Marine-Originated Materials and Their Potential Use in Biomedicine
Abstract
:1. Introduction
2. Seaweed-Originated Components
Biomedical and Food Applications of Seaweed-Originated Components
Potential Risk of Seaweed-Originated Components
3. Marine Sponge-Originated Components
Biomedical Applications of Marine Sponge-Originated Components
4. Arthropod-Originated Components and Their Biomedical Applications
5. Mollusk-Originated Components and Their Biomedical Applications
6. Cnidaria-Originated Components and Their Biomedical Applications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dijkstra, K.D.; Monaghan, M.T.; Pauls, S.U. Freshwater biodiversity and aquatic insect diversification. Annu. Rev. Entomol. 2014, 59, 143–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyd, C.E.; McNevin, A.A.; Davis, R.P. The contribution of fisheries and aquaculture to the global protein supply. Food Secur. 2022, 14, 805–827. [Google Scholar] [CrossRef] [PubMed]
- Wijffels, R.H. Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol. 2008, 26, 26–31. [Google Scholar] [CrossRef]
- Casadidio, C.; Peregrina, D.V.; Gigliobianco, M.R.; Deng, S.; Censi, R.; Di Martino, P. Chitin and Chitosans: Characteristics, Eco-Friendly Processes, and Applications in Cosmetic Science. Mar. Drugs 2019, 17, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarado-Gómez, E.; Tapia, J.I.; Encinas, A. A sustainable hydrophobic luffa sponge for efficient removal of oils from water. Sustain. Mater. Technol. 2021, 28, e00273. [Google Scholar] [CrossRef]
- Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; et al. Marine Natural Products: A Source of Novel Anticancer Drugs. Mar. Drugs 2019, 17, 491. [Google Scholar] [CrossRef] [Green Version]
- Lomartire, S.; Gonçalves, A.M.M. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Mar. Drugs 2022, 20, 141. [Google Scholar] [CrossRef] [PubMed]
- Mhadhebi, L.; Mhadhebi, A.; Robert, J.; Bouraoui, A. Antioxidant, Anti-inflammatory and Antiproliferative Effects of Aqueous Extracts of Three Mediterranean Brown Seaweeds of the Genus Cystoseira. Iran. J. Pharm. Res. 2014, 13, 207–220. [Google Scholar]
- Zokm, G.M.E.; Ismail, M.M.; Okbah, M.A.E. Seaweed as bioindicators of organic micropollutants polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs). Environ. Sci. Pollut. Res. 2022, 29, 34738–34748. [Google Scholar] [CrossRef]
- Farghali, M.; Mohamed, I.M.A.; Osman, A.I.; Rooney, D.W. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: A review. Environ. Chem. Lett. 2023, 21, 97–152. [Google Scholar] [CrossRef]
- Taylor, M.W.; Radax, R.; Steger, D.; Wagner, M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 2007, 71, 295–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varijakzhan, D.; Loh, J.Y.; Yap, W.S.; Yusoff, K.; Seboussi, R.; Lim, S.E.; Lai, K.S.; Chong, C.M. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Mar. Drugs 2021, 219, 246. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.R.; Sieglaff, D.H.; Rees, H.H. Gonadal ecdysteroidogenesis in arthropoda: Occurrence and regulation. Annu. Rev. Entomol. 2009, 54, 105–125. [Google Scholar] [CrossRef]
- Bentov, S.; Aflalo, E.D.; Tynyakov, J.; Glazer, L.; Sagi, A. Calcium phosphate mineralization is widely applied in crustacean mandibles. Sci. Rep 2016, 6, 22118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wu, X.; Quan, L.; Ao, Q. Characteristics of Marine Biomaterials and Their Applications in Biomedicine. Mar. Drugs 2022, 20, 372. [Google Scholar] [CrossRef] [PubMed]
- Pila, E.A.; Sullivan, J.T.; Wu, X.Z.; Fang, J.; Rudko, S.P.; Gordy, M.A.; Hanington, P.C. Haematopoiesis in molluscs: A review of haemocyte development and function in gastropods, cephalopods and bivalves. Dev. Comp. Immunol. 2016, 58, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Lagopati, N.; Agathopoulos, S. Hydroxyapatite Scaffolds Produced from Cuttlefish Bone via Hydrothermal Transformation for Application in Tissue Engineering and Drug Delivery Systems. In Marine-Derived Biomaterials for Tissue Engineering Applications; Choi, A., Ben-Nissan, B., Eds.; Springer Series in Biomaterials Science and Engineering; Springer: Singapore, 2019; Volume 14, pp. 179–205. [Google Scholar] [CrossRef]
