Grape By-Products in Sustainable Cosmetics: Nanoencapsulation and Market Trends
Abstract
:1. Introduction
2. Skin: Anatomy, Functions, and Ageing
3. Cosmetic Products and Markets
4. Grape By-Products and Their Environmental Impact
5. Grapes and Their By-Products for Cosmetic and Skincare Applications
5.1. Identified Skincare Biological Activities
5.1.1. Grape Seeds: Extract, Oil, Powder, and Paste
5.1.2. Pomace: Extract and Oil
5.1.3. Grapevine Shoot and Grape Stems/Stalks
5.1.4. Others
5.2. Market Expression
6. Nanoencapsulation Trends
6.1. Liposomes and Nanovesicles
6.2. Niosomes
6.3. Nanoparticles
6.4. Nanoemulsions
6.5. Dendrimers
7. Future Challenges of Nanotechnology in Cosmetics
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Circular Economy Action Plan, for a Cleaner and More Competitive Europe. Available online: https://ec.europa.eu/environment/pdf/circular-economy/new_circular_economy_action_plan.pdf (accessed on 8 February 2023).
- Perra, M.; Bacchetta, G.; Muntoni, A.; De Gioannis, G.; Castangia, I.; Rajha, H.N.; Manca, M.L.; Manconi, M. An outlook on modern and sustainable approaches to the management of grape pomace by integrating green processes, biotechnologies and advanced biomedical approaches. J. Funct. Foods 2022, 98, 105276. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresour. Technol. 2022, 343, 126126. [Google Scholar] [CrossRef] [PubMed]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorisation of food agro-industrial by-products: From the past to the present and perspectives. J. Environ. Manag. 2021, 299, 113571. [Google Scholar] [CrossRef]
- Gilaberte, Y.; Prieto-Torres, L.; Pastushenko, I.; Juarranz, Á. Anatomy and Function of the Skin. In Nanoscience in Dermatology, 1st ed.; Hamblin, M., Avci, P., Prow, T., Eds.; Academic Press: London, UK, 2016; pp. 1–14. [Google Scholar] [CrossRef]
- McLafferty, E.; Hendry, C.; Farley, A. The integumentary system: Anatomy, physiology and function of skin. Nurs. Stand. 2012, 27, 35. [Google Scholar] [CrossRef]
- Walters, K.A.; Roberts, M.S. The structure and function of skin. In Dermatological and Transdermal Formulations, 1st ed.; Walters, K.A., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 19–58. [Google Scholar]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Vestita, M.; Tedeschi, P.; Bonamonte, D. Anatomy and Physiology of the Skin. In Textbook of Plastic and Reconstructive Surgery, 1st ed.; Maruccia, M., Giudice, G., Eds.; Springer: Cham, Switzerland, 2022; pp. 3–13. [Google Scholar] [CrossRef]
- Silva, S.A.M.; Leonardi, G.R.; Michniak-Kohn, B. An overview about oxidation in clinical practice of skin aging. An. Bras. Dermatol. 2017, 92, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Xiao, Z.; Wu, Y.; Ge, C. Diet and skin aging—From the perspective of food nutrition. Nutrients 2020, 12, 870. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Han, J.; Jiang, C.; Zhang, Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res. Rev. 2020, 59, 101036. [Google Scholar] [CrossRef]
- Kammeyer, A.; Luiten, R.M. Oxidation events and skin aging. Ageing Res. Rev. 2015, 21, 16–29. [Google Scholar] [CrossRef]
- Peres, P.S.; Terra, V.A.; Guarnier, F.A.; Cecchini, R.; Cecchini, A.L. Photoaging and chronological aging profile: Understanding oxidation of the skin. J. Photochem. Photobiol. B Biol. 2011, 103, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Chaudhri, S.K.; Jain, N.K. History of cosmetics. Asian J. Pharm. 2009, 3. [Google Scholar] [CrossRef]
- Halla, N.; Fernandes, I.P.; Heleno, S.A.; Costa, P.; Boucherit-Otmani, Z.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.C.F.R.; Barreiro, M.F. Cosmetics preservation: A review on present strategies. Molecules 2018, 23, 1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igarashi, T.; Nishino, K.; Nayar, S.K. The appearance of human skin: A survey. Found. Trends Comput. Graph. Vis. 2007, 3, 1–95. [Google Scholar] [CrossRef]
- Fortune Business Insights. Cosmetics Market Size, Share & COVID-19 Impact Analysis, by Category (Hair Care, Skin Care, Makeup, and Others), by Gender (Men and Women), by Distribution Channel (Specialty Stores, Hypermarkets/Supermarkets, Online Channels, and Others), and Regional Forecasts, 2021–2028. Available online: https://www.fortunebusinessinsights.com/cosmetics-market-102614 (accessed on 4 December 2022).
- Fortune Business Insights. Skin Care Market–Skincare Market Size, Share & COVID-19 Impact Analysis, by Product (Creams, Lotions, Powders, Sprays, and Others), by Gender (Men and Women), by Distribution Channel (Specialty Stores, Hypermarkets/Supermarkets, Online Channels, and Others), and Regional Forecasts, 2021–2028. Available online: https://www.fortunebusinessinsights.com/skin-care-market-102544 (accessed on 4 December 2022).
- Transparency Market Research. Cosmetic Skin Care Market-Cosmetic Skin Care Market (Product: Cleanser, Cream & Moisturizer, Serum, Face Mask, and Others)-Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2022–2031. Available online: https://www.transparencymarketresearch.com/cosmetic-skin-care-market.html (accessed on 4 December 2022).
- Grand View Research. Skin Care Products Market Size, Share & Trends Analysis Report By Product (Face Creams & Moisturizers, Shaving Lotions & Creams), by Gender, by Distribution Channel, by Region, and Segment Forecasts, 2022–2030. Available online: https://www.grandviewresearch.com/industry-analysis/skin-care-products-market (accessed on 4 December 2022).
