Li, X.; Li, N.; Wang, C.; Wang, A.; Kong, W.; Song, P.; Wang, J. Occurrence of phthalate acid esters (PAEs) in protected agriculture soils and implications for human health exposure. Bull. Environ. Contam. Toxicol. 2022, 109, 548–555. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; Christie, P.; Zhang, M.; Luo, Y.; Teng, Y. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses. Sci. Total Environ. 2015, 523, 129–137. [Google Scholar] [CrossRef]
- Massarsky, A.; Donnell, M.T.; Binczewski, N.R.; Chan, K.; Dinh, D.; Bare, J.L.; Unice, K.M. Methodology for exposure and health risk screening of phthalates potentially present in fabric face coverings. Hum. Ecol. Risk Assess. Int. J. 2022, 28, 184–204. [Google Scholar]
- Brigden, K.; Hetherington, S.; Wang, M.; Santillo, D.; Johnston, P. Hazardous chemicals in branded luxury textile products on sale during 2013. Greenpeace Res. Lab. Tech. Rep. 2014, 1, 2014. [Google Scholar]
- Tang, Z.; Chai, M.; Wang, Y.; Cheng, J. Phthalates in preschool children’s clothing manufactured in seven Asian countries: Occurrence, profiles and potential health risks. J. Hazard. Mater. 2020, 387, 121681. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-L.; Ma, W.-L.; Liu, L.-Y.; Zhang, Z.; Sverko, E.; Zhang, Z.-F.; Song, W.-W.; Sun, Y.; Li, Y.-F. Phthalates in infant cotton clothing: Occurrence and implications for human exposure. Sci. Total Environ. 2019, 683, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Okoffo, E.D.; Banks, A.P.W.; Li, Y.; Thomas, K.V.; Rauert, C.; Aylward, L.L.; Mueller, J.F. Phthalate esters in face masks and associated inhalation exposure risk. J. Hazard. Mater. 2022, 423, 127001. [Google Scholar] [CrossRef] [PubMed]
- Min, K.; Weng, X.; Long, P.; Ma, M.; Chen, B.; Yao, S. Rapid in-situ analysis of phthalates in face masks by desorption corona beam ionization tandem mass spectrometry. Talanta 2021, 231, 122359. [Google Scholar] [CrossRef]
- Chua, M.H.; Cheng, W.; Goh, S.S.; Kong, J.; Li, B.; Lim, J.Y.; Mao, L.; Wang, S.; Xue, K.; Yang, L. Face masks in the new COVID-19 normal: Materials, testing, and perspectives. Research 2020, 2020, 286735. [Google Scholar] [CrossRef]
- Delaloye, J.-R.; Vernez, D.; Suarez, G.; de Courten, D.; Zingg, W.; Perret, V.; Metzger, C.M.; Richner, G. Distribution of low quality filtering facepiece respirators during the COVID-19 pandemic: An independent analysis of the situation in Switzerland. Swiss Med. Wkly. 2021, 151, w20459. [Google Scholar] [CrossRef]
- Tickner, J. Phthalates and Their Alternatives: Health and Environmental Concerns. Lowell Center for Sustainable Production. 2011. Available online: https://www.sustainableproduction.org/downloads/PhthalateAlternatives-January2011.pdf (accessed on 31 October 2022).
