The Levels of Markers of Muscle Damage, Inflammation, and Heat Shock Proteins in Judokas and the Extent of Their Changes during a Special Performance Test at Different Ambient Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Characteristics
2.2. Preliminary Research
2.3. Main Study
2.4. Environmental Monitoring
- Temperature and Humidity: Monitored using a Harvia thermohygrometer (Muurame, Finland) and an Ellab electrothermometer (Hillerød, Denmark). The accuracies of these devices are ±0.5 °C and ±3%, respectively.
- Air Movement: Measured with a Hilla catheter thermometer, utilizing the simplified Weiss formula for minor air movements below 1 m·s−1.
2.5. Anthropometric Measurements
- Height (BH): Measured with a Martin anthropometer (Charlotte, NC, USA) with an accuracy of 0.5 cm.
- Body Mass (BM): The Sartorius F 1505-DZA electronic scale (Göttingen, Germany) was used, accurate to 1 g.
2.6. Blood Sampling and Analysis
- Lactate Measurements: Blood was drawn from the earlobe into a 10 µL heparinized capillary. Lactate concentrations were determined enzymatically using a Mini-photometer plus DR Lange, type LP-20 (Dr Lange, Germany).
- Hematological Measurements: 5 mL of venous blood was collected from the elbow crease into an EDTA tube. Leukocytes (WBC), hematocrit (HCT), and hemoglobin concentration (HBH) were determined using a Vet-Analyzer Hematology HA-22/20/ (CLINDIAG SYSTEMS, Ninove, Belgium).
- Biochemical Measurements: Blood samples were taken before the pulsatile tests, one hour post-test, and at 24 and 48-h intervals. Blood was divided into tubes with a coagulation activator and EDTA, then centrifuged at 2000 rpm for 15 min in an MPW 351R Med. Instruments Polska centrifuge. Post-centrifugation, serum and plasma were isolated and frozen at −70 °C (Artico ULF 390 ChRL freezer, Esbjerg, Denmark) for later analysis.
2.7. ELISA-Based Blood Marker Measurements
- ELISA (Enzyme-Linked Immunosorbent Assay) is an acclaimed method for pinpointing specific proteins in biological specimens, leveraging monoclonal or polyclonal antibodies conjugated with a designated enzyme.
2.8. Muscle Damage Markers
- Myoglobin: DRG Instruments GmbH, Marburg, Germany; sensitivity: 5 ng/mL
- Lactate dehydrogenase (LDH): Wuhan Eiulb Science Co., Ltd., Wuhan, China; sensitivity: 2.8 U/mL
2.9. Selected Cytokines
- Interleukin-6: DRG Instruments GmbH, Marburg, Germany; sensitivity: 2 pg/mL
- Interleukin-1β: DRG Instruments GmbH, Marburg, Germany; sensitivity: 0.35 pg/mL
2.10. Others
- Heat shock protein 70 (HSP-70): Wuhan Eiulb Science Co., Ltd., Wuhan, China; sensitivity: 0.039 ng/mL.
- Plasma Volume Calculation.
- Changes in plasma volume (%ΔPV) were ascertained using a formula adapted from Dill and Costill, further revised by Harrison et al. Post-exercise biochemical marker concentrations were adjusted for plasma volume changes employing the Kraemer and Brown method.
- Hematocrit (HCT%) Measurement: Deployed the micro-method with a Unipan MPW-212 centrifuge.
- Hemoglobin Concentration Determination: Utilized the Drabkin technique involving a spectrophotometer.
- Physiological Measurements.
- Heart Rate (HR): Monitored using a Polar 610S cardiomonitor.
- Dehydration Degree: Evaluated from body mass measurements and urine volume.
- Respiratory Exchange During Exercise: Assessed using Ergospirotest apparatus.
- Graded Exercise Test: Executed on specific ergometers, varying for lower and upper limbs.
- Pulsatile Anaerobic Tests: Conducted in a thermoclimatic chamber at specific temperatures.