- Seyhan, S.A.; Alkaya, D.B.; Cesur, S.; Oktar, F.N.; Gunduz, O. Preparation and characterization of pure natural hydroxyapatite derived from seashells for controlled drug delivery. J. Aust. Ceram. Soc. 2022, 58, 1231–1240. [Google Scholar] [CrossRef]
- Venkatesan, J.; Anil, S. Hydroxyapatite Derived from Marine Resources and their Potential Biomedical Applications. Biotechnol. Bioproc. E 2021, 26, 312–324. [Google Scholar] [CrossRef]
- Ibrahim, M.; Labaki, M.; Giraudon, J.-M.; Lamonier, J.-F. Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review. J. Hazard. Mater. 2020, 383, 121139. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Sharifi-Rad, J.; Seca, A.M.L.; Pinto, D.C.G.A.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019, 24, 4182. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Gupta, V.; Kumari, P.; Reddy, C.R.K.; Jha, B. Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds. J. Food Compost. Anal. 2011, 24, 270–278. [Google Scholar] [CrossRef]
- Peñalver, R.; Lorenzo, J.M.; Ros, G.; Amarowicz, R.; Pateiro, M.; Nieto, G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar. Drugs 2020, 18, 301. [Google Scholar] [CrossRef] [PubMed]
- Syad, A.N.; Shunmugiah, K.P.; Kasi, P.D. Seaweeds as nutritional supplements: Analysis of nutritional profile, physicochemical properties and proximate composition of G. acerosa and S. wightii. Biomed. Prev. Nutr. 2013, 3, 139–144. [Google Scholar] [CrossRef]
- Prasad, K.; Siddhanta, A.K.; Ganesan, M.; Ramavat, B.K.; Jha, B.; Ghosh, P.K. Agars of Gelidiella acerosa of west and southeast coasts of India. Bioresour. Technol. 2007, 98, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- Ruperez, P.; Calixto, F.S. Dietary fibre and physicochemical properties of edible Spanish seaweeds. Eur. Food Res. Technol. 2001, 212, 349–354. [Google Scholar] [CrossRef]
- Xu, J.; Liao, W.; Liu, Y.; Guo, Y.; Jiang, S.; Zhao, C. An overview on the nutritional and bioactive components of green seaweeds. Food. Prod. Process Nutr. 2023, 5, 18. [Google Scholar] [CrossRef]
- Machado, M.; Machado, S.; Pimentel, F.B.; Freitas, V.; Alves, R.C.; Oliveira, M.B.P.P. Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System. Foods 2020, 9, 1382. [Google Scholar] [CrossRef]
- Syakilla, N.; George, R.; Chye, F.Y.; Pindi, W.; Mantihal, S.; Wahab, N.A.; Fadzwi, F.M.; Gu, P.H.; Matanjun, P. A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera. Foods 2022, 11, 2832. [Google Scholar] [CrossRef]
- Circuncisão, A.R.; Catarino, M.D.; Cardoso, S.M.; Silva, A.M.S. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Mar. Drugs 2018, 16, 400. [Google Scholar] [CrossRef] [Green Version]
- Arokiarajan, M.S.; Thirunavukkarasu, R.; Joseph, J.; Ekaterina, O.; Aruni, W. Advance research in biomedical applications on marine sulfated polysaccharide. Int. J. Biol. Macromol. 2022, 194, 870–881. [Google Scholar] [CrossRef]
- MacArtain, P.; Christopher, I.R.; Brooks, G.M.; Campbell, R.; Rowland, I.R. Nutritional value of edible seaweeds. Nutr. Rev. 2007, 65, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Amico, V.; Piatelli, M.; Cunsolo, F.; Recupero, M.; Ruberto, G. Etraprenyltoluquinols as chemotaxonomic markers in the genus Cystoseira: C. barbarula and C. barbata, Gazz. Chim. Ital. 1990, 12, 9–12. [Google Scholar]
- Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and bioactivity. Molecules 2008, 12, 1671–1695. [Google Scholar] [CrossRef] [Green Version]
- Pozharitskaya, O.N.; Shikov, A.N.; Faustova, N.M.; Obluchinskaya, E.D.; Kosman, V.M.; Vuorela, H.; Makarov, V.G. Pharmacokinetic and tissue distribution of fucoidan from Fucus vesiculosus after oral administration to rats. Mar. Drugs 2018, 16, 132. [Google Scholar] [CrossRef] [Green Version]
- Krylova, N.V.; Ermakova, S.P.; Lavrov, V.F.; Leneva, I.A.; Kompanets, G.G.; Iunikhina, O.V.; Nosik, M.N.; Ebralidze, L.K.; Falynskova, I.N.; Silchenko, A.S.; et al. The comparative analysis of antiviral activity of native and modified fucoidans from brown algae Fucus evanescens in Vitro and in Vivo. Mar. Drugs 2020, 18, 224. [Google Scholar] [CrossRef] [Green Version]
