Comparative Sensitivity Analysis of Hydrology and Relative Corn Yield under Different Subsurface Drainage Design Using DRAINMOD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model and Parameters Description
- ΔVa = Soil storage or change in the air volume (cm);
- F = Infiltration (cm);
- ET = Evapotranspiration (cm);
- D = Lateral drainage (cm);
- DS = Deep seepage (cm);
- P = Precipitation (cm);
- RO = Surface runoff (cm);
- ΔS = Change in surface water storage (cm).
2.3. Data and Sources of Information
2.4. Calibration and Validation
2.5. Sensitivity Analysis of Parameters
3. Results and Discussion
3.1. Calibration and Model Performance
3.2. Sensitivity Analysis
4. Conclusions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, R.O.; Fausey, N.R. Effects of Inadequate Drainage on Crop Growth and Yield. Agric. Drain. 1999, 38, 13–54. [Google Scholar]
- Skaggs, R.W.; Brevé, M.A.; Gilliam, J.W. Hydrologic and Water Quality Impacts of Agricultural Drainage∗. Crit. Rev. Environ. Sci. Technol. 1994, 24, 1–32. [Google Scholar] [CrossRef]
- Haan, P.K. The Effect of Parameter Uncertainty on DRAINMOD Predictions for Hydrology, Yield and Water Quality. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2000. [Google Scholar]
- Tian, S.; Youssef, M.A.; Amatya, D.M.; Vance, E.D. Global Sensitivity Analysis of DRAINMOD-FOREST, an Integrated Forest Ecosystem Model. Hydrol. Process. 2014, 28, 4389–4410. [Google Scholar] [CrossRef]
- Lu, L.; Jun, X.; Xu, C.Y.; Jianjing, C.; Rut, W. Analyse the Sources of Equifinality in Hydrological Model Using GLUE Methodology. IAHS-AISH Publ. 2009, 331, 130–138. [Google Scholar]
- Rahman, K.; Maringanti, C.; Beniston, M.; Widmer, F.; Abbaspour, K.; Lehmann, A. Streamflow Modeling in a Highly Managed Mountainous Glacier Watershed Using SWAT: The Upper Rhone River Watershed Case in Switzerland. Water Resour. Manag. 2013, 27, 323–339. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, F.; Li, Y. Simulation and Design Optimization of Rain Gardens via DRAINMOD and Response Surface Methodology. J. Hydrol. 2020, 585, 124788. [Google Scholar] [CrossRef]
- Paudel, S.; Benjankar, R. Integrated Hydrological Modeling to Analyze the Effects of Precipitation on Surface Water and Groundwater Hydrologic Processes in a Small Watershed. Hydrology 2022, 9, 37. [Google Scholar] [CrossRef]
- Wang, X.; Youssef, M.A.; Skaggs, R.W.; Atwood, J.D.; Frankenberger, J.R. Sensitivity analyses of the nitrogen simulation model, DRAINMOD-N II. Trans. ASAE 2005, 48, 2205–2212. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Li, Y. Simulation and Optimization of Rain Gardens via DRAINMOD Model and Response Surface Methodology. Ecohydrol. Hydrobiol. 2020, 20, 413–423. [Google Scholar] [CrossRef]
- Rakovec, O.; Hill, M.C.; Clark, M.P.; Weerts, A.H.; Teuling, A.J.; Uijlenhoet, R. Distributed Evaluation of Local Sensitivity Analysis (DELSA), with Application to Hydrologic Models. Water Resour. Res. 2014, 50, 409–426. [Google Scholar] [CrossRef] [Green Version]