- Goufo, P.; Singh, R.K.; Cortez, I. A reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems, and leaves. Antioxidants 2020, 9, 398. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.E.; Grao-Cruces, E.; Millan-Linares, M.C.; Montserrat-De la Paz, S. Grape (Vitis vinifera L.) seed oil: A functional food from the winemaking industry. Foods 2020, 9, 1360. [Google Scholar] [CrossRef]
- Nunes, M.A.; Rodrigues, F.; Oliveira, M.B.P. Grape processing by-products as active ingredients for cosmetic proposes. In Handbook of Grape Processing By-Products; Galanakis, C.M., Ed.; Academic Press: San Diego, CA, USA, 2017; pp. 267–292. [Google Scholar] [CrossRef]
- Salem, Y.; Rajha, H.N.; Franjieh, D.; Hoss, I.; Manca, M.L.; Manconi, M.; Castangia, I.; Perra, M.; Maroun, R.G.; Louka, N. Stability and antioxidant activity of hydro-glyceric extracts obtained from different grape seed varieties incorporated in cosmetic creams. Antioxidants 2022, 11, 1348. [Google Scholar] [CrossRef]
- Chouchouli, V.; Kalogeropoulos, N.; Konteles, S.J.; Karvela, E.; Makris, D.P.; Karathanos, V.T. Fortification of yoghurts with grape (Vitis vinifera) seed extracts. LWT-Food Sci. Technol. 2013, 53, 522–529. [Google Scholar] [CrossRef]
- Hoss, I.; Rajha, H.N.; El Khoury, R.; Youssef, S.; Manca, M.L.; Manconi, M.; Louka, N.; Maroun, R.G. Valorization of Wine-Making By-Products’ Extracts in Cosmetics. Cosmetics 2021, 8, 109. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Santos, L. A potential valorization strategy of wine industry by-products and their application in cosmetics—Case study: Grape pomace and grapeseed. Molecules 2022, 27, 969. [Google Scholar] [CrossRef]
- Brezoiu, A.M.; Bajenaru, L.; Berger, D.; Mitran, R.A.; Deaconu, M.; Lincu, D.; Stoica Guzun, A.; Matei, C.; Moisescu, M.G.; Negreanu-Pirjol, T. Effect of nanoconfinement of polyphenolic extract from grape pomace into functionalized mesoporous silica on its biocompatibility and radical scavenging activity. Antioxidants 2020, 9, 696. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.J.; Oliveira, A.L.; Pedrosa, S.S.; Pintado, M.; Madureira, A.R. Potential of sugarcane extracts as cosmetic and skincare ingredients. Ind. Crops Prod. 2021, 169, 113625. [Google Scholar] [CrossRef]
- Maluf, D.F.; Gonçalves, M.; D’Angelo, R.; Girassol, A.; Tulio, A.; Pupo, Y.; Farago, P. Cytoprotection of Antioxidant Biocompounds from Grape Pomace: Further Exfoliant Phytoactive Ingredients for Cosmetic Products. Cosmetics 2018, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Matos, M.S.; Romero-Díez, R.; Álvarez, A.; Bronze, M.R.; Rodríguez-Rojo, S.; Mato, R.B.; Cocero, M.J.; Matias, A.A. Polyphenol-rich extracts obtained from winemaking waste streams as natural ingredients with cosmeceutical potential. Antioxidants 2019, 8, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perra, M.; Lozano-Sánchez, J.; Leyva-Jiménez, F.J.; Segura-Carretero, A.; Pedraz, J.L.; Bacchetta, G.; Muntoni, A.; Gioannis, G.; De Manca, M.L.; Manconi, M. Extraction of the antioxidant phytocomplex from wine-making by-products and sustainable loading in phospholipid vesicles specifically tailored for skin protection. Biomed. Pharmacother. 2021, 142, 111959. [Google Scholar] [CrossRef]
- Yarovaya, L.; Waranuch, N.; Wisuitiprot, W.; Khunkitti, W. Effect of grape seed extract on skin fibroblasts exposed to UVA light and its photostability in sunscreen formulation. J. Cosmet. Dermatol. 2020, 20, 1271–1282. [Google Scholar] [CrossRef]
- Yarovaya, L.; Khunkitti, W. Effect of Grape Seed Extract as a Sunscreening Booster. Songklanakarin J. Sci. Technol. 2019, 41, 708–715. [Google Scholar]
- Limsuwan, T.; Amnuikit, T. Effect of grape seed extract in sunscreen lotion on sun protection factor (SPF) determined by in vitro method. In Proceedings of the 6th International Conference on Bioinformatics and Biomedical Science, Singapore, 22–24 June 2017; Association for Computing Machinery (ACM): New York, NY, USA, 2017; pp. 109–112. [Google Scholar] [CrossRef]
- Cornacchione, S.; Sadick, N.S.; Neveu, M.; Talbourdet, S.; Lazou, K.; Viron, C.; Renimel, I.; de Quéral, D.; Kurfurst, R.; Schnebert, S.; et al. In vivo skin antioxidant effect of a new combination based on a specific Vitis vinifera shoot extract and a biotechnological extract. J. Drugs Dermatol. 2007, 6, 8–13. [Google Scholar]
- Manca, M.L.; Firoznezhad, M.; Caddeo, C.; Marongiu, F.; Escribano-Ferrer, E.; Sarais, G.; Peris, J.E.; Usach, I.; Zaru, M.; Manconi, M.; et al. Phytocomplexes extracted from grape seeds and stalks delivered in phospholipid vesicles tailored for the treatment of skin damages. Ind. Crops Prod. 2019, 128, 471–478. [Google Scholar] [CrossRef]
- Leal, C.; Gouvinhas, I.; Santos, R.A.; Rosa, E.; Silva, A.M.; Saavedra, M.J.; Barros, A.I. Potential application of grape (Vitis vinifera L.) stem extracts in the cosmetic and pharmaceutical industries: Valorization of a by-product. Ind. Crops Prod. 2020, 154, 112675. [Google Scholar] [CrossRef]