- Diogo, J.V.; Novo, S.G.; Gonzalez, M.J.; Ciancia, M.; Bratanich, A.C. Antiviral activity of lambda-carrageenan prepared from red seaweed (Gigartina skottsbergii) against BoHV-1 and SuHV-1. Res. Vet. Sci. 2015, 98, 142–144. [Google Scholar] [CrossRef]
- Vairappan, C.S. Potent antibacterial activity of halogenated metabolites from Red algae Laurencia majuscule (Rhodomelaceae, Ceramiales). Biomol. Eng. 2003, 20, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kim, Y.J.; Kim, H.J.; Kim, Y.S.; Park, W. Immunostimulatory effect of laminarin on RAW 264.7 mouse macrophages. Molecules 2012, 17, 5404–5411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.I.; Kim, H.J.; Lee, J.W. Structural feature and antioxidant activity of low molecular weight laminarin degraded by gamma irradiation. Food Chem. 2011, 129, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Lagopati, N.; Pavlatou, E.A. Advanced Applications of Biomaterials Based on Alginic Acid. Am. J. Biomed. Sci. 2020, 9, 47–53. [Google Scholar] [CrossRef]
- Cervino, G.; Fiorillo, L.; Herford, A.S.; Laino, L.; Troiano, G.; Amoroso, G.; Crimi, S.; Matarese, M.; D’Amico, C.; Nastro Siniscalchi, E.; et al. Alginate Materials and Dental Impression Technique: A Current State of the Art and Application to Dental Practice. Mar. Drugs 2018, 17, 18. [Google Scholar] [CrossRef] [Green Version]
- Kaliampakou, C.; Lagopati, N.; Charitidis, C.A. Direct Ink Writing of Alginate–Gelatin Hydrogel: An Optimization of Ink Property Design and Printing Process Efficacy. Appl. Sci. 2023, 13, 8261. [Google Scholar] [CrossRef]
- Kamran, S.; Sinniah, A.; Abdulghani, M.A.M.; Alshawsh, M.A. Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review. Cancers 2022, 14, 1100. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Sohag, A.A.M.; Dash, R.; Haque, M.N.; Mohibbullah, M.; Oktaviani, D.F.; Hossain, M.T.; Choi, H.J.; Moon, I.S. Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. Phytomedicine 2020, 69, 153201. [Google Scholar] [CrossRef] [PubMed]
- Rossano, R.; Ungaro, N.; D’Ambrosio, A.; Liuzzi, G.M.; Riccio, P. Extracting and purifying R-phycoerythrin from Mediterranean red algae Corallina elongata Ellis & Solander. J. Biotechnol. 2003, 101, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, S.; Carvalho, L.; Silva, P.; Rodrigues, M.; Pereira, O.; Pereira, L. Bioproducts from seaweeds: A review with special focus on the iberian peninsula. Curr. Org. Chem. 2014, 18, 896–917. [Google Scholar] [CrossRef]
- Stévant, P.; Marfaing, H.; Duinker, A.; Fleurence, J.; Rustad, T.; Sandbakken, I.; Chapman, A. Biomass soaking treatments to reduce potentially undesirable compounds in the edible seaweeds sugar kelp (Saccharina latissima) and winged kelp (Alaria esculenta) and health risk estimation for human consumption. J. Appl. Phycol. 2018, 30, 2047–2060. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.P.G.; Prado, J.P.S.; Fernandes, K.R.; Kido, H.W.; Dorileo, B.P.; Parisi, J.R.; Silva, J.A.; Cruz, M.A.; Custódio, M.R.; Rennó, A.C.M.; et al. Different Species of Marine Sponges Diverge in Osteogenic Potential When Therapeutically Applied as Natural Scaffolds for Bone Regeneration in Rats. J. Funct. Biomater. 2023, 14, 122. [Google Scholar] [CrossRef] [PubMed]
- Gatou, M.-A.; Lagopati, N.; Tsoukleris, D.; Pavlatou, E.A. Commercial Sponges as A Novel Technology for Crude Oil Removal from Seawater and Industrial Wastewater: A Review. Biomed. J. Sci. Tech. Res. 2020, 25, 19426–19436. [Google Scholar] [CrossRef] [Green Version]
- Wan, M.C.; Qin, W.; Lei, C.; Li, Q.H.; Meng, M.; Fang, M.; Song, W.; Chen, J.H.; Tay, F.; Niu, L.N. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact. Mater. 2021, 6, 4255–4285. [Google Scholar] [CrossRef]
- Piel, J.; Hui, D.; Wen, G.; Butzke, D.; Platzer, M.; Fusetani, N.; Matsunaga, S. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl. Acad. Sci. USA 2004, 101, 16222–16227. [Google Scholar] [CrossRef] [PubMed]
- de Silva, E.D.; Scheuer, P.J. Monoalide, an Antibiotic Sesterterpenoid from the MArine Sponge Luffariella variabilis. Tetrahedron. Lett. 1980, 21, 1611–1614. [Google Scholar] [CrossRef]