- Tolley, D.; Foglia, L.; Harter, T. Sensitivity Analysis and Calibration of an Integrated Hydrologic Model in an Irrigated Agricultural Basin With a Groundwater-Dependent Ecosystem. Water Resour. Res. 2019, 55, 7876–7901. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Bhattarai, R.; Negm, L.M.; Youssef, M.A.; Pittelkow, C.M. Evaluation of Nitrogen Loss Reduction Strategies Using DRAINMOD-DSSAT in East-Central Illinois. Agric. Water Manag. 2020, 240, 106322. [Google Scholar] [CrossRef]
- Singh, S.; Negm, L.; Jeong, H.; Cooke, R.; Bhattarai, R. Comparison of Simulated Nitrogen Management Strategies Using DRAINMOD-DSSAT and RZWQM. Agric. Water Manag. 2022, 266, 107597. [Google Scholar] [CrossRef]
- Li, J.; Li, N.; Liu, F.; Li, Y. Development and Optimization of Bioretention Systems with Modified Fillers of Corn Straw Biochar. Water Air Soil Pollut. 2021, 232, 383. [Google Scholar] [CrossRef]
- Salazar, O.; Wesström, I.; Youssef, M.A.; Skaggs, R.W.; Joel, A. Evaluation of the DRAINMOD–N II Model for Predicting Nitrogen Losses in a Loamy Sand under Cultivation in South-East Sweden. Agric. Water Manag. 2009, 96, 267–281. [Google Scholar] [CrossRef]
- Kurien, V.M.; Cooke, R.A.; Hirschi, M.C.; Mitchell, J.K. Estimating drain spacing of incomplete drainage systems. Trans. ASAE 1997, 40, 377–382. [Google Scholar] [CrossRef]
- Fernandez-Palomino, C.A.; Hattermann, F.F.; Krysanova, V.; Vega-Jácome, F.; Bronstert, A. Towards a More Consistent Eco-Hydrological Modelling through Multi-Objective Calibration: A Case Study in the Andean Vilcanota River Basin, Peru. Hydrol. Sci. J. 2020, 66, 59–74. [Google Scholar] [CrossRef]
- Rane, N.L.; Jayaraj, G.K. Enhancing SWAT Model Predictivity Using Multi-Objective Calibration: Effects of Integrating Remotely Sensed Evapotranspiration and Leaf Area Index. Int. J. Environ. Sci. Technol. 2022, 20, 6449–6468. [Google Scholar] [CrossRef]
- Youssef, M.A.; Abdelbaki, A.M.; Negm, L.M.; Skaggs, R.W.; Thorp, K.R.; Jaynes, D.B. DRAINMOD-Simulated Performance of Controlled Drainage across the U.S. Midwest. Agric. Water Manag. 2018, 197, 54–66. [Google Scholar] [CrossRef]
- Skaggs, R.W.; Youssef, M.A.; Chescheir, G.M. DRAINMOD: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1509–1522. [Google Scholar] [CrossRef]
- Green, W.H.; Ampt, G.A. Studies on Soil Phyics. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55. [Google Scholar] [CrossRef]
- van Schilfgaarde, J. Nonsteady Flow to Drains. Drain. Agric. 1974, 17, 245–270. [Google Scholar]
- Moursi, H.; Youssef, M.A.; Chescheir, G.M. Development and Application of DRAINMOD Model for Simulating Crop Yield and Water Conservation Benefits of Drainage Water Recycling. Agric. Water Manag. 2022, 266, 107592. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting Through Conceptual Models—Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrologic Modeling of the Iroquois River Watershed Using HSPF and SWAT. J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
Parameters | Meaning | Unit | Parameter Value | |
---|---|---|---|---|
Drainage System Parameters | CS3 | CS4 | ||