2.11. Statistical Methods
3. Results
3.1. Results of Main Measurements—(Stage IV and V)
3.2. Changes in Hematological Indicators of Blood after Pulsatile Exercise at Different Ambient Temperatures
3.3. Changes in Selected Markers of Muscle Damage (LDH, Mb), Cytokines (IL-1β, IL-6), and Heat Shock Proteins (HSP70) after Pulsatile Exercise at 21 °C and 31 °C
4. Discussion
Limitation of the Study
5. Conclusions
- Physical efforts in the applied environmental temperatures caused an increased reactivity of the immune system, manifested by a significant increase in the number of leukocytes.
- Pulsating efforts in two different environmental temperatures contributed to the formation of muscle cell damage, as evidenced by a significant increase in myoglobin concentration. This conclusion has practical significance, as it creates the possibility of programming and optimizing anaerobic training loads.
- Pro-inflammatory interleukins and lactate dehydrogenase are less sensitive indicators of muscle damage in intense physical efforts.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DuBose, D.A.; Balcius, J.; Morehouse, D. Heat Stress and/or Endotoxin Effects on Cytokine Expression by Human Whole Bloo. Shock 2002, 17, 217–221. [Google Scholar] [CrossRef]
- Mitchell, J.B.; Dugas, J.P.; McFarlin, B.K.; Nelson, M.J. Effect of exercise, heat stress, and hydration on immune cell number and function. Med. Sci. Sports Exerc. 2002, 34, 1941–1950. [Google Scholar] [CrossRef]
- Koch, A.J. Immune Response to Resistance Exercise. Am. J. Lifestyle Med. 2010, 4, 244–252. [Google Scholar] [CrossRef]
- Belfry, G.R.; Raymer, G.H.; Marsh, G.D.; Paterson, D.H.; Thompson, R.T.; Thomas, S.G. Muscle metabolic status and acid-base balance during 10-s work:5-s recovery intermittent and continuous exercise. J. Appl. Physiol. 2012, 113, 410–417. [Google Scholar] [CrossRef]
- Lopes, R.F.; Osiecki, R.; Rama, L.M.P.L. Biochemical markers during and after an olympic triathlon race. J. Exerc. Physiol. Online 2011, 14, 87–96. [Google Scholar]
- Mędraś, M. Endokrynologia Wysiłku Fizycznego Sportowców: Z Zarysem Endokrynologii Ogólnej; MedPharm: Wrocław, Poland, 2010. [Google Scholar]
- Lech, G.; Tyka, A.; Pałka, T.; Krawczyk, R. Effect of physical endurance on fighting and the level of sports per formance in junior judokas. Arch Budo 2010, 6, 1–6. [Google Scholar]
- Kubica, R.; Tyka, A.; Zuchowicz, A.; Czubała, M. Human acclimation to work in warm and humid environments. J. Physiol. Pharmacol. 1996, 47, 515–524. [Google Scholar]
- Scott, J.P.R.; Sale, C.; Greeves, J.P.; Casey, A.; Dutton, J.; Fraser, W.D. Effect of Exercise Intensity on the Cytokine Response to an Acute Bout of Running. Med. Sci. Sports Exerc. 2011, 43, 2297–2306. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Seco Calvo, J.; Córdova Martínez, A.; Caballero García, A.; Fernandez-Lazaro, C. Modulation of Exercise-Induced Muscle Damage, Inflammation, and Oxidative Markers by Curcumin Supplementation in a Physically Active Population: A Systematic Review. Nutrients 2020, 12, 501. [Google Scholar] [CrossRef]