- Ortiz, A.R.; Pisabarro, M.T.; Gago, F. Molecular Model of the Interaction of Bee Venom Phospholipase A2 with Manoalide. J. Med. Chem. 1993, 36, 1866–1879. [Google Scholar] [CrossRef] [PubMed]
- Su, J.Y.; Meng, Y.H.; Zeng, L.M.; Stellettin, A. A New Triterpenoid Pigment from the MArine Sponge Stelletta tenuis. J. Nat. Prod. 1994, 57, 1450–1451. [Google Scholar] [CrossRef] [PubMed]
- Ashok, P.; Ganguly, S.; Murugesan, S. Manzamine alkaloids: Isolation, cytotoxicity, antimalarial activity and SAR studies. Drug Discov. Today 2014, 19, 1781–1791. [Google Scholar] [CrossRef] [PubMed]
- Negi, B.; Kumar, D.; Rawat, D.S. Marine Peptides as Anticancer Agents: A Remedy To Mankind By Nature. Curr. Protein. Pept. Sci. 2017, 18, 1–20. [Google Scholar] [CrossRef]
- Gupta, P.; Sharma, U.; Schulz, T.C.; McLean, A.B.; Robins, A.J.; West, L.M. Bicyclic C21 terpenoids from the marine sponge Clathria compressa. J. Nat. Prod. 2012, 75, 1223–1227. [Google Scholar] [CrossRef] [Green Version]
- Keffer, J.L.; Plaza, A.; Bewley, C.A. Motualevic Acids A–F, Antimicrobial Acids from the Sponge Siliquariaspongia sp. Org. Lett. 2009, 11, 1087–1090. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, A.; Tamaki, M.; Kasai, H.; Tanaka, T.; Otoguro, T.; Ryo, A.; Maekawa, S.; Enomoto, N.; de Voogd, N.J.; Tanaka, J.; et al. Inhibitory effects of metachromin A on hepatitis B virus production via impairment of the viral promoter activity. Antiviral. Res. 2017, 145, 136–145. [Google Scholar] [CrossRef]
- Karpiński, T.M. Marine Macrolides with Antibacterial and/or Antifungal Activity. Mar. Drugs 2019, 17, 241. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Liao, X.; Li, H.; Li, J.; Feng, P.; Zhao, B.; Xu, S. Isolation and Synthesis of Misszrtine A: A Novel Indole Alkaloid From Marine Sponge-Associated Aspergillus sp. SCSIO XWS03F03. Front. Chem. 2018, 6, 212. [Google Scholar] [CrossRef] [PubMed]
- Shubina, L.K.; Makarieva, T.N.; Denisenko, V.A.; Popov, R.S.; Dyshlovoy, S.A.; Grebnev, B.B.; Dmitrenok, P.S.; von Amsberg, G.; Stonik, V.A. Gracilosulfates, A–G, Monosulfated Polyoxygenated Steroids from the Marine Sponge Haliclona gracilis. Mar. Drugs 2020, 18, 454. [Google Scholar] [CrossRef] [PubMed]
- Nagabhishek, S.N.; Madankumar, A. A Novel Apoptosis-Inducing Metabolite Isolated from Marine Sponge Symbiont: Monascus sp. NMK7 Attenuates Cell Proliferation, Migration and ROS Stress-Mediated Apoptosis in Breast Cancer Cells. RSC Adv. 2019, 9, 5878–5890. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Schröder, H.C.; Wiens, M.; Schloßmacher, U.; Müller, W.E. Biosilica: Molecular Biology, Biochemistry and Function in Demosponges as well as its Applied Aspects for Tissue Engineering. Adv. Mar. Biol. 2012, 62, 231–271. [Google Scholar] [CrossRef]
- Zobi, F. Diatom Biosilica in Targeted Drug Delivery and Biosensing Applications: Recent Studies. Micro 2022, 2, 342–360. [Google Scholar] [CrossRef]
- Götz, W.; Tobiasch, E.; Witzleben, S.; Schulze, M. Effects of Silicon Compounds on Biomineralization, Osteogenesis, and Hard Tissue Formation. Pharmaceutics 2019, 11, 117. [Google Scholar] [CrossRef] [Green Version]
- Lowe, B.; Venkatesan, J.; Anil, S.; Shim, M.S.; Kim, S.K. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Int. J. Biol. Macromol. 2016, 93 Pt B, 1479–1487. [Google Scholar] [CrossRef]
- Skaggs, D.L.; Samuelson, M.A.; Hale, J.M.; Kay, R.M.; Tolo, V.T. Complications of posterior iliac crest bone grafting in spine surgery in children. Spine (Phila Pa 1976) 2000, 25, 2400–2402. [Google Scholar] [CrossRef]
- Tziveleka, L.A.; Ioannou, E.; Tsiourvas, D.; Berillis, P.; Foufa, E.; Roussis, V. Collagen from the Marine Sponges Axinella cannabina and Suberites carnosus: Isolation and Morphological, Biochemical, and Biophysical Characterization. Mar. Drugs 2017, 15, 152. [Google Scholar] [CrossRef] [Green Version]
- Loh, Q.L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev. 2013, 19, 485–502. [Google Scholar] [CrossRef] [Green Version]
- Zdarta, J.; Norman, M.; Smułek, W.; Moszyński, D.; Kaczorek, E.; Stelling, A.L.; Ehrlich, H.; Jesionowski, T. Spongin-Based Scaffolds from Hippospongia communis Demosponge as an Effective Support for Lipase Immobilization. Catalysts 2017, 7, 147. [Google Scholar] [CrossRef] [Green Version]
- Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. Int. J. Adv. Res. 2016, 4, 411–427. [Google Scholar]
- de Sousa Victor, R.; Marcelo da Cunha Santos, A.; Viana de Sousa, B.; de Araújo Neves, G.; Navarro de Lima Santana, L.; Rodrigues Menezes, R. A Review on Chitosan’s Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. Materials 2020, 13, 4995. [Google Scholar] [CrossRef] [PubMed]
- Thambiliyagodage, C.; Jayanetti, M.; Mendis, A.; Ekanayake, G.; Liyanaarachchi, H.; Vigneswaran, S. Recent Advances in Chitosan-Based Applications—A Review. Materials 2023, 16, 2073. [Google Scholar] [CrossRef]
- Guo, C.; Ling, S.; Li, C.; Motta, A.; Oliveira, J.M. Editorial: Silk-Based Functional Biomaterials. Front. Bioeng. Biotechnol. 2021, 9, 721761. [Google Scholar] [CrossRef]
- Luquet, G. Biomineralizations: Insights and prospects from crustaceans. Zookeys 2012, 176, 103–121. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Zharkinbekov, Z.; Raziyeva, K.; Tabyldiyeva, L.; Berikova, K.; Zhumagul, D.; Temirkhanova, K.; Saparov, A. Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics 2023, 15, 807. [Google Scholar] [CrossRef] [PubMed]
- Sethmann, I.; Luft, C.; Kleebe, H.-J. Development of Phosphatized Calcium Carbonate Biominerals as Bioactive Bone Graft Substitute Materials, Part I: Incorporation of Magnesium and Strontium Ions. J. Funct. Biomater. 2018, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.S.; Costa, E.C.; Reis, S.; Spencer, C.; Calhelha, R.C.; Miguel, S.P.; Ribeiro, M.P.; Barros, L.; Vaz, J.A.; Coutinho, P. Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications. Polymers 2022, 14, 4931. [Google Scholar] [CrossRef] [PubMed]
- Vepari, C.; Kaplan, D.L. Silk as a Biomaterial. Prog. Polym. Sci. 2007, 32, 991–1007. [Google Scholar] [CrossRef]
- Kim, J.S.; Choi, J.; Ki, C.S.; Lee, K.H. 3D Silk Fiber Construct Embedded Dual-Layer PEG Hydrogel for Articular Cartilage Repair—In vitro Assessment. Front. Bioeng. Biotechnol. 2021, 9, 653509. [Google Scholar] [CrossRef]
- Yu, L.M.; Liu, T.; Ma, Y.L.; Zhang, F.; Huang, Y.C.; Fan, Z.H. Fabrication of Silk-Hyaluronan Composite as a Potential Scaffold for Tissue Repair. Front. Bioeng. Biotechnol. 2020, 8, 578988. [Google Scholar] [CrossRef]
- Tanaka, T.; Abe, Y.; Cheng, C.J.; Tanaka, R.; Naito, A.; Asakura, T. Development of Small-Diameter Elastin-Silk Fibroin Vascular Grafts. Front. Bioeng. Biotechnol. 2021, 8, 622220. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Pan, M.; Zhang, Z.; Diao, Z.; Peng, X. Enhancing Osseointegration of TC4 Alloy by Surficial Activation Through Biomineralization Method. Front. Bioeng. Biotechnol. 2021, 9, 639835. [Google Scholar] [CrossRef] [PubMed]
- Kakui, K.; Fleming, J.F.; Mori, M.; Fujiwara, Y.; Arakawa, K. Comprehensive Transcriptome Sequencing of Tanaidacea with Proteomic Evidences for Their Silk. Genome. Biol. Evol. (GBE) 2021, 13, evab281. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, H.A.; Pickering, K.L.; Mucalo, M.R. A Review on the Use of Hydroxyapatite-Carbonaceous Structure Composites in Bone Replacement Materials for Strengthening Purposes. Materials 2018, 11, 1813. [Google Scholar] [CrossRef] [Green Version]
- Radulescu, D.-E.; Neacsu, I.A.; Grumezescu, A.-M.; Andronescu, E. Novel Trends into the Development of Natural Hydroxyapatite-Based Polymeric Composites for Bone Tissue Engineering. Polymers 2022, 14, 899. [Google Scholar] [CrossRef]
- Chen, L.; Al-Bayatee, S.; Khurshid, Z.; Shavandi, A.; Brunton, P.; Ratnayake, J. Hydroxyapatite in Oral Care Products-A Review. Materials 2021, 14, 4865. [Google Scholar] [CrossRef]
- Lueyot, A.; Rungsardthong, V.; Vatanyoopaisarn, S.; Hutangura, P.; Wonganu, B.; Wongsa-Ngasri, P.; Charoenlappanit, S.; Roytrakul, S.; Thumthanaruk, B. Influence of collagen and some proteins on gel properties of jellyfish gelatin. PLoS ONE 2021, 16, e0253254. [Google Scholar] [CrossRef]
- Naomi, R.; Bahari, H.; Ridzuan, P.M.; Othman, F. Natural-Based Biomaterial for Skin Wound Healing (Gelatin vs. Collagen): Expert Review. Polymers 2021, 13, 2319. [Google Scholar] [CrossRef]