- Yamakoshi, J.; Otsuka, F.; Sano, A.; Tokutake, S.; Saito, M.; Kikuchi, M.; Kubota, Y. Lightening effect on ultraviolet—Induced pigmentation of guinea pig skin by oral administration of a proanthocyanidin—Rich extract from grape seeds. Pigment. Cell Res. 2003, 16, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Michailidis, D.; Angelis, A.; Nikolaou, P.E.; Mitakou, S.; Skaltsounis, A.L. Exploitation of Vitis vinifera, Foeniculum vulgare, Cannabis sativa and Punica granatum by-product seeds as dermo-cosmetic agents. Molecules 2021, 26, 731. [Google Scholar] [CrossRef] [PubMed]
- Sharif, A.; Akhtar, N.; Khan, M.S.; Menaa, A.; Menaa, B.; Khan, B.A.; Menaa, F. Formulation and evaluation on human skin of a water-in-oil emulsion containing Muscat hamburg black grape seed extract. Int. J. Cosmet. Sci. 2015, 37, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Ferri, M.; Rondini, G.; Calabretta, M.M.; Michelini, E.; Vallini, V.; Fava, F.; Roda, A.; Minnucci, G.; Tassoni, A. White grape pomace extracts, obtained by a sequential enzymatic plus ethanol-based extraction, exert antioxidant, anti-tyrosinase and anti-inflammatory activities. New Biotechnol. 2017, 39, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Nishiumi, S.; Mukai, R.; Ichiyanagi, T.; Ashida, H. Suppression of lipopolysaccharide and galactosamine-induced hepatic inflammation by red grape pomace. J. Agric. Food Chem. 2012, 60, 9315–9320. [Google Scholar] [CrossRef]
- Terra, X.; Valls, J.; Vitrac, X.; Mérrillon, J.M.; Arola, L.; Ardèvol, A.; Bladé, C.; Fernández-Larrea, J.; Pujadas, G.; Salvadó, J.; et al. Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J. Agric. Food Chem. 2007, 55, 4357–4365. [Google Scholar] [CrossRef]
- Belsito, M.; Hill, R.A.; Klaassen, C.D.; Liebler, D.; Marks, J.G.; Ronald, C. Vitis vinifera (Grape) Ingredients as Used in Cosmetics; CIR: Washington, DC, USA, 2012; pp. 1–29. [Google Scholar]
- Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety assessment of Vitis vinifera (Grape)-derived ingredients as used in cosmetics. Int. J. Toxicol. 2014, 33 (Suppl. S3), 48S–83S. [Google Scholar] [CrossRef]
- Baroi, A.M.; Popitiu, M.; Fierascu, I.; Sărdărescu, I.-D.; Fierascu, R.C. Grapevine Wastes: A Rich Source of Antioxidants and Other Biologically Active Compounds. Antioxidants 2022, 11, 393. [Google Scholar] [CrossRef]
- Atatoprak, T.; Amorim, M.M.; Ribeiro, T.; Pintado, M.; Madureira, A.R. Grape stalk valorization for fermentation purposes. Food Chem. 2022, 4, 100067. [Google Scholar] [CrossRef]
- Blackford, M.; Comby, M.; Zeng, L.; Dienes-Nagy, Á.; Bourdin, G.; Lorenzini, F.; Bach, B. A review on stems composition and their impact on wine quality. Molecules 2021, 26, 1240. [Google Scholar] [CrossRef]
- Fia, G. Wine Lees: Traditional and Potential Innovative Techniques for their Exploitation in Winemaking. In Grape and Wine Biotechnology; Morata, A., Loira, I., Eds.; IntechOpen: London, UK, 2016; pp. 345–359. [Google Scholar] [CrossRef] [Green Version]
- Sancho-Galán, P.; Amores-Arrocha, A.; Jiménez-Cantizano, A.; Palacios, V. Physicochemical and nutritional characterization of winemaking lees: A new food ingredient. Agronomy 2020, 10, 996. [Google Scholar] [CrossRef]
- Troilo, M.; Difonzo, G.; Paradiso, V.M.; Summo, C.; Caponio, F. Bioactive compounds from vine shoots, grape stalks, and wine lees: Their potential use in agro-food chains. Foods 2021, 10, 342. [Google Scholar] [CrossRef]
- Cosmetics Europe—The Personal Care Association. Cosmetics Industry. Available online: https://cosmeticseurope.eu/cosmetics-industry/ (accessed on 1 January 2023).
- Rodrigues, F.; Gaspar, C.; Palmeira-de-Oliveira, A.; Sarmento, B.; Helena Amaral, M.; Oliveira, M.B.P.P. Application of coffee silverskin in cosmetic formulations: Physical/antioxidant stability studies and cytotoxicity effects. Drug Dev. Ind. Pharm. 2016, 42, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.; de la Luz Cádiz-Gurrea, M.; Nunes, M.A.; Pinto, D.; Vinha, A.F.; Linares, I.B.; Oliveira, M.B.P.P.; Carretero, A.S. Cosmetics. In Polyphenols: Properties, Recovery, and Applications; Galanakis, C.M., Ed.; Woodhead Publishing: Cambridge, MA, USA, 2018; pp. 393–427. [Google Scholar] [CrossRef]
- Crăciun, A.L.; Gutt, G. Optimization of Experimental Parameters in the Solvent Extraction of Trans-Resveratrol from Pruning Waste of Vitis vinifera, Fetească Neagră Variety. Appl. Sci. 2023, 13, 823. [Google Scholar] [CrossRef]
- Santos, M.A.; Franco, F.N.; Caldeira, C.A.; de Araújo, G.R.; Vieira, A.; Chaves, M.M. Resveratrol has its antioxidant and anti-inflammatory protective mechanisms decreased in aging. Arch. Gerontol. Geriatr. 2023, 107, 104895. [Google Scholar] [CrossRef]
- Augustin, M.A.; Sanguansri, L.; Lockett, T. Nano- and micro-encapsulated systems for enhancing the delivery of resveratrol. Ann. N. Y. Acad. Sci. 2013, 1290, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Soleymani, S.; Iranpanah, A.; Najafi, F.; Belwal, T.; Ramola, S.; Abbasabadi, Z.; Momtaz, S.; Farzaei, M.H. Implications of grape extract and its nanoformulated bioactive agent resveratrol against skin disorders. Arch. Dermatol. Res. 2019, 311, 577–588. [Google Scholar] [CrossRef]
- TheraVineTM. Product: Grapeseed Facial Exfoliator-50 mL. Available online: https://www.theravine.co.za/product/grapeseed-facial-exfoliator-50mL/ (accessed on 23 October 2022).