- Poitou, K.; Rogez-Florent, T.; Lecoeur, M.; Danel, C.; Regnault, R.; Vérité, P.; Monteil, C.; Foulon, C. Analysis of phthalates and alternative plasticizers in gloves by gas chromatography–mass spectrometry and liquid chromatography–UV detection: A comparative study. Toxics 2021, 9, 200. [Google Scholar] [CrossRef]
- Tsumura, Y.; Ishimitsu, S.; Kaihara, A.; Yoshii, K.; Nakamura, Y.; Tonogai, Y. Di (2-ethylhexyl) phthalate contamination of retail packed lunches caused by PVC gloves used in the preparation of foods. Food Addit. Contam. 2001, 18, 569–579. [Google Scholar] [CrossRef]
- Gunaalan, K.; Fabbri, E.; Capolupo, M. The hidden threat of plastic leachates: A critical review on their impacts on aquatic organisms. Water Res. 2020, 184, 116170. [Google Scholar] [CrossRef]
- Cheng, Y.Y.; Yu, J.Z. Minimizing contamination from plastic labware in the quantification of C16 and C18 fatty acids in filter samples of atmospheric particulate matter and their utility in apportioning cooking source contribution to urban PM2.5. Atmosphere 2020, 11, 1120. [Google Scholar] [CrossRef]
- Wypych, G. Handbook of Plasticizers; ChemTec Publishing: Toronto, ON, Canada, 2012. [Google Scholar]
- Mendelsohn, E.; Hagopian, A.; Hoffman, K.; Butt, C.M.; Lorenzo, A.; Congleton, J.; Webster, T.F.; Stapleton, H.M. Nail polish as a source of exposure to triphenyl phosphate. Environ. Int. 2016, 86, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arya, R.K.; Kaur, H.; Rawat, M.; Sharma, J.; Chandra, A.; Ahuja, S. Influence of plasticizer (triphenyl phosphate) loading on drying of binary coatings: Poly (styrene)-p-xylene coatings. Prog. Org. Coat. 2021, 150, 106001. [Google Scholar] [CrossRef]
- Zhao, F.; Kang, Q.; Zhang, X.; Liu, J.; Hu, J. Urinary biomarkers for assessment of human exposure to monomeric aryl phosphate flame retardants. Environ. Int. 2019, 124, 259–264. [Google Scholar] [CrossRef]
- Fernández-Arribas, J.; Moreno, T.; Bartrolí, R.; Eljarrat, E. COVID-19 face masks: A new source of human and environmental exposure to organophosphate esters. Environ. Int. 2021, 154, 106654. [Google Scholar] [CrossRef]
- Lioy, P.J.; Hauser, R.; Gennings, C.; Koch, H.M.; Mirkes, P.E.; Schwetz, B.A.; Kortenkamp, A. Assessment of phthalates/phthalate alternatives in children’s toys and childcare articles: Review of the report including conclusions and recommendation of the chronic hazard advisory panel of the consumer product safety commission. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Qadeer, A.; Kirsten, K.L.; Ajmal, Z.; Jiang, X.; Zhao, X. Alternative Plasticizers As Emerging Global Environmental and Health Threat: Another Regrettable Substitution? Environ. Sci. Technol. 2022, 56, 1482–1488. [Google Scholar] [CrossRef]
- Deng, M.; Liang, X.; Du, B.; Luo, D.; Chen, H.; Zhu, C.; Zeng, L. Beyond classic phthalates: Occurrence of multiple emerging phthalate alternatives and their metabolites in human milk and implications for combined exposure in infants. Environ. Sci. Technol. Lett. 2021, 8, 705–712. [Google Scholar] [CrossRef]