- Ambroży, T.; Kiszczak, L.; Omorczyk, J.; Ozimek, M.; Pałka, T.; Mucha, D.; Stanula, A.; Mucha, D. Influence of experimental training with external resistance in a form of “kettlebell” on selected components of women’s physical fitness. Balt. J. Health Phys. Act. 2017, 9, 28–36. [Google Scholar] [CrossRef]
- Brattsand, R.; Linden, M. Cytokine modulation by glucocorticoids: Mechanisms and actions in cellular studies. Aliment. Pharmacol. Ther. 1996, 10, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Febbraio, M. Muscle-derived interleukin-6—A possible link between skeletal muscle, adipose tissue, liver, and brain. Brain. Behav. Immun. 2005, 19, 371–376. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate Matter Air Pollution and Cardiovascular Disease. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Cosio-Lima, L.; Desai, B.V.; Keck, L.; Scheeler, L.; Schuler, P.B. A comparison of cytokine responses during prolonged cycling in normal and hot environmental conditions. Open Access J. Sports Med. 2011, 2, 7–11. [Google Scholar] [CrossRef]
- Klarlund Pedersen, B. Exercise-induced immune changes—An influence on metabolism? Trends Immunol. 2001, 22, 473–475. [Google Scholar] [CrossRef]
- Rhind, S.G.; Gannon, G.A.; Shephard, R.J.; Buguet, A.; Shek, P.N.; Radomski, M.W. Cytokine induction during exertional hyperthermia is abolished by core temperature clamping: Neuroendocrine regulatory mechanisms. Int. J. Hyperth. 2004, 20, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Cosio-Lima, L.; Desai, B.V. Stelzer Effects of 4:1 carbohydrate/protein solution versus a carbohydrate-alone solution on IL-6, TNF-α, and cortisol during prolonged cycling in hot environmental conditions. Open Access J. Sports Med. 2012, 3, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Pilch, W.; Piotrowska, A. Heat shock proteins and their role in response to physical exertion. J. Kinesiol. Exerc. Sci. 2011, 70, 121–130. [Google Scholar]
- Hom, L.L.; Lee, E.C.-H.; Apicella, J.M.; Wallace, S.D.; Emmanuel, H.; Klau, J.F.; Poh, P.Y.S.; Marzano, S.; Armstrong, L.E.; Casa, D.J.; et al. Eleven days of moderate exercise and heat exposure induces acclimation without significant HSP70 and apoptosis responses of lymphocytes in college-aged males. Cell Stress Chaperones 2012, 17, 29–39. [Google Scholar] [CrossRef]
- Mizushima, Y.; Wang, P.; Jarrar, D.; Cioffi, W.G.; Bland, K.I.; Chaudry, I.H. Preinduction of heat shock proteins protects cardiac and hepatic functions following trauma and hemorrhage. Am. J. Physiol. Integr. Comp. Physiol. 2000, 278, R352–R359. [Google Scholar] [CrossRef]
- Łaszczyńska, J.; Piotrowski, M. Ocena wpływu odwodnienia termicznego na zdolność rozwijania siły mięśni antygrawitacyjnych. Pol. Przegląd Med. Lot. 2007, 3, 303–314. [Google Scholar]
- Liu, J.; Yeo, H.C.; Övervik-Douki, E.; Hagen, T.; Doniger, S.J.; Chu, D.W.; Brooks, G.A.; Ames, B.N. Chronically and acutely exercised rats: Biomarkers of oxidative stress and endogenous antioxidants. J. Appl. Physiol. 2000, 89, 21–28. [Google Scholar] [CrossRef]
- Miyauchi-Wakuda, S.; Kagota, S.; Maruyama-Fumoto, K.; Shiokawa, Y.; Yamada, S.; Shinozuka, K. Acanthopanax senticosus Root Extract Exerts Dual Action on Mouse Ileal Smooth Muscle Function, Leading to Modulation of Gastrointestinal Motility. Biol. Pharm. Bull. 2020, 43, 817–822. [Google Scholar] [CrossRef]