- CAUDALIE®. Gentle Buffing Cream Vinoclean. Available online: https://uk.caudalie.com/p/303/vinoclean-gentle-buffing-cream-303.html (accessed on 23 October 2022).
- DVINE. Products: Esfoliante Facial Com Grainha de Uva. Available online: https://dvineskin.com/products/esfoliante-facial-com-grainha-de-uva?_pos=1&_sid=5e63d7c46&_ss=r (accessed on 23 October 2022).
- VINOBLE Cosmetics GmbH. Cleansing Scrub. Available online: https://www.vinoble-cosmetics.com/cleansing-scrub.html (accessed on 23 October 2022).
- VINOBLE Cosmetics GmbH. Enzyme Scrub. Available online: https://www.vinoble-cosmetics.com/enzyme-scrub.html (accessed on 23 October 2022).
- TheraVineTM. Product: Grapeseed Body Exfoliator-250 mL. Available online: https://www.theravine.co.za/product/grapeseed-body-exfoliator-250ml/ (accessed on 23 October 2022).
- VINOBLE Cosmetics GmbH. Salt & Grape Seed Scrub. Available online: https://www.vinoble-cosmetics.com/salt-grape-seed-scrub.html (accessed on 23 October 2022).
- The Body Shop International Limited. Body: Body Scrubs: Spa of the World™ French Grape Seed Scrub. Available online: https://www.thebodyshop.com/en-sg/body/body-scrubs/spa-of-the-world-french-grape-seed-scrub/p/p002420 (accessed on 23 October 2022).
- CAUDALIE®. Crushed Cabernet Scrub Vinosculpt. Available online: https://pt.caudalie.com/esfoliante-crushed-cabernet-366.html (accessed on 23 October 2022).
- CAUDALIE®. Glycolic Peeling Mask Vinoperfect. Available online: https://pt.caudalie.com/p/328/mascara-peeling-glicolica-vinoperfect-328.html?q=peeling (accessed on 8 February 2023).
- CAUDALIE®. Hydrating Cream Mask Vinosource-Hydra. Available online: https://pt.caudalie.com/p/338/mascara-creme-hidratante-vinosource-hydra-338.html (accessed on 8 February 2023).
- VINOBLE Cosmetics GmbH. Regenerating & Detoxifying Mask. Available online: https://www.vinoble-cosmetics.com/regenerating-detoxifying-mask.html (accessed on 8 February 2023).
- TheraVineTM. Product: HydraVine™ Chardonnay Grape Mask (Set of 2). Available online: https://www.theravine.co.za/product/hydravinetm-chardonnay-grape-mask-2-pack-6-pack/ (accessed on 8 February 2023).
- dieNikolai. Product: Grapeseed Oil Darling. Available online: https://www.dienikolai.at/en/product/grapeseed-oil-darling/ (accessed on 8 February 2023).
- BIOLAVEN. Product: BIOLAVEN Day Face Cream. Available online: https://biolaven.pl/produkt/biolaven-krem-do-twarzy-na-dzien/ (accessed on 8 February 2023).
- Schaf Skincare©. Products: Restore. Available online: https://www.schafskincare.com/products/restore?_pos=2&_sid=76c4be0cf&_ss=r (accessed on 8 February 2023).
- KORRES©. Sunscreens: Sunscreens Hair: Red Vine Hair Sun Protection. Available online: https://global.korres.com/sunscreens/sunscreens-hair/red-vine-hair-sun-protection-21001132 (accessed on 8 February 2023).
- Patchology©. Collections: Eyes: Products: SERVE CHILLED™ ROSÉ EYE GELS. Available online: https://patchology.co.uk/collections/eyes/products/serve-chilled-rose-eye-gels (accessed on 8 February 2023).
- Ferreira, L.; Pires, P.C.; Fonseca, M.; Costa, G.; Giram, P.S.; Mazzola, P.G.; Bell, V.; Mascarenhas-Melo, F.; Veiga, F.; Paiva-Santos, A.C. Nanomaterials in Cosmetics: An Outlook for European Regulatory Requirements and a Step Forward in Sustainability. Cosmetics 2023, 10, 53. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- INdermal. Available online: https://indermal.com/en/index-english/ (accessed on 30 April 2023).