H | Depth to Impermeable Layer | cm | 152 | 152 |
Re * | Effective Radius | cm | 1.1 | 1.1 |
B | Drain Depth | cm | 107 | 107 |
L | Drain Spacing | cm | 1220 | 2438 |
SS * | Maximum surface storage | cm | 1.2 | 0.9 |
KD * | Kirkham Depth | cm | 1.76 | 2.2 |
DC | Drainage coefficient | cm/day | 2.09 | 2.36 |
Soil properties | ||||
Lateral saturated conductivity | ||||
LK5 * | layer 5 | cm/h | 0.1 | 0.69 |
LK4 * | layer 4 | cm/h | 3 | 1.5 |
LK3 * | layer 3 | cm/h | 5.5 | 0.26 |
LK2 * | layer 2 | cm/h | 2 | 1.09 |
LK1 * | layer 1 | cm/h | 3 | 1.88 |
Soil type | Drummer | Flanagan | ||
Soil layer bottom depth | ||||
layer 5 | cm | 152 | 152 | |
layer 4 | cm | 100 | 114 | |
layer 3 | cm | 81 | 97 | |
layer 2 | cm | 48 | 58 | |
layer 1 | cm | 18 | 46 | |
Slope | Surface slope | % | 1.2 | 1.8 |
Surface length along drain tiles | cm | 7800 | 8600 | |
Soil temperature parameters | ||||
ZA * | ZA coefficient | 3.9 | 7.64 | |
ZB * | ZB coefficient | 1.4 | 1.4 | |
TKA * | Thermal conductivity function (TKA) | 3 | 3.97 | |
TKB * | Thermal conductivity function (TKB) | 1.3 | 0.26 | |
T_dep | Soil temperature at bottom of soil profile | °C | 11.5 | 11.5 |
T_snow | Avg air temp below which precipitation is snow | °C | 0 | 0 |
T_melt | Average air temp above which snow starts to melt | °C | 1 | 1 |
CDEG * | Snow melt coefficient | mm/dd-°C | 7.6 | 3.58 |
CICE * | Critical ice content above which infiltration stops | cm3/cm3 | 0.2 | 0.11 |
Objective functions | CS-3 | CS-4 | ||
Calibration | Validation | Calibration | Validation | |
NSE | 0.5 | 0.58 | 0.49 | 0.46 |
RSQ | 0.5 | 0.645 | 0.53 | 0.52 |
RMSE | 0.206 | 0.161 | 0.196 | 0.192 |
PBIAS | −5.70% | −28% | 1.86% | −25% |
Parameters | Relative Sensitivity Index | Absolute Sensitivity Index | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NSE | RSQ | Yield | Cum flow | PBIAS | RMSE | |||||||
Sx | Rank | Sx | Rank | Sx | Rank | Sx | Rank | Sx | Rank | Sx | Rank | |
CDEG | 0.010 | 6 | 0.009 | 7 | 0.000 | 16 | 0.006 | 7 | 0.696 | 6 | 0.064 | 7 |
CICE | 0.016 | 4 | 0.016 | 4 | 0.000 | 17 | 0.021 | 1 | 7.523 | 1 | 0.073 | 5 |
DC | 0.011 | 5 | 0.011 | 5 | 0.000 | 4 | 0.000 | 15 | 0.001 | 14 | 0.024 | 9 |
Depth_imp | 0.000 | 11 | 0.000 | 11 | 0.000 | 6 | 0.001 | 8 | 0.363 | 9 | 0.002 | 14 |
Drain depth | 0.066 | 2 | 0.058 | 2 | 0.053 | 1 | 0.018 | 2 | 6.466 | 2 | 0.158 | 2 |
Drain spacing | 0.129 | 1 | 0.062 | 1 | 0.001 | 3 | 0.001 | 9 | 0.437 | 8 | 0.197 | 1 |
Kirk_depth | 0.002 | 10 | 0.001 | 10 | 0.000 | 7 | 0.007 | 6 | 2.933 | 4 | 0.023 | 10 |
LK1 | 0.000 | 17 | 0.000 | 17 | 0.000 | 12 | 0.000 | 17 | 0.000 | 16 | 0.000 | 16 |
LK2 | 0.000 | 12 | 0.000 | 16 | 0.000 | 11 | 0.000 | 14 | 0.000 | 15 | 0.016 | 11 |
LK3 | 0.030 | 3 | 0.017 | 3 | 0.023 | 2 | 0.000 | 12 | 0.012 | 13 | 0.099 | 3 |
LK4 | 0.000 | 16 | 0.000 | 15 | 0.000 | 10 | 0.000 | 13 | 0.012 | 12 | 0.009 | 12 |
LK5 | 0.000 | 15 | 0.000 | 14 | 0.000 | 9 | 0.000 | 10 | 0.145 | 10 | 0.007 | 13 |
Slope | 0.000 | 13 | 0.000 | 12 | 0.000 | 5 | 0.000 | 11 | 0.140 | 11 | 0.000 | 15 |