- Morton, J.P.; Maclaren, D.P.M.; Cable, N.T.; Campbell, I.T.; Evans, L.; Kayani, A.C.; Mcardle, A.; Drust, B. Trained Men Display Increased Basal Heat Shock Protein Content of Skeletal Muscle. Med. Sci. Sports Exerc. 2008, 40, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Bar-Or, O. The Wingate Anaerobic Test. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Dotan, R.; Bar-Or, O. Load optimization for the wingate anaerobic test. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 51, 409–417. [Google Scholar] [CrossRef]
- Franchini, E.; Sterkowicz, S.; Szmatlan-Gabrys, U.; Gabrys, T.; Garnys, M. Energy System Contributions to the Special Judo Fitness Test. Int. J. Sports Physiol. Perform. 2011, 6, 334–343. [Google Scholar] [CrossRef]
- Pałka, T.; Lech, G.; Pilch, W.; Tota, Ł.; Koteja, P.; Tyka, A.; Czech, P.; Rydzik, Ł.; Ambroży, T. Selected Indices of Anaerobic Capacity and Their Changes during Special Judo Fitness Tests at Different Ambient Temperatures Performed among Judo Athletes. Appl. Sci. 2022, 12, 12640. [Google Scholar] [CrossRef]
- Pałka, T.; Tyka, A.; Maciejczyk, M.; Bawelski, M.; Cisoń, T.; Pilch, W.; Żychowska, M. Wpływ treningu fizycznego o intensywności podprogowej w dwóch różnych temperaturach otoczenia na sprawność wysiłkowych mechanizmów termoregulacyjnych u mężczyzn. Med. Sports 2006, 7, 79–82. [Google Scholar]
- Obmiński, Z.; Błach, W. Objawy zmęczenia u młodych zawodników judo po długim okresie treningowym. Pol. J. Sports Med. 2007, 23, 79–85. [Google Scholar]
- Marcon, G.; Franchini, E.; Jardim, J.R.; Barros Neto, T.L. Structural Analysis of Action and Time in Sports: Judo. J. Quant. Anal. Sports 2010, 6, 10. [Google Scholar] [CrossRef]
- Ambroży, T.; Sterkowicz-Przybycień, K.; Sterkowicz, S.; Kędra, A.; Mucha, D.; Ozimek, M.; Mucha, D. Differentiation of physical fitness in polish elite sports ju-jitsu athletes physical fitness in elite ju-jitsu athletes. J. Kinesiol. Exerc. Sci. 2017, 27, 57–70. [Google Scholar] [CrossRef]
- Harrison, M.H.; Graveney, M.J.; Cochrane, L.A. Some sources of error in the calculation of relative change in plasma volume. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 50, 13–21. [Google Scholar] [CrossRef]
- Ambroży, T.; Maciejczyk, M.; Klimek, A.T.; Wiecha, S.; Stanula, A.; Snopkowski, P.; Pałka, T.; Jaworski, J.; Ambroży, D.; Rydzik, Ł.; et al. The effects of intermittent hypoxic training on anaerobic and aerobic power in boxers. Int. J. Environ. Res. Public Health 2020, 17, 9361. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R. Skuteczność Techniczna i Taktyczna Zawodniczek Reprezentacji Polski w judo w Wieloletnim Procesie Treningowym; Wydawnictwo Uczelniane Akademii Wychowania Fizycznego i Sportu im: Gdańsk, Poland, 2006. [Google Scholar]
- Lech, G.; Jaworski, J.; Krawczyk, R. The level of motor co-ordination abilities and the course of fights as well as the level of achievements by senior judoists. J. Kinesiol. Exerc. Sci. 2007, 17, 63–71. [Google Scholar]
- Maciejczyk, M.; Szymanik, W. The effect of body fluid balance on cycling peak power. Sci. Sports 2014, 29, e91–e97. [Google Scholar] [CrossRef]