- Jøraholmen, M.W.; Škalko-Basnet, N.; Acharya, G.; Basnet, P. Resveratrol-loaded liposomes for topical treatment of the vaginal inflammation and infections. Eur. J. Pharm. Sci. 2015, 79, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Park, S.N.; Jo, N.R.; Jeon, S.H. Chitosan-coated liposomes for enhanced skin permeation of resveratrol. J. Ind. Eng. Chem. 2014, 20, 1481–1485. [Google Scholar] [CrossRef]
- Caddeo, C.; Pucci, L.; Gabriele, M.; Carbone, C.; Fernàndez-Busquets, X.; Valenti, D.; Pons, R.; Vassallo, A.; Fadda, A.M.; Manconi, M. Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol. Int. J. Pharm. 2018, 538, 40–47. [Google Scholar] [CrossRef]
- Manconi, M.; Marongiu, F.; Castangia, I.; Manca, M.L.; Caddeo, C.; Tuberoso, C.I.G.; Bacchetta, G.; Fadda, A.M. Polymer-associated liposomes for the oral delivery of grape pomace extract. Colloids Surf. B Biointerfaces 2016, 146, 910–917. [Google Scholar] [CrossRef] [PubMed]
- Caddeo, C.; Nacher, A.; Vassallo, A.; Armentano, M.F.; Pons, R.; Fernàndez-Busquets, X.; Carbone, C.; Valenti, D.; Fadda, A.M.; Manconi, M. Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. Int. J. Pharm. 2016, 513, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Caddeo, C.; Teskač, K.; Sinico, C.; Kristl, J. Effect of resveratrol incorporated in liposomes on proliferation and UV-B protection of cells. Int. J. Pharm. 2008, 363, 183–191. [Google Scholar] [CrossRef]
- Castangia, I.; Marongiu, F.; Manca, M.L.; Pompei, R.; Angius, F.; Ardu, A.; Fadda, A.M.; Manconi, M.; Ennas, G. Combination of grape extract-silver nanoparticles and liposomes: A totally green approach. Eur. J. Pharm. Sci. 2017, 97, 62–69. [Google Scholar] [CrossRef]
- Vitonyte, J.; Manca, M.L.; Caddeo, C.; Valenti, D.; Peris, J.E.; Usach, I.; Nacher, A.; Matos, M.; Gutiérrez, G.; Orrù, G.; et al. Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries. Eur. J. Pharm. Biopharm. 2017, 114, 278–287. [Google Scholar] [CrossRef]
- Doppalapudi, S.; Mahira, S.; Khan, W. Development and in vitro assessment of psoralen and resveratrol co-loaded ultradeformable liposomes for the treatment of vitiligo. J. Photochem. Photobiol. B Biol. 2017, 174, 44–57. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Tripathi, P.; Gupta, R.; Pandey, S. Niosomes: A review on niosomal research in the last decade. J. Drug Deliv. Sci. Technol. 2020, 56, 101581. [Google Scholar] [CrossRef]
- Pando, D.; Gutiérrez, G.; Coca, J.; Pazos, C. Preparation and characterization of niosomes containing resveratrol. J. Food Eng. 2013, 117, 227–234. [Google Scholar] [CrossRef]
- Pando, D.; Matos, M.; Gutiérrez, G.; Pazos, C. Formulation of resveratrol entrapped niosomes for topical use. Colloids Surf. B Biointerfaces 2015, 128, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Schlich, M.; Lai, F.; Pireddu, R.; Pini, E.; Ailuno, G.; Fadda, A.M.; Valenti, D.; Sinico, C. Resveratrol proniosomes as a convenient nanoingredient for functional food. Food Chem. 2020, 310, 125950. [Google Scholar] [CrossRef] [PubMed]
- Negi, P.; Aggarwal, M.; Sharma, G.; Rathore, C.; Sharma, G.; Singh, B.; Katare, O.P. Niosome-based hydrogel of resveratrol for topical applications: An effective therapy for pain related disorder(s). Biomed. Pharmacother. 2017, 88, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Verma, G.; Rajagopalan, M.D.; Valluru, R.; Sridhar, K.A. Nanoparticles: A novel approach to target tumors. In Nano-and Microscale Drug Delivery Systems; Grumezescu, A.M., Ed.; Elsevier: Oxford, UK, 2017; pp. 113–129. [Google Scholar] [CrossRef]
- Rigon, R.B.; Fachinetti, N.; Severino, P.; Santana, M.H.; Chorilli, M. Skin delivery and in vitro biological evaluation of trans-resveratrol-loaded solid lipid nanoparticles for skin disorder therapies. Molecules 2016, 21, 116. [Google Scholar] [CrossRef] [Green Version]
- Chopra, H.; Bibi, S.; Islam, F.; Ahmad, S.U.; Olawale, O.A.; Alhumaydhi, F.A.; Marzouki, R.; Baig, A.A.; Emran, T.B. Emerging trends in the delivery of resveratrol by nanostructures: Applications of nanotechnology in life sciences. J. Nanomater. 2022, 2022, 3083728. [Google Scholar] [CrossRef]
- Imran, M.; Iqubal, M.K.; Imtiyaz, K.; Saleem, S.; Mittal, S.; Rizvi, M.M.A.; Ali, J.; Baboota, S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int. J. Pharm. 2020, 587, 119705. [Google Scholar] [CrossRef]
- Simonetti, G.; Palocci, C.; Valletta, A.; Kolesova, O.; Chronopoulou, L.; Donati, L.; Di Nitto, A.; Brasili, E.; Tomai, P.; Gentili, A.; et al. Anti-Candida biofilm activity of pterostilbene or crude extract from non-fermented grape pomace entrapped in biopolymeric nanoparticles. Molecules 2019, 24, 2070. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wei, N.; Lopez-Garcia, M.; Ambrose, D.; Lee, J.; Annelin, C.; Peterson, T. Development and evaluation of resveratrol, Vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications. Eur. J. Pharm. Biopharm. 2017, 117, 286–291. [Google Scholar] [CrossRef]
- Gokce, E.H.; Korkmaz, E.; Dellera, E.; Sandri, G.; Bonferoni, M.C.; Ozer, O. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: Evaluation of antioxidant potential for dermal applications. Int. J. Nanomed. 2012, 7, 1841–1850. [Google Scholar] [CrossRef] [Green Version]