- Chaos, A.; Sangroniz, A.; Gonzalez, A.; Iriarte, M.; Sarasua, J.R.; del Río, J.; Etxeberria, A. Tributyl citrate as an effective plasticizer for biodegradable polymers: Effect of plasticizer on free volume and transport and mechanical properties. Polym. Int. 2019, 68, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Nandiwale, K.Y.; Gogoi, P.; Bokade, V.V. Catalytic upgrading of citric acid to environmental friendly tri-butyl citrate plasticizer over ultra stable phosphonated Y zeolite. Chem. Eng. Res. Des. 2015, 98, 12–219. [Google Scholar] [CrossRef]
- Murphy, J. Additives for Plastics Handbook; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Vieira, M.G.A.; da Silva, M.A.; dos Santos, L.O.; Beppu, M.M. Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J. 2011, 47, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Azam, F.; Ahmad, F.; Uddin, Z.; Rasheed, A.; Nawab, Y.; Afzal, A.; Ahmad, S.; Zafar, M.S.; Ashraf, M. A review of the fabrication methods, testing, and performance of face masks. Int. J. Polym. Sci. 2022, 2022, 2161869. [Google Scholar] [CrossRef]
- Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Shruti, V. A critical synthesis of current peer-reviewed literature on the environmental and human health impacts of COVID-19 PPE litter: New findings and next steps. J. Hazard. Mater. 2022, 422, 126945. [Google Scholar] [CrossRef] [PubMed]
- Abedin, M.; Khandaker, M.U.; Uddin, M.; Karim, M.; Ahamad, M.; Islam, M.; Arif, A.M.; Sulieman, A.; Idris, A.M. PPE pollution in the terrestrial and aquatic environment of the Chittagong city area associated with the COVID-19 pandemic and concomitant health implications. Environ. Sci. Pollut. Res. 2022, 29, 27521–27533. [Google Scholar] [CrossRef]
- Gunasekaran, K.; Mghili, B.; Saravanakumar, A. Personal protective equipment (PPE) pollution driven by the COVID-19 pandemic in coastal environment, Southeast Coast of India. Mar. Pollut. Bull. 2022, 180, 113769. [Google Scholar] [CrossRef] [PubMed]
- Hatami, T.; Rakib, M.R.J.; Madadi, R.; De-la-Torre, G.E.; Idris, A.M. Personal protective equipment (PPE) pollution in the Caspian Sea, the largest enclosed inland water body in the world. Sci. Total Environ. 2022, 824, 153771. [Google Scholar] [CrossRef]
- Aragaw, T.A.; De-la-Torre, G.E.; Teshager, A.A. Personal protective equipment (PPE) pollution driven by the COVID-19 pandemic along the shoreline of Lake Tana, Bahir Dar, Ethiopia. Sci. Total Environ. 2022, 820, 153261. [Google Scholar] [CrossRef]
- De-la-Torre, G.E.; Dioses-Salinas, D.C.; Pizarro-Ortega, C.I.; Severini, M.D.F.; López, A.D.F.; Mansilla, R.; Ayala, F.; Castillo, L.M.J.; Castillo-Paico, E.; Torres, D.A. Binational survey of personal protective equipment (PPE) pollution driven by the COVID-19 pandemic in coastal environments: Abundance, distribution, and analytical characterization. J. Hazard. Mater. 2022, 426, 128070. [Google Scholar] [CrossRef]
- Ganesapillai, M.; Mondal, B.; Sarkar, I.; Sinha, A.; Ray, S.S.; Kwon, Y.-N.; Nakamura, K.; Govardhan, K. The face behind the COVID-19 mask—A comprehensive review. Environ. Technol. Innov. 2022, 28, 102837. [Google Scholar] [CrossRef]
- Rivas, M.L.; Albion, I.; Bernal, B.; Handcock, R.N.; Heatwole, S.J.; Parrott, M.L.; Piazza, K.A.; Deschaseaux, E. The plastic pandemic: COVID-19 has accelerated plastic pollution, but there is a cure. Sci. Total Environ. 2022, 847, 157555. [Google Scholar] [CrossRef]