- Pałka, T.; Lech, G.; Tyka, A.; Pilch, W.; Wiecha, S. Wydolność fizyczna i morfologiczna budowa ciała profesjonalnych judoków i nietrenujących mężczyzn. Antropomotoryka 2010, 20. [Google Scholar]
- Parmigiani, S.; Bartolomucci, A.; Palanza, P.; Galli, P.; Rizzi, N.; Brain, P.F.; Volpi, R. In judo, Randori (free fight) andKata (highly ritualized fight) differentially change plasma cortisol, testosterone, and interleukin levels in male participants. Aggress. Behav. 2006, 32, 481–489. [Google Scholar] [CrossRef]
- Sikorski, W.; Mickiewicz, G.; Majle, B.; Łaksa, C. Struktura walki judo i jej wpływ na wydolność zawodnika. Sport Wyczyn. 1988, 9, 15–19. [Google Scholar]
- Franchini, E.; Del Vecchio, F.B.; Matsushigue, K.A.; Artioli, G.G. Physiological Profiles of Elite Judo Athletes. Sports Med. 2011, 41, 147–166. [Google Scholar] [CrossRef]
- Mickiewicz, G.; Starczewska, G.; Borkowski, L. Fizjologiczna charakterystyka zawodników kadry narodowej judo. Sport Wyczyn. 1988, 9, 285. [Google Scholar]
- Borkowsky, L. Evaluation of the aerobic and anaerobic fitness in judoists from the Polish national team. Biol. Sport 2001, 18, 107–117. [Google Scholar]
- Zubac, D.; Šimunič, B.; Buoite Stella, A.; Morrison, S.A. Neuromuscular performance after rapid weight loss in Olympic-style boxers. Eur. J. Sport Sci. 2020, 20, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Gavagan, C.J.; Sayers, M.G.L. A biomechanical analysis of the roundhouse kicking technique of expert practitioners: A comparison between the martial arts disciplines of Muay Thai, Karate, and Taekwondo. PLoS ONE 2017, 12, e0182645. [Google Scholar] [CrossRef] [PubMed]
- Laing, S.J.; Blackwell, J.; Gwynne, D.; Walters, R.; Walsh, N.P. Neutrophil degranulation response to 2 hours of exercise in a 30 degrees C environment. Aviat. Space Environ. Med. 2005, 76, 1068–1073. [Google Scholar] [PubMed]
- Reid, S.A.; Speedy, D.B.; Thompson, J.M.; Noakes, T.D.; Mulligan, G.; Page, T.; Campbell, R.G.; Milne, C. Study of Hematological and Biochemical Parameters in Runners Completing a Standard Marathon. Clin. J. Sport Med. 2004, 14, 344–353. [Google Scholar] [CrossRef]
- Nieman, D.C.; Dumke, C.I.; Henson, D.A.; McAnulty, S.R.; McAnulty, L.S.; Lind, R.H.; Morrow, J.D. Immune and Oxidative Changes During and Following the Western States Endurance Run. Int. J. Sports Med. 2003, 24, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Vidal Andreato, L.; Franzói de Moraes, S.M.; Lopes de Moraes Gomes, T.; Del Conti Esteves, J.V.; Vidal Andreato, T.; Franchini, E. Estimated aerobic power, muscular strength and flexibility in elite Brazilian Jiu-Jitsu athletes. Sci. Sports 2011, 26, 329–337. [Google Scholar] [CrossRef]
- Paulsen, G.; Benestad, H.B.; Strøm-Gundersen, I.; Mørkrid, L.; Lappegård, K.T.; Raastad, T. Delayed Leukocytosis and Cytokine Response to High-Force Eccentric Exercise. Med. Sci. Sports Exerc. 2005, 37, 1877–1883. [Google Scholar] [CrossRef]
- Vandenboom, R. The Myofibrillar Complex and Fatigue: A Review. Can. J. Appl. Physiol. 2004, 29, 330–356. [Google Scholar] [CrossRef]