- Felippi, C.C.; Oliveira, D.; Ströher, A.; Carvalho, A.R.; Van Etten, E.A.A.; Bruschi, M.; Raffin, R.P. Safety and efficacy of antioxidants-loaded nanoparticles for an anti-aging application. J. Biomed. Nanotechnol. 2012, 8, 316–321. [Google Scholar] [CrossRef]
- Friedrich, R.B.; Kann, B.; Coradini, K.; Offerhaus, H.L.; Beck, R.C.; Windbergs, M. Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin. Eur. J. Pharm. Sci. 2015, 78, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Shrotriya, S.N.; Ranpise, N.S.; Vidhate, B.V. Skin targeting of resveratrol utilizing solid lipid nanoparticle-engrossed gel for chemically induced irritant contact dermatitis. Drug Deliv. Transl. Res. 2017, 7, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Neves, A.R.; Lúcio, M.; Martins, S.; Lima, J.L.C.; Reis, S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int. J. Nanomed. 2013, 8, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Pandita, D.; Kumar, S.; Poonia, N.; Lather, V. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res. Int. 2014, 62, 1165–1174. [Google Scholar] [CrossRef]
- Teskač, K.; Kristl, J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int. J. Pharm. 2010, 390, 61–69. [Google Scholar] [CrossRef]
- Suktham, K.; Koobkokkruad, T.; Wutikhun, T.; Surassmo, S. Efficiency of resveratrol-loaded sericin nanoparticles: Promising bionanocarriers for drug delivery. Int. J. Pharm. 2018, 537, 48–56. [Google Scholar] [CrossRef]
- Cerqueira, M.A.; Pinheiro, A.C.; Silva, H.D.; Ramos, P.E.; Azevedo, M.A.; Flores-López, M.L.; Rivera, M.C.; Bourbon, A.I.; Ramos, O.L.; Vicente, A.A. Design of bio-nanosystems for oral delivery of functional compounds. Food Eng. Rev. 2014, 6, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.J.; Lu, I.J.; Fu, Y.S.; Fang, Y.P.; Huang, Y.B.; Wu, P.C. Nanocarriers enhance the transdermal bioavailability of resveratrol: In-vitro and in-vivo study. Colloids Surf. B Biointerfaces 2016, 148, 650–656. [Google Scholar] [CrossRef]
- Pangeni, R.; Sharma, S.; Mustafa, G.; Ali, J.; Baboota, S. Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress. Nanotechnology 2014, 25, 485102. [Google Scholar] [CrossRef]
- Sharma, B.; Iqbal, B.; Kumar, S.; Ali, J.; Baboota, S. Resveratrol-loaded nanoemulsion gel system to ameliorate UV-induced oxidative skin damage: From in vitro to in vivo investigation of antioxidant activity enhancement. Arch. Dermatol. Res. 2019, 311, 773–793. [Google Scholar] [CrossRef]
- Davidov-Pardo, G.; McClements, D.J. Nutraceutical delivery systems: Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem. 2015, 167, 205–212. [Google Scholar] [CrossRef]
- Mu, W.; Chu, Q.; Liu, Y.; Zhang, N. A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Lett. 2020, 12, 142. [Google Scholar] [CrossRef] [PubMed]
- Pentek, T.; Newenhouse, E.; O’Brien, B.; Chauhan, A.S. Development of a topical resveratrol formulation for commercial applications using dendrimer nanotechnology. Molecules 2017, 22, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Ye, F.; Lu, K.; Hui, Q.; Miao, M. Characterizations and bioavailability of dendrimer-like glucan nanoparticulate system containing resveratrol. J. Agric. Food Chem. 2020, 68, 6420–6429. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, C.; Rimicci, C.; Garelli, S.; Ugazio, E.; Battaglia, L. Nanosystems in Cosmetic Products: A Brief Overview of Functional, Market, Regulatory and Safety Concerns. Pharmaceutics 2021, 13, 1408. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N. New Insights on Unique Features and Role of Nanostructured Materials in Cosmetics. Cosmetics 2020, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Sahu, S.C. Impact of Nanotechnology in the Modern World. Ann. Clin. Case Stud. 2023, 5, 1082. [Google Scholar]
- Gupta, V.; Mohapatra, S.; Mishra, H.; Farooq, U.; Kumar, K.; Ansari, M.J.; Aldawsari, M.F.; Alalaiwe, A.S.; Mirza, M.A.; Iqbal, Z. Nanotechnology in Cosmetics and Cosmeceuticals—A Review of Latest Advancements. Gels 2022, 8, 173. [Google Scholar] [CrossRef]
- Cardoza, C.; Nagtode, V.; Pratap, A.; Mali, S.N. Emerging applications of nanotechnology in cosmeceutical health science: Latest updates. Health Sci. Rev. 2022, 4, 100051. [Google Scholar] [CrossRef]
- Krishnaswamy, K.; Orsat, V. Sustainable delivery systems through green nanotechnology. In Nano-and Microscale Drug Delivery Systems; Grumezescu, A.M., Ed.; Elsevier: Oxford, UK, 2017; pp. 17–32. [Google Scholar] [CrossRef]
- Huguet-Casquero, A.; Gainza, E.; Pedraz, J.L. Towards green nanoscience: From extraction to nanoformulation. Biotechnol. Adv. 2021, 46, 107657. [Google Scholar] [CrossRef]
Grapevine Variety | Grape By-Product | Type of Study | Biological Effect | Reference Source |
---|---|---|---|---|
—— | Seed extract | Human Dermal Fibroblasts | Increased cell viability, UVA protection | [35] |
Vitis vinifera L. | Seed extract | In vitro | UVA photoprotection, antioxidant activity | [36] |
Vitis vinifera L. | Seed extract | In vitro | Antioxidant activity | [26] |
Vitis labrusca L. | Pomace | In vitro | [32] | |