- Al-Nimry, S.; Dayah, A.A.; Hasan, I.; Daghmash, R. Cosmetic, Biomedical and Pharmaceutical Applications of Fish Gelatin/Hydrolysates. Mar. Drugs 2021, 19, 145. [Google Scholar] [CrossRef] [PubMed]
- Alemán, A.; Pérez-Santín, E.; Bordenave-Juchereau, S.; Arnaudin, I.; Gómez-Guillén, M.; Montero, P. Squid Gelatin Hydrolysates with Antihypertensive, Anticancer and Antioxidant Activity. Food Res. Int. 2011, 44, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Lv, L.C.; Huang, Q.Y.; Ding, W.; Xiao, X.H.; Zhang, H.Y.; Xiong, L.X. Fish Gelatin: The Novel Potential Applications. J. Funct. Foods 2019, 63, 103581103594. [Google Scholar] [CrossRef]
Seaweed-Originated Component | Source | Application | Ref. |
---|---|---|---|
vitamins (vitamins A, B1, B2, B9, B12, C, D, E, and K), riboflavin, folic acid, and pantothenic acid | brown seaweeds (Cystoseira crinita, Cystoseira sedoides and Cytosmear compressa) | food (healthy diet, nutritional supplements) | [8] |
proteins, vitamins, minerals, dietary fiber, polyphenols, polysaccharides, sterols, essential fatty acids such as eicosapentaenoic (EPA), and docosahexaenoic (DHA) fatty acids | seaweeds (Porphyra/Pyropia spp. (Nori), Laminaria/Saccharina spp. (Kombu), and Undaria spp. (Wakame)) | food (healthy diet, low-caloric, nutritive food) | [23] |
dietary fibers and polyphenols, carbohydrates, proteins, lipids, proline and chlorophyll contents, potassium, sodium, and fatty acids | red and brown seaweeds (G. acerosa and S. wightii) | food (healthy diet, food supplements) | [24] |
proteins, proline, lipids, polyphenols, chlorophyll contents, dietary fibers, and carbohydrates | green seaweeds (Ulva lactuca, U. prolifera and U. linza, Enteromorpha intestinalis, Caulerpa spp., Cladophora prolifera, C. vermilara, and C. tomentosum) and | food (healthy diet) | [27] |
essential amino acids, such as methionine, lysine, valine, and phenyl alanine | macroalgae (Porphyra dioica, Porphyra umbilicalis, Gracilaria vermiculophylla, and Ulva rigida) | food (healthy diet) | [28] |
linolenic acid and α-linolenic acid (fatty acids) and vitamins (vitamin C) | green seaweeds (Caulerpa lentillifera) | food (healthy diet, nutritional supplements) | [29] |
essential minerals (e.g., iron, magnesium, calcium, potassium, zinc, selenium, copper, iodine, phosphorus, and fluoride) | macroalgae (Ulva rigida, Saccharina latissima, Laminaria digitata, and Laminaria hyperborean) | food (healthy diet, nutritional supplements) | [30] |
sulfated polysaccharides | marine algae (Phaeophyta, Rhodophyta and Chlorophyta) | biomedicine (drug delivery systems, tissue engineering): defensive barrier against any infective organism) with anti-inflammatory, antitumor, antiviral, and antimicrobial properties | [31] |
fiber, mineral content, fats and lipids, and vitamin contents | seaweeds (Ascophyllum nodosum, Laminaria digitata, Himanthalia elongate, Undaria pinnatifida Porphyra umbilicalis, Ulva sp., Palmaria palmata, and Enteromorpha sp.) | biomedicine (drug delivery systems): antioxidant and enzyme inhibitory effects | [32] |
alkaloids, terpenoids, and steroids | brown seaweeds (Genus Cystoseira) | biomedicine (pharmaceutical potential): alkaloids, terpenoids, and steroids in brown algae (genus Cystoseira) in Mediterranean Sea | [33] |
fucoidan, rich in sulphate ester groups; L-fucose; monosaccharides (e.g., glucose, and galactose); and uronic acids. | brown seaweeds (Fucus vesiculosus) | biomedicine (pharmaceutical potential) | [34] |
fucoidan | brown seaweeds (Fucus vesiculosus) | biomedicine (pharmaceutical potential): pharmacokinetics of fucoidan following administration to rats; | [35] |
fucoidan | brown algae (Fucus evanescens) | biomedicine (antiviral properties): antiviral potential of fucoidan against herpes virus strains such as enterovirus (ECHO-1), human immunodeficiency virus (HIV-1), Herpes Simplex Virus type 1 (HSV-1), and Herpes Simplex Virus type 2 (HSV-2) | [36] |
lambda-carrageenan | red seaweeds (Kappaphycus, Chondrus, and Eucheuma sp.) | biomedicine (antiviral properties): antiviral potential against HSV-1 and HSV-2 in vitro | [37] |