- Dueñas-Moreno, J.; Mora, A.; Cervantes-Avilés, P.; Mahlknecht, J. Groundwater contamination pathways of phthalates and bisphenol A: Origin, characteristics, transport, and fate—A Review. Environ. Int. 2022, 170, 107550. [Google Scholar] [CrossRef]
- Yang, S.; Cheng, Y.; Liu, T.; Huang, S.; Yin, L.; Pu, Y.; Liang, G. Impact of waste of COVID-19 protective equipment on the environment, animals and human health: A review. Environ. Chem. Lett. 2022, 20, 2951–2970. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Kim, H. COVID-19 Pandemic and Microplastic Pollution. Nanomaterials 2022, 12, 851. [Google Scholar] [CrossRef] [PubMed]
- Shirvanimoghaddam, K.; Czech, B.; Yadav, R.; Gokce, C.; Fusco, L.; Delogu, L.G.; Yilmazer, A.; Brodie, G.; Al-Othman, A.; Al-Tamimi, A.K. Facemask global challenges: The case of effective synthesis, utilization, and environmental sustainability. Sustainability 2022, 14, 737. [Google Scholar] [CrossRef]
- Pizarro-Ortega, C.I.; Dioses-Salinas, D.C.; Severini, M.D.F.; López, A.F.; Rimondino, G.N.; Benson, N.U.; Dobaradaran, S.; De-la-Torre, G.E. Degradation of plastics associated with the COVID-19 pandemic. Mar. Pollut. Bull. 2022, 176, 113474. [Google Scholar] [CrossRef]
Sample Code | Product Data: Description/Country of Origin/Materials | Phthalate Content (µg/g; Mean (SD); n = 3) | Total Phthalate Content * (µg/g) | Other Plasticizers/ Additives ** | |||||
---|---|---|---|---|---|---|---|---|---|
DBP | BBP | DEHP | DnOP | DINP | DIDP | ||||
FS1 | Face shield/China/NA | 0.17 (0.02) | <LOQ *** | 0.12 (0.01) | <LOQ | <LOQ | <LOQ | 0.29 | Monoprop-2-ynyl phthalate |
FS2 | Face shield/China/NA | 0.40 (0.13) | <LOQ | 0.14 (0.05) | <LOQ | <LOQ | <LOQ | 0.54 | Monoprop-2-ynyl phthalate |
MS1 | Kid’s disposable medical procedure mask/Saudi Arabia/NA | 0.94 (0.67) | <LOQ | 0.39 (0.29) | <LOQ | <LOQ | <LOQ | 1.33 | - |
MS2 | Kid’s disposable non-medical procedure mask/China/Non-woven fabric; melt-blown fabric | 1.00 (0.23) | <LOQ | 1.55 (0.48) | <LOQ | 8.14 (2.49) | <LOQ | 10.69 | Monoprop-2-ynyl phthalate |
MS3 | Kid’s disposable non-medical procedure mask/Saudi Arabia/NA | 1.27 (0.12) | <LOQ | 1.54 (0.21) | <LOQ | 2.25 (0.37) | <LOQ | 5.06 | Monoprop-2-ynyl phthalate |
MS4 | Kid’s reusable cloth mask/China/Cotton | 0.20 (0.04) | <LOQ | 0.28 (0.06) | <LOQ | 503 (109) | <LOQ | 503.48 | Monoprop-2-ynyl phthalate |
MS5 | Kid’s reusable cloth mask/China/NA | 1.21 (0.10) | <LOQ | 0.93 (0.05) | <LOQ | <LOQ | <LOQ | 2.14 | Monoprop-2-ynyl phthalate |
MS6 | Disposable non-medical procedure mask/China/Non-woven fabric; melt spray filter fabric | 0.62 (0.09) | <LOQ | 3.76 (1.92) | <LOQ | <LOQ | <LOQ | 4.38 | - |
MS7 | Disposable non-medical procedure mask/China/Non-woven fabric; melt-blown fabric | 0.71 (0.19) | <LOQ | 3.13 (1.24) | <LOQ | <LOQ | <LOQ | 3.84 | - |
MS8 | Disposable non-medical procedure mask/China/Non-woven fabric; melt-blown fabric | 0.79 (0.04) | <LOQ | 1.01 (0.19) | <LOQ | <LOQ | <LOQ | 1.80 | - |
MS9 | Disposable non-medical procedure mask/China/Non-woven fabric; melt-blown fabric | 4.31 (0.10) | <LOQ | 4.95 (0.15) | <LOQ | <LOQ | <LOQ | 9.26 | - |
MS10 | Disposable non-medical procedure mask/China/Non-woven fabric; melt-blown fabric | 0.96 (0.17) | <LOQ | 0.88 (0.14) | <LOQ | <LOQ | <LOQ | 1.84 | - |