Mamaia | Pomace extract | In vitro | [30] | |
Carignano | Skins extract | In vitro | [34] | |
—— | Seed extract | In vitro | Antioxidant activity, sun protection factor (SPF) booster | [37] |
Touriga Nacional, Touriga Francesa, and Tinta-roriz | Pomace/seed extract and oil | In vitro | Antioxidant and antimicrobial effects | [29] |
Vitis vinifera | Shoot extract | In vitro, in vivo | Antioxidant and anti-ageing effects | [38] |
Tempranillo | Lees extract | In vitro, keratinocyte and fibroblast cell cultures | Antioxidant, anti-tyrosinase, -elastase, and -collagenase activities; cellular protective effect against oxidative damage | [33] |
Red grape | Seeds and stalks extract | In vitro, keratinocyte and fibroblast cell cultures | Antioxidant activity, cellular protective effect against oxidative damage | [39] |
Vitis vinifera L. | Stems extract | In vitro | Antioxidant, anti-elastase and -tyrosinase activities, antimicrobial activity against Staphylococcus aureus, anti-inflammatory, and anti-ageing effects | [40] |
Vitis vinifera L. | Seed extract | In vivo (Guinea pigs skin) | Tyrosinase inhibition (whitening effect) | [41] |
Vitis vinifera L. | Seed paste | In vitro enzymatic assay | Anti-tyrosinase, -elastase, and -collagenase activities | [42] |
Vitis vinifera | Seed extract | In vivo | Skin whitening, anti-ageing, and anti-acne effects | [43] |
Vitis vinifera L. | Pomace extract | In vitro enzymatic assays, human embryonic kidney HEK293 cells ATCC | Tyrosinase and elastase inhibition, anti-inflammatory activity | [44] |
Vitis vinifera | Pomace | In vivo | Anti-inflammatory activity | [45] |
—— | Seed extract | Raw 264.7 macrophages | [46] |
Type of Cosmetic | Application Site | Company/Brand | Designation | Ingredients | Claims | Price | Reference Source |
---|---|---|---|---|---|---|---|
Scrubs | Face | TheraVineTM | Grape seed Facial Exfoliator | Crushed grape seed beads *, grape seed oil * | Removes dead cells; more radiant, refined, and youthful skin | —— | [62] |
CAUDALIE® | VINOCLEAN Gentle Buffing Cream | Grape seed oil * | Removes dead cells; cleans and purifies the face; clean, smooth, and radiant skin | 21 EUR (75 mL) | [63] | ||
DVINE Skin | Light Harvest Facial Exfoliator | Grape seed powder *, grape seed extract * | Removes dead cells l; cellular renovation improvement; uniform skin texture | 22.40 EUR (125 mL) | [64] | ||
Vinoble Cosmetics | Cleansing scrub | Grape seed oil * | Removes dirt, sebum, and excess skin cells; skin protection; cooling effect | 129 EUR (200 mL) | [65] | ||
Enzyme scrub | Grape seed extract * | Frees the skin from dander; makes the skin more receptive to the following active ingredients | 56 EUR (50 mL) | [66] | |||
Body | TheraVineTM | Grape seed Body Exfoliator | Crushed Pinotage grape seeds * | Lift impurities and dead surface skin cells | —— | [67] | |
Vinoble Cosmetics | Salt & grape seed scrub | Grape seed extract * | Loosens dead skin cells and smooths the skin; detoxifying and purifying | 22 EUR (100 mL) | [68] | ||
The Body Shop® | Spa of the WorldTM French grape seed scrub | Grape seed oil, grape seed powder | Helps to invigorate, exfoliate, and refine the skin; smoother and softer skin | 15.88 EUR (100 mL) | [69] | ||
CAUDALIE® | Crushed Cabernet Scrub Vinosculpt | Grape seed oil *, grape seed powder | Gently eliminates dead cells; reduces skin irregularities; smoother skin | 28.90 EUR (225 g) | [70] | ||
Masks | Face | CAUDALIE® | Glycolic peeling mask Vinoperfect | Grape seed oil, grapevine shoot extract | Anti-tyrosinase, anti-blemishes | 25.50 EUR (75 mL) | [71] |
Hydrating cream mask Vinosource-Hydra | Grape water *, grape seed oil *, grape seed extract, grape juice | Hydrates, soothes, antioxidant effect | 23.90 EUR (75 mL) | [72] | |||
Vinoble Cosmetics | Regenerating & detoxifying mask | Grape seed oil *, grape flower cell extract, vine extract | Regenerates and purifies | 199 EUR (50 mL) | [73] | ||
TheraVineTM | HydraVine™ Chardonnay Grape tissue Mask | Grape seed Extract * | Soothes, desensitises and hydrates | —— | [74] | ||
Creams | Face | dieNikolai | Grapeseed Oil Darling | Grape seed oil *, grape skin extract | Moistures and strengthens skin | 69 EUR (50 mL) | [75] |
BIOLAVEN | BIOLAVEN Day Face Cream | Grape seed oil * | Hydrates and softens | 7.60 EUR (50 mL) | [76] | ||
Schaf Skincare© | Restore | Grape seed oil | Balances skin’s moisture barrier | 95.52 EUR (30 mL) | [77] | ||
Sun protection | Hair | KORRES© | Red Vine Hair sun protection | Grape seed extract | Water-resistant UV filters | 15.50 EUR (150 mL) | [78] |
Eye care | Eye | Patchology© | SERVE CHILLED™ ROSÉ EYE GELS | Resveratrol * | Calms inflammation | 33.76 EUR (15 units) | [79] |
Nano-Delivery System | Material | Loaded Compound | Advantages/Application | Reference Source |
---|---|---|---|---|
Liposomes/Nanovesicles | Glycerol, Montanov 82®, or a mix | Grape pomace skin extract | Boosted antioxidant activity | [34] |
Chitosan | Resveratrol | Ca. 75% encapsulation efficiency; Topical treatment of vaginal inflammation and infections | [83] | |
Chitosan | Increased amount of resveratrol that permeates skin | [84] | ||