elatol | malaysian red algae (Laurencia majuscula (Rhodomelaceae, and Ceramiales)) | biomedicine (antimicrobial potential): antimicrobial properties against Staphylococcus epidermidis, Salmonella sp., and Klebsiella pneumoniae | [38] |
laminarin | brown seaweeds (Aphanizomenon flos-aquae) | biomedicine (pharmaceutical potential): immunostimulatory activity, activation of macrophages with antitumor and auto-healing properties | [39] |
laminarin | brown seaweeds (Eisenia bicyclis) | biomedicine (pharmaceutical potential): enhanced antioxidant behavior of laminarin upon irradiation with gamma rays | [40] |
alginate | brown algae (Laminaria hyperborea, Laminaria digitata, Laminaria japonica, Ascophyllum nodosum, and Macrocystis pyrifera) | food and biomedicine | [41] |
alginate | Phaeophyceae family | biomedicine (dentistry): mold making in whitening process or for artificial dental implants | [42] |
alginate | brown algae | biomedicine (tissue engineering): 3-D bioprinting; alginate as a bio-ink | [43] |
terpenoids and terpens | algae | biomedicine (anticancer potential): anticancer properties (therapeutic effect on lung, breast, prostate, colon, and pancreatic cancer cells) | [44] |
phytosterols (e.g., fucosterol) | Macroalgae (brown, red, and green algae) | biomedicine (pharmaceutical potential): seaweed phytosterols reduce cholesterol levels with beneficial properties (anti-diabetic, anti-obesity, anti-aging, and anticancer properties) | [45] |
R-Phycoerythrin (R-PE) | red algae (Rodophyta) (Corallina elongata Ellis and Solander) | biomedicine (cosmetology): skin disorders with anti-inflammatory and anti-aging properties | [46] |
Marine-Sponge-Originated Component | Source | Application | Ref. |
---|---|---|---|
terpenes, alkaloids, and peptides | marine sponges | biomedicine | [52] |
manoalide | sponge L. variabilis | biomedicine (antimicrobial properties): antibacterial activity against Streptomyces pyogenes and S. aureus | [53] |
stelletins | J. stellifera and Stelleta tenuis | biomedicine (anticancer potential): stelletins are cytotoxic to murine leukemia P388 cells | [55] |
manzamine A | Haliclona sp. | biomedicine (pharmaceutical potential): cytotoxic, anti-malarial, and antibacterial activity of the alkaloid manzamine A | [56] |
discodermin A | Discodermia kiiensis | biomedicine (antibacterial properties): antibacterial potential of the peptide discodermin A | [57] |
clathric acid | Clathria compressa | biomedicine (antimicrobial properties): inhibition of the growth of methicillin-resistant S. aureus in the presence of clathric acid | [58] |
motualevic acid | Siliquariaspongia sp. | biomedicine (antimicrobial properties): inhibition of the growth of methicillin-resistant S. aureus in the presence of motualevic acid | [59] |
metachromin A | Dactylospongia metachromia | biomedicine (antiviral properties): antiviral potential of metachromin A against Hepatitis B | [60] |
xestodecalactone B | Xestospongia exigua | biomedicine (antifungal properties): antifungal potential of xestodecalactone B against C. albicans | [61] |
misszrtine A | Aspergillus sp. | biomedicine (anticancer potential): anticancer effect of the alkaloid misszrtine A on HL-60 and LNCap cells | [62] |
gracilosulfates A, B, C, D, E, F, and G | Haliclona gracilis | biomedicine (anticancer potential): anticancer effect of the steroids gracilosulfates A, B, C, D, E, F, and G in human prostate cancer | [63] |
monacolin X | Monascus sp. | biomedicine (anticancer potential): anti-proliferative and anti-migratory effect of the polyketide monacolin X on human breast cancer cells | [64] |
Silicon dioxide (SiO2) or silica (biosilica) | marine sponges | biomedicine (sensoring, coating, material science, tissue engineering, and drug delivery systems): sensoring, coating, and development of hybrid materials and drug delivery systems | [65,66] |
biosilica | marine sponges | biomedicine (tissue engineering (scaffolds)): cartilage and bone healing | [67] |
polyphosphates | marine sponges | biomedicine (regenerative medicine): enhancement of the mineralization of osteoblast-like SaOS-2 cells | [68] |