MS11 | Disposable non-medical procedure mask/China/Non-woven fabric; melt-blown cloth | 0.62 (0.05) | <LOQ | 1.87 (0.16) | <LOQ | <LOQ | <LOQ | 2.49 | - |
MS12 | Disposable non-medical procedure mask/China/Non-woven fabric; melt-blown fabric | 0.50 (0.24) | <LOQ | 0.52 (0.41) | <LOQ | <LOQ | <LOQ | 1.02 | - |
MS13 | Disposable non-medical procedure mask/China/NA | 0.67 (0.15) | <LOQ | 0.50 (0.33) | <LOQ | <LOQ | <LOQ | 1.17 | - |
MS14 | Disposable non-medical procedure mask/China/NA | 3.34 (0.52) | <LOQ | 1.33 (0.14) | <LOQ | <LOQ | <LOQ | 4.67 | - |
MS15 | Disposable non-medical procedure mask/China/NA | 0.98 (0.23) | <LOQ | 2.51 (0.07) | <LOQ | <LOQ | <LOQ | 3.49 | - |
MS16 | Disposable non-medical procedure mask/China/NA | 0.20 (0.12) | <LOQ | 0.88 (0.33) | <LOQ | <LOQ | <LOQ | 1.08 | - |
MS17 | Disposable non-medical procedure mask/China/NA | 1.72 (0.32) | <LOQ | 1.26 (0.07) | <LOQ | <LOQ | <LOQ | 2.98 | - |
MS18 | Disposable non-medical procedure mask/China/NA | 0.56 (0.13) | <LOQ | 0.97 (0.04) | <LOQ | <LOQ | <LOQ | 1.53 | - |
MS19 | Disposable non-medical procedure mask/China/NA | 2.48 (0.11) | 1.15 (0.05) | 1.06 (0.03) | <LOQ | <LOQ | <LOQ | 4.69 | - |
MS20 | Disposable non-medical procedure mask/China/NA | 7.32 (0.60) | <LOQ | 1.68 (0.22) | <LOQ | <LOQ | <LOQ | 9.00 | - |
MS21 | Disposable non-medical procedure mask/India/NA | 5.75 (1.18) | 2.08 (0.14) | 3.04 (0.69) | <LOQ | <LOQ | <LOQ | 10.87 | - |
MS22 | KN95 disposable non-medical mask with valve/China/Non-woven; melt-blown; hot air cotton | 2.55 (0.54) | 0.64 (0.02) | 263 (85.8) | <LOQ | <LOQ | <LOQ | 266.19 | - |
MS23 | KN95 disposable non-medical mask/China/Non-woven; melt-blown; hot air cotton | 1.26 (0.40) | <LOQ | 4.92 (1.22) | <LOQ | <LOQ | <LOQ | 6.18 | - |
MS24 | N95 disposable mask/USA/NA | 2.87 (0.33) | <LOQ | 0.59 (0.02) | <LOQ | <LOQ | <LOQ | 3.46 | - |
MS25 | Reusable cloth mask/Bangladesh/Polyester | 5.70 (0.61) | <LOQ | 2.32 (0.04) | <LOQ | <LOQ | <LOQ | 8.02 | Palmitic acid, Oleic acid, Stearic acid |
MS26 | Reusable cloth mask/Jordan/NA | 0.87 (0.26) | <LOQ | 91.3 (111) | <LOQ | <LOQ | <LOQ | 92.17 | Triphenyl phosphate, Cresyl diphenyl phosphate, Phenyl di(p-tolyl) phosphate, Monoprop-2-ynyl phthalate |
MS27 | Reusable cloth mask/China/Fine fiber sponge | 0.36 (0.14) | <LOQ | 0.24 (0.19) | <LOQ | <LOQ | <LOQ | 0.60 | Bis(2-butoxyethyl) adipate |
MS28 | Reusable cloth mask/China/NA | 0.64 (0.25) | <LOQ | 0.94 (0.51) | <LOQ | <LOQ | <LOQ | 1.58 | Monoprop-2-ynyl phthalate |
MS29 | Reusable cloth mask/India/NA | 0.67 (0.25) | <LOQ | 3.07 (2.29) | <LOQ | <LOQ | <LOQ | 3.74 | Monoprop-2-ynyl phthalate |
MS30 | Reusable cloth mask/NA/NA | 0.60 (0.04) | <LOQ | 1.05 (0.15) | <LOQ | <LOQ | <LOQ | 1.65 | Monoprop-2-ynyl phthalate |
MS31 | Reusable cloth mask/NA/NA | 4.60 (0.83) | <LOQ | 938 (826) | <LOQ | <LOQ | <LOQ | 942.60 | Monoprop-2-ynyl phthalate |
MS32 | Reusable cloth mask/Saudi Arabia/NA | 0.71 (0.08) | <LOQ | 2.48 (0.13) | <LOQ | <LOQ | <LOQ | 3.19 | Monoprop-2-ynyl phthalate |
MS33 | Reusable sponge mask/China/Polyurethane sponge; polypropylene | 1.29 (0.14) | <LOQ | 7.29 (0.45) | <LOQ | <LOQ | <LOQ | 8.58 | Decyl decanoate, Bis(2-butoxyethyl) adipate |