PEG | Improved liposome stability | [85] | ||
Sodium alginate or Arabic gum | Grape pomace extract | Good encapsulation efficiency; applicability in nutraceutical industry | [86] | |
Lipoid S75, oleic acid and ATX Tris buffer | Resveratrol and quercetin | Enhanced human dermal fibroblasts viability | [87] | |
P90G, DCP, cholesterol or lecithin alone | Resveratrol | Good liposome and resveratrol stability; Increased efficacy of the treatment of UV-caused skin disorders | [88] | |
Propylene glycol; grape–silver nanoparticles for stabilizing the liposomes | Grape pomace extract | Antimicrobial activity against S. aureus and P. aeruginosa; Antioxidative stress effect | [89] | |
Phospholipid | Resveratrol and gallic acid | Antimicrobial activity boost; antioxidative stress effect | [90] | |
DC-Chol, cholesterol, and SDC | Resveratrol and psoralen | Increased tyrosinase activity and melanin production; potential for vitiligo treatment | [91] | |
Niosomes | Span 80 or Span 60-cholesterol mix | Resveratrol | —— | [93] |
Gelot 64 and oleic acid/linoleic acid | Enhanced stability and entrapment efficiency | [94] | ||
Tween 20/Span 60 (surfactants) and cholesterol | Minimal cytotoxicity | [95] | ||
Span 80 and cholesterol | Increased biological half-life; decreased time until maximum cutaneous concentration | [96] | ||
Nanoparticles | SLNPs: Stearic acid, poloxamer 407, soy phosphatidylcholine and an aqueous phase | Resveratrol | Enhanced tyrosinase inhibition (better than kojic acid); non-toxic for HaCat cells; best drug permeation | [98] |
NLC: 1% lipid mix (Labrafil M 2125CS and Labrafil M 2130CS); Aqueous phase (5% Cremophor RH40 in distilled water) | Resveratrol and quercetin | Improved disposition in dermal and epidermal layers; resveratrol encapsulation close to 90% | [100] | |
Poly(lactic-co-glycolic) acid | Grape pomace extract | Boosted antifungal efficacy against C. albicans (reduced biofilm formation and maturation) | [101] | |
Compritol 888ATO, Myglyol, Poloxamer188, and Tween 80 | Resveratrol | Improved antioxidant activity; NLCs more effective than SNLPs for epidermal deep penetration | [103] | |
NanoAging Reverse® (Inventiva) | Grape seed oil | Significant reduction in wrinkles | [104] | |
Poly(ε-caprolactone), sorbitan monostearate and grape seed oil | Resveratrol and curcumin | Improved photostability; enhanced resveratrol penetration and skin absorption; treatment of sunburns | [105] | |
Precirol ATO 5 (lipid), Tween 20 (Hydrophilic surfactant) and Span 80 (Lipophilic surfactant) | Resveratrol | Encapsulation efficiency of 68–89%; controlled drug release up to 24 h; no skin irritation | [106] | |
SLNPs: cetyl palmitate and Polysorbate 60 (surfactant) NLCs: cetyl palmitate, Polysorbate 60 and miglyol-812 | Encapsulation efficiency of 70% | [107] | ||
SLNPs: stearic acid and poloxamer 188 (surfactant) | Encapsulation efficiency of 89%; controlled drug release up to 24 h | [108] | ||
Compritol 888 ATO (lipid); Phospholipon 80H (emulsifier) and Poloxamer 188 (surfactant) | Trespass keratinocytes membranes without causing alterations in cell morphology and function | [109] | ||
Sericin protein | Encapsulation efficiency of 71–75%; non-toxic for dermal fibroblasts; continuous drug release up to 72 h | [110] | ||
Nanoemulsions | Caproyl 90/isopropyl myristate (oil phase); Propylene glycol and ethanol (cosurfactants) | Resveratrol | Increased transdermal and deposition in skin; | [112] |
Vitamin E and sefsol (oil phase); Tween 80 and Transcutol P (surfactants) | ca. 88% drug release rate | [113] | ||
Sefsol 218® (oil phase); PEG 400 (co-surfactant); Tween 80 (surfactant) and water (aqueous phase) | Improved permeability and antioxidant activity | [114] | ||
Grape seed oil and orange oil (oil phase); Tween 80 (surfactant) | Improved stability after UV exposure; enhanced drug retention | [115] | ||
Dendrimers | Polyamidoamide | Resveratrol | Enhanced solubility and stability; more efficiency in loading and skin penetration | [117] |
Glucan | Improved bioactivity, bioavailability, and solubility; higher antioxidant activity and cellular uptake | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, M.L.; Ferreira, J.P.; Pintado, M.; Ramos, O.L.; Borges, S.; Baptista-Silva, S. Grape By-Products in Sustainable Cosmetics: Nanoencapsulation and Market Trends. Appl. Sci. 2023, 13, 9168. https://doi.org/10.3390/app13169168
Castro ML, Ferreira JP, Pintado M, Ramos OL, Borges S, Baptista-Silva S. Grape By-Products in Sustainable Cosmetics: Nanoencapsulation and Market Trends. Applied Sciences. 2023; 13(16):9168. https://doi.org/10.3390/app13169168
Chicago/Turabian StyleCastro, Maria Leonor, João Paulo Ferreira, Manuela Pintado, Oscar L. Ramos, Sandra Borges, and Sara Baptista-Silva. 2023. "Grape By-Products in Sustainable Cosmetics: Nanoencapsulation and Market Trends" Applied Sciences 13, no. 16: 9168. https://doi.org/10.3390/app13169168
APA StyleCastro, M. L., Ferreira, J. P., Pintado, M., Ramos, O. L., Borges, S., & Baptista-Silva, S. (2023). Grape By-Products in Sustainable Cosmetics: Nanoencapsulation and Market Trends. Applied Sciences, 13(16), 9168. https://doi.org/10.3390/app13169168