Surf_storage | 0.000 | 14 | 0.000 | 13 | 0.000 | 8 | 0.000 | 16 | 0.000 | 17 | 17 | |
TKA | 0.010 | 7 | 0.009 | 6 | 0.000 | 14 | 0.009 | 4 | 0.495 | 7 | 0.073 | 6 |
TKB | 0.003 | 9 | 0.003 | 9 | 0.000 | 15 | 0.008 | 5 | 0.758 | 5 | 0.055 | 8 |
ZA | 0.009 | 8 | 0.009 | 8 | 0.000 | 13 | 0.010 | 3 | 3.756 | 3 | 0.074 | 4 |
Parameters | Relative Sensitivity | Absolute Sensitivity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NSE | RSQ | Yield | Cum flow | PBIAS | RMSE | |||||||
Sx | Rank | Sx | Rank | Sx | Rank | Sx | Rank | Sx | Rank | Sx | Rank | |
CDEG | 0.007 | 13 | 0.006 | 13 | 0.003 | 12 | 0.001 | 17 | 0.829 | 14 | 0.101 | 7 |
CICE | 0.000 | 17 | 0.000 | 17 | 0.001 | 17 | 0.002 | 16 | 6.602 | 7 | 0.052 | 11 |
DC | 0.006 | 14 | 0.005 | 14 | 0.013 | 10 | 0.003 | 15 | 0.267 | 17 | 0.008 | 15 |
Depth_imp | 0.264 | 3 | 0.264 | 2 | 0.267 | 3 | 0.005 | 14 | 1.350 | 11 | 0.005 | 16 |
Drain depth | 0.005 | 15 | 0.005 | 15 | 0.015 | 9 | 0.007 | 13 | 37.005 | 1 | 0.213 | 1 |
Drain spacing | 0.003 | 16 | 0.003 | 16 | 0.021 | 8 | 0.008 | 12 | 29.023 | 2 | 0.200 | 2 |
kirk_depth | 0.084 | 7 | 0.081 | 6 | 0.002 | 15 | 0.012 | 11 | 20.942 | 3 | 0.107 | 6 |
LK1 | 0.025 | 11 | 0.019 | 11 | 0.072 | 4 | 0.014 | 10 | 5.734 | 8 | 0.059 | 10 |
LK2 | 0.146 | 4 | 0.142 | 4 | 0.003 | 14 | 0.016 | 9 | 3.106 | 9 | 0.023 | 14 |
LK3 | 0.021 | 12 | 0.019 | 12 | 0.002 | 16 | 0.016 | 8 | 2.739 | 10 | 0.024 | 13 |
LK4 | 0.141 | 5 | 0.136 | 5 | 0.004 | 11 | 0.018 | 7 | 7.845 | 5 | 0.061 | 9 |
LK5 | 0.026 | 10 | 0.024 | 10 | 0.041 | 6 | 0.020 | 6 | 8.789 | 4 | 0.068 | 8 |
Slope | 0.055 | 8 | 0.051 | 8 | 0.003 | 13 | 0.021 | 5 | 0.650 | 15 | 0.003 | 17 |
surf_storage | 0.031 | 9 | 0.029 | 9 | 0.045 | 5 | 0.022 | 4 | 1.259 | 12 | 0.029 | 12 |
TKA | 0.086 | 6 | 0.052 | 7 | 0.022 | 7 | 0.053 | 3 | 0.598 | 16 | 0.176 | 3 |
TKB | 0.317 | 2 | 0.223 | 3 | 0.269 | 2 | 0.073 | 2 | 0.837 | 13 | 0.123 | 5 |
ZA | 0.352 | 1 | 0.286 | 1 | 0.307 | 1 | 0.096 | 1 | 7.332 | 6 | 0.172 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timalsina, H.; Hwang, S.; Cooke, R.A.; Bhattarai, R. Comparative Sensitivity Analysis of Hydrology and Relative Corn Yield under Different Subsurface Drainage Design Using DRAINMOD. Appl. Sci. 2023, 13, 9252. https://doi.org/10.3390/app13169252
Timalsina H, Hwang S, Cooke RA, Bhattarai R. Comparative Sensitivity Analysis of Hydrology and Relative Corn Yield under Different Subsurface Drainage Design Using DRAINMOD. Applied Sciences. 2023; 13(16):9252. https://doi.org/10.3390/app13169252
Chicago/Turabian StyleTimalsina, Haribansha, Soonho Hwang, Richard A. Cooke, and Rabin Bhattarai. 2023. "Comparative Sensitivity Analysis of Hydrology and Relative Corn Yield under Different Subsurface Drainage Design Using DRAINMOD" Applied Sciences 13, no. 16: 9252. https://doi.org/10.3390/app13169252
APA StyleTimalsina, H., Hwang, S., Cooke, R. A., & Bhattarai, R. (2023). Comparative Sensitivity Analysis of Hydrology and Relative Corn Yield under Different Subsurface Drainage Design Using DRAINMOD. Applied Sciences, 13(16), 9252. https://doi.org/10.3390/app13169252