Big Data and AI-Driven Product Design: A Survey
Abstract
:1. Introduction
2. Key Tasks in Product Design
3. Traditional Product Design Methods
3.1. Kansei Engineering
3.2. KANO Model
3.3. QFD
3.4. TRIZ
3.5. Summary of Limitations
4. Product Design Based on Big Data and AI
4.1. Product Design Based on Structured Data
4.2. Product Design Based on Textual Data
4.3. Product Design Based on Image Data
4.4. Product Design Based on Audio Data
4.5. Product Design Based on Video Data
4.6. Summary of Opportunities
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Keshwani, S.; Lena, T.A.; Ahmed-Kristense, S.; Chakrabart, A. Comparing novelty of designs from biological-inspiration with those from brainstorming. J. Eng. Des. 2017, 28, 654–680. [Google Scholar] [CrossRef]
- Wang, C.H. Using the theory of inventive problem solving to brainstorm innovative ideas for assessing varieties of phone-cameras. Comput. Ind. Eng. 2015, 85, 227–234. [Google Scholar] [CrossRef]
- Gu, X.; Gao, F.; Tan, M.; Peng, P. Fashion analysis and understanding with artificial intelligence. Inf. Process. Manag. 2020, 57, 102276–102292. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, B.; Zhang, N.; Wang, W.; Fan, W. Mining product innovation ideas from online reviews. Inf. Process. Manag. 2021, 58, 102389–102402. [Google Scholar] [CrossRef]
- Oh, S.; Jung, Y.; Lee, I.; Kang, N. Design automation by integrating generative adversarial networks and topology optimization. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Quebec, QC, Canada, 26–29 August 2018; American Society of Mechanical Engineers: New York, NY, USA, 2018; p. 02-03008. [Google Scholar]
- Li, J.; Yang, J.; Zhang, J.; Liu, C.; Wang, C.; Xu, T. Attribute-conditioned layout gan for automatic graphic design. IEEE Trans. Vis. Comput. Graph. 2020, 27, 4039–4048. [Google Scholar] [CrossRef]
- Cao, Y.; Li, S.; Liu, Y.; Yan, Z.; Dai, Y.; Yu, P.S.; Sun, L. A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt. arXiv 2023, arXiv:2303.04226. [Google Scholar]
- Wu, J.; Gan, W.; Chen, Z.; Wan, S.; Lin, H. Ai-generated content (aigc): A survey. arXiv 2023, arXiv:2304.06632. [Google Scholar]
- Lai, H.-H.; Lin, Y.-C.; Yeh, C.-H.; Wei, C.-H. User-oriented design for the optimal combination on product design. Int. J. Prod. Econ. 2006, 100, 253–267. [Google Scholar] [CrossRef]
- Shieh, M.D.; Yeh, Y.E. Developing a design support system for the exterior form of running shoes using partial least squares and neural networks. Comput. Ind. Eng. 2013, 65, 704–718. [Google Scholar] [CrossRef]
- Qu, Q.X.; Guo, F. Can eye movements be effectively measured to assess product design? Gender differences should be considered. Int. J. Ind. Ergon. 2019, 72, 281–289. [Google Scholar] [CrossRef]
- Dogan, K.M.; Suzuki, H.; Gunpinar, E. Eye tracking for screening design parameters in adjective-based design of yacht hull. Ocean. Eng. 2018, 166, 262–277. [Google Scholar] [CrossRef]
- Avikal, S.; Singh, R.; Rashmi, R. Qfd and fuzzy kano model based approach for classification of aesthetic attributes of suv car profile. J. Intell. Manuf. 2020, 31, 271–284. [Google Scholar] [CrossRef]
- Mistarihi, M.Z.; Okour, R.A.; Mumani, A.A. An integration of a qfd model with fuzzy-anp approach for determining the importance weights for engineering characteristics of the proposed wheelchair design. Appl. Soft Comput. 2020, 90, 106136–106148. [Google Scholar] [CrossRef]