- Laskowski, R.; Ziemann, E.; Olek, R.; Zembron-Lacny, A. The Effect of Three Days of Judo Training Sessions on the Inflammatory Response and Oxidative Stress Markers. J. Hum. Kinet. 2011, 30, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Gundersen, K. Muscle memory and a new cellular model for muscle atrophy and hypertrophy. J. Exp. Biol. 2016, 219, 235–242. [Google Scholar] [CrossRef]
- Nosaka, K.; Clarkson, P.M. Changes in indicators of inflammation after eccentric exercise of the elbow flexors. Med. & Sci. Sports Exerc. 1996, 28, 953–961. [Google Scholar] [CrossRef]
- Beaton, L.J.; Tarnopolsky, M.A.; Phillips, S.M. Contraction-induced muscle damage in humans following calcium channel blocker administration. J. Physiol. 2002, 544, 849–859. [Google Scholar] [CrossRef]
- Romanovsky, A.A. Thermoregulation: Some concepts have changed. Functional architecture of the thermoregulatory system. Am. J. Physiol. Integr. Comp. Physiol. 2007, 292, R37–R46. [Google Scholar] [CrossRef]
- Selkirk, G.A.; McLellan, T.M.; Wright, H.E.; Rhind, S.G. Mild endotoxemia, NF-κB translocation, and cytokine increase during exertional heat stress in trained and untrained individuals. Am. J. Physiol. Integr. Comp. Physiol. 2008, 295, R611–R623. [Google Scholar] [CrossRef] [PubMed]
- Leon, L.R.; Helwig, B.G. Heat stroke: Role of the systemic inflammatory response. J. Appl. Physiol. 2010, 109, 1980–1988. [Google Scholar] [CrossRef] [PubMed]
- Petersen, A.M.W.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef]
- Dohi, K.; Mastro, A.M.; Miles, M.P.; Bush, J.A.; Grove, D.S.; Leach, S.K.; Volek, J.S.; Nindl, B.C.; Marx, J.O.; Gotshalk, L.A.; et al. Lymphocyte proliferation in response to acute heavy resistance exercise in women: Influence of muscle strength and total work. Eur. J. Appl. Physiol. 2001, 85, 367–373. [Google Scholar] [CrossRef]
- Smith, L.L.; McKune, A.J.; Semple, S.J.; Sibanda, E.; Steel, H.; Anderson, R. Changes in serum cytokines after repeated bouts of downhill running. Appl. Physiol. Nutr. Metab. 2007, 32, 233–240. [Google Scholar] [CrossRef]
- Marin, D.P.; Cassia Macedo dos Santos, R.; Bolin, A.P.; Guerra, B.A.; Hatanaka, E.; Otton, R. Cytokines and Oxidative Stress Status Following a Handball Game in Elite Male Players. Oxid. Med. Cell. Longev. 2011, 2011, 804873. [Google Scholar] [CrossRef] [PubMed]
- Wolsk, E.; Mygind, H.; Grøndahl, T.S.; Pedersen, B.K.; van Hall, G. IL-6 selectively stimulates fat metabolism in human skeletal muscle. Am. J. Physiol. Metab. 2010, 299, E832–E840. [Google Scholar] [CrossRef] [PubMed]
- Zehsaz, F.; Farhangi, N.; Mirheidari, L. Clinical immunology The effect of Zingiber officinale R. rhizomes (ginger) on plasma pro-inflammatory cytokine levels in well-trained male endurance runners. Cent. Eur. J. Immunol. 2014, 2, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Morton, J.P.; Kayani, A.C.; McArdle, A.; Drust, B. The Exercise-Induced Stress Response of Skeletal Muscle, with Specific Emphasis on Humans. Sports Med. 2009, 39, 643–662. [Google Scholar] [CrossRef]
20 Professional Judo Competitors | |
---|---|
Included: 15 | Excluded: 5 |
Inclusion criteria | Exclusion criteria |
Age > 18 years | Age < 18 years |
Good health status | Diseases and injuries |