Sample Code | Product Data: Description/Country of Origin | Phthalate Content (µg/g; Mean (SD); n = 3) | Total Phthalate Content * (µg/g) | Other Plasticizers/Additives ** | |||||
---|---|---|---|---|---|---|---|---|---|
DBP | BBP | DEHP | DnOP | DINP | DIDP | ||||
GS1 | Disposable latex gloves/China | <LOQ *** | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | - |
GS2 | Disposable latex gloves/Malaysia | 1.38 (0.16) | <LOQ | 0.45 (0.09) | <LOQ | <LOQ | <LOQ | 1.83 | Linoleic acid; Mix of hydrocarbons |
GS3 | Disposable latex gloves/Malaysia | 2.52 (0.22) | <LOQ | 2.60 (0.10) | <LOQ | <LOQ | <LOQ | 5.12 | Linoleic acid; Mix of hydrocarbons |
GS4 | Disposable nitrile gloves/Malaysia | 0.09 (0.03) | <LOQ | 0.84 (0.06) | <LOQ | <LOQ | <LOQ | 0.93 | Mix of hydrocarbons |
GS5 | Disposable nitrile gloves/Thailand | 0.17 (0.03) | <LOQ | 0.29 (0.20) | <LOQ | <LOQ | <LOQ | 0.46 | Mix of hydrocarbons |
GS6 | Disposable nitrile gloves/Malaysia | 0.90 (0.18) | <LOQ | 0.78 (0.08) | <LOQ | <LOQ | <LOQ | 1.68 | - |
GS7 | Disposable polyethylene gloves/China | 0.85 (0.05) | <LOQ | 0.74 (0.14) | <LOQ | <LOQ | <LOQ | 1.59 | Mix of hydrocarbons |
GS8 | Disposable polyethylene gloves/China | 0.92 (0.14) | <LOQ | 1.04 (0.16) | <LOQ | <LOQ | <LOQ | 1.96 | Palmitic acid; Stearic acid; Mix of hydrocarbons |
GS9 | Disposable vinyl gloves/China | 0.26 (0.05) | <LOQ | 7.81 (0.54) | <LOQ | <LOQ | <LOQ | 8.07 | DOIP; Tributyl citrate |
GS10 | Disposable vinyl gloves/China | 0.80 (0.22) | <LOQ | 0.86 (0.21) | <LOQ | <LOQ | <LOQ | 1.66 | DOIP |
GS11 | Disposable vinyl gloves/China | 0.47 (0.19) | <LOQ | 1.72 (1.34) | <LOQ | <LOQ | <LOQ | 2.19 | DOIP |
GS12 | Disposable vinyl gloves/China | 1.48 (0.39) | <LOQ | 2.45 (0.11) | <LOQ | <LOQ | <LOQ | 3.93 | DOIP |
GS13 | Disposable vinyl gloves/China | 1.25 (0.22) | <LOQ | 3.04 (0.14) | <LOQ | <LOQ | <LOQ | 4.29 | DOIP |
GS14 | Disposable vinyl gloves/China | 0.35 (0.19) | <LOQ | 2.38 (0.21) | <LOQ | <LOQ | <LOQ | 2.73 | DOIP |
GS15 | Disposable vinyl gloves/China | 2.01 (0.48) | <LOQ | 3.86 (1.90) | <LOQ | 111,749 (15,179) | <LOQ | 111,754 | DOIP; Tributyl citrate |
GS16 | Disposable vinyl gloves/China | 4.83 (0.21) | <LOQ | 179 (9.1) | <LOQ | 141,531 (12,434) | <LOQ | 141,714 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oteef, M.D.Y.; Otaif, K.D.; Idris, A.M. Personal Protective Equipment as a Potential Source of Phthalate Exposure during the COVID-19 Pandemic. Appl. Sci. 2023, 13, 9076. https://doi.org/10.3390/app13169076
Oteef MDY, Otaif KD, Idris AM. Personal Protective Equipment as a Potential Source of Phthalate Exposure during the COVID-19 Pandemic. Applied Sciences. 2023; 13(16):9076. https://doi.org/10.3390/app13169076
Chicago/Turabian StyleOteef, Mohammed D. Y., Khadejah D. Otaif, and Abubakr M. Idris. 2023. "Personal Protective Equipment as a Potential Source of Phthalate Exposure during the COVID-19 Pandemic" Applied Sciences 13, no. 16: 9076. https://doi.org/10.3390/app13169076
APA StyleOteef, M. D. Y., Otaif, K. D., & Idris, A. M. (2023). Personal Protective Equipment as a Potential Source of Phthalate Exposure during the COVID-19 Pandemic. Applied Sciences, 13(16), 9076. https://doi.org/10.3390/app13169076