polyphosphates | marine sponges | biomedicine (regenerative medicine (bone repair, biomimetic performance): upregulation of collagen type I and II levels in osteogenic and chondrogenic cells in the presence of polyphosphates | [69] |
spongin | marine sponges | biomedicine (tissue engineering (scaffolds)): good porosity, thermostability, and mechanical strength of spongin | [71] |
spongin | Demosponge Hippospongia communis | biomedicine (tissue engineering (scaffolds)): spongin as a template for hydrothermal deposition of crystalline titanium dioxide | [72] |
chitin | marine sponges | biomedicine (tissue engineering, drug delivery systems): high thermostability, biocompatibility, biodegradation, and good mechanical properties of chitin | [74] |
chitin | marine sponges | biomedicine (biosensoring, water filter): high stability of chitin even in high-temperature and high-pressure conditions | [75] |
Arthropod-Originated Component | Source | Application | Ref. |
---|---|---|---|
chitosan | crustaceans’ shells | biomedicine (tissue engineering, drug delivery systems): high solubility and active sites | [73] |
chitin | marine crab shells | biomedicine (tissue engineering, drug delivery systems, biosensoring, and water filter): several biomedical applications of chitin due to its good properties | [74,75] |
chitosan | crabs | biomedicine (dentistry, wound healing, antimicrobial activity) | [78] |
calcium carbonate | crabs and shrimps | biomedicine (regenerative medicine): scaffolds or 3D templates for bone repair | [79] |
silk | arthropods | biomedicine (regenerative medicine, tissue engineering, cosmetics): biocompatibility | [76] |
silk in combination with hydroxyapatite | Silk cocoons and mollusks | biomedicine (tissue engineering, bone repair): coating in bone tissue engineering | [85] |
silk | shrimp-like ocean crustaceans | biomedicine and environment (tissue engineering, bone repair): environmentally friendly water-resistant materials for fabrics and medical uniforms | [86] |
Mollusk-Originated Component | Source | Application | Ref. |
---|---|---|---|
hydroxyapatite | cuttlefish bone from Sepia officinalis | biomedicine and environment (tissue engineering, bone repair) | [17] |
hydroxyapatite | mollusks | biomedicine and environment (tissue engineering, bone repair): artificial implants | [87] |
hydroxyapatite | mollusks and corals | biomedicine and environment (tissue engineering, bone repair) | [88] |
hydroxyapatite | Green mussel shells (Perna canaliculus) and Evechinus chloroticus shells | biomedicine and environment (dentistry) | [89] |
Cnidaria-Originated Component | Source | Application | Ref. |
---|---|---|---|
gelatin | jellyfish | biomedicine | [90] |
type A gelatin | jellyfish | food | [91] |
type A gelatin | jellyfish | biomedicine (pharmaceutical, cosmetics, tissue engineering): emulsifying and foaming properties in pharmacy (tablets coating, carriers, etc.), cosmetics (emulsion stabilizer, etc.), and biomedicine (wound healing and tissue engineering) | [91] |
gelatin | fish and jellyfish | biomedicine (cosmetology): body lotions, face creams, hair sprays, sunscreens, and shampoos | [92] |
hydrolyzed gelatin | jellyfish | biomedicine (anticancer potential): anticancer effect against MCF-7 breast cancer cells and U87 glioma cells | [93] |
peptides of gelatin | fish and jellyfish | biomedicine (pharmaceutical potential): antihypertensive properties | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagopati, N.; Pippa, N.; Gatou, M.-A.; Papadopoulou-Fermeli, N.; Gorgoulis, V.G.; Gazouli, M.; Pavlatou, E.A. Marine-Originated Materials and Their Potential Use in Biomedicine. Appl. Sci. 2023, 13, 9172. https://doi.org/10.3390/app13169172
Lagopati N, Pippa N, Gatou M-A, Papadopoulou-Fermeli N, Gorgoulis VG, Gazouli M, Pavlatou EA. Marine-Originated Materials and Their Potential Use in Biomedicine. Applied Sciences. 2023; 13(16):9172. https://doi.org/10.3390/app13169172
Chicago/Turabian StyleLagopati, Nefeli, Natassa Pippa, Maria-Anna Gatou, Nefeli Papadopoulou-Fermeli, Vassilis G. Gorgoulis, Maria Gazouli, and Evangelia A. Pavlatou. 2023. "Marine-Originated Materials and Their Potential Use in Biomedicine" Applied Sciences 13, no. 16: 9172. https://doi.org/10.3390/app13169172