High sports skill level | Low sports skill level |
Training experience > 10 years | Too short training experience |
At least 5th place in national competitions | No success in national competitions |
Examination started by 15 participants | |
Full scope of tests completed by 10 participants | Full scope of tests not completed by 5 participants |
LL | I | UL | I | LL | I | UL | I | LL | I | UL | I | LL | I | UL | I |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 s. | 30 s. | 15 s. | 30 s. | 30 s. | 60 s. | 30 s. | 60 s. | 20 s. | 45 s. | 20 s. | 45 s. | 15 s. | 30 s. | 15 s. | 30 s. |
Index | LL SD | UL SD |
---|---|---|
PP (W) | 933.00 ± 216.13 | 536.09 ± 107.73 |
RPP (W·kg−1) | 12.12 ± 0.87 | 7.00 ± 0.56 |
TW (kJ) | 21.85 ± 4.26 | 13.36 ± 2.50 |
TW (J·kg−1) | 285.27 ± 17.73 | 173.55 ± 13.50 |
Index | LL | UL | ||
---|---|---|---|---|
Before | After | Before | After | |
La [mmol·L−1] | 1.92 ± 0.31 | 14.11 ± 1.37 | 1.88 ± 0.27 | 13.05 ± 1.16 |
p< | <0.05 | <0.05 |
Index | LL SD | UL SD |
---|---|---|
VO2max [mL·kg−1, L·min−1] | 43.23 ± 7.79 | 37.19 ± 5.26 |
HRmax [h·min−1] | 185 ± 8.19 | 183 ± 8.43 |
Index | LL | UL | ||
---|---|---|---|---|
Before | After | Before | After | |
La [mmol·L−1] | 1.97 ± 0.20 | 12.95 ± 1.80 | 1.87 ± 23 | 10.21 ± 2.09 |
p< | <0.05 | <0.05 |
Temperature | Measurement | SD |
---|---|---|
21 °C | Before | 74.68 ± 11.32 |
After | 73.70 ± 10.99 # | |
31 °C | Before | 74.87 ± 11.29 |
After | 73.31 * ± 11.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pałka, T.; Ambroży, T.; Sadowska-Krępa, E.; Rydzik, Ł.; Wiecha, S.; Maciejczyk, M.; Kacúr, P.; Koteja, P.M.; Vadašová, B.; Witkowski, K.; et al. The Levels of Markers of Muscle Damage, Inflammation, and Heat Shock Proteins in Judokas and the Extent of Their Changes during a Special Performance Test at Different Ambient Temperatures. Appl. Sci. 2023, 13, 9381. https://doi.org/10.3390/app13169381
Pałka T, Ambroży T, Sadowska-Krępa E, Rydzik Ł, Wiecha S, Maciejczyk M, Kacúr P, Koteja PM, Vadašová B, Witkowski K, et al. The Levels of Markers of Muscle Damage, Inflammation, and Heat Shock Proteins in Judokas and the Extent of Their Changes during a Special Performance Test at Different Ambient Temperatures. Applied Sciences. 2023; 13(16):9381. https://doi.org/10.3390/app13169381
Chicago/Turabian StylePałka, Tomasz, Tadeusz Ambroży, Ewa Sadowska-Krępa, Łukasz Rydzik, Szczepan Wiecha, Marcin Maciejczyk, Peter Kacúr, Piotr Michał Koteja, Bibiana Vadašová, Kazimierz Witkowski, and et al. 2023. "The Levels of Markers of Muscle Damage, Inflammation, and Heat Shock Proteins in Judokas and the Extent of Their Changes during a Special Performance Test at Different Ambient Temperatures" Applied Sciences 13, no. 16: 9381. https://doi.org/10.3390/app13169381
APA StylePałka, T., Ambroży, T., Sadowska-Krępa, E., Rydzik, Ł., Wiecha, S., Maciejczyk, M., Kacúr, P., Koteja, P. M., Vadašová, B., Witkowski, K., & Tota, Ł. (2023). The Levels of Markers of Muscle Damage, Inflammation, and Heat Shock Proteins in Judokas and the Extent of Their Changes during a Special Performance Test at Different Ambient Temperatures. Applied Sciences, 13(16), 9381. https://doi.org/10.3390/app13169381