- Yamashina, H.; Ito, T.; Kawada, H. Innovative product development process by integrating qfd and triz. Int. J. Prod. Res. 2002, 40, 1031–1050. [Google Scholar] [CrossRef]
- Dou, R.; Zhang, Y.; Nan, G. Application of combined kano model and interactive genetic algorithm for product customization. J. Intell. Manuf. 2019, 30, 2587–2602. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Ho, C.C. Integration of green quality function deployment and fuzzy theory: A case study on green mobile phone design. J. Clean. Prod. 2015, 108, 271–280. [Google Scholar] [CrossRef]
- Chen, Z.-S.; Liu, X.-L.; Chin, K.-S.; Pedrycz, W.; Tsui, K.-L.; Skibniewski, M.J. Online-review analysis based large-scale group decision-making for determining passenger demands and evaluating passenger satisfaction: Case study of high-speed rail system in china. Inf. Fusion 2020, 69, 22–39. [Google Scholar] [CrossRef]
- Yao, M.-L.; Chuang, M.-C.; Hsu, C.-C. The kano model analysis of features for mobile security applications. Comput. Secur. 2018, 78, 336–346. [Google Scholar] [CrossRef]
- Dong, M.; Zeng, X.; Koehl, L.; Zhang, J. An interactive knowledge-based recommender system for fashion product design in the big data environment. Inf. Sci. 2020, 540, 469–488. [Google Scholar] [CrossRef]
- Sakao, T. A qfd-centred design methodology for environmentally conscious product design. Int. J. Prod. Res. 2007, 45, 4143–4162. [Google Scholar] [CrossRef]
- Jin, J.; Liu, Y.; Ji, P.; Kwong, C. Review on recent advances in information mining from big consumer opinion data for product design. J. Comput. Inf. Sci. Eng. 2019, 19, 010801. [Google Scholar] [CrossRef]
- Chen, Z.-S.; Liu, X.-L.; Rodríguez, R.M.; Wang, X.-J.; Chin, K.-S.; Tsui, K.-L.; Martínez, L. Identifying and prioritizing factors affecting in-cabin passenger comfort on high-speed rail in china: A fuzzy-based linguistic approach. Appl. Soft Comput. 2020, 95, 106558–106577. [Google Scholar] [CrossRef]
- Iosifidis, A.; Tefas, A.; Pitas, I.; Gabbouj, M. Big media data analysis. Signal Process. Image Commun. 2017, 59, 105–108. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z. Data-driven product design evaluation method based on multi-stage artificial neural network. Appl. Soft Comput. 2021, 103, 107117. [Google Scholar] [CrossRef]
- Shoumy, N.J.; Ang, L.-M.; Seng, K.P.; Rahaman, D.M.; Zia, T. Multimodal big data affective analytics: A comprehensive survey using text, audio, visual and physiological signals. J. Netw. Comput. Appl. 2020, 149, 102447–1024482. [Google Scholar] [CrossRef]
- Zhang, X.; Ming, X.; Yin, D. Application of industrial big data for smart manufacturing in product service system based on system engineering using fuzzy dematel. J. Clean. Prod. 2020, 265, 121863–121888. [Google Scholar] [CrossRef]
- Pandey, N.; Savakis, A. Poly-gan: Multi-conditioned gan for fashion synthesis. Neurocomputing 2020, 414, 356–364. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, S.; Liu, Y.; Si, S. A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. J. Clean. Prod. 2017, 142, 626–641. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, S.; Liu, Y.; Sakao, T.; Huisingh, D. A framework for big data driven product lifecycle management. J. Clean. Prod. 2017, 159, 229–240. [Google Scholar] [CrossRef]
- Ren, S.; Zhang, Y.; Liu, Y.; Sakao, T.; Huisingh, D.; Almeida, C.M.V.B. A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: A framework, challenges and future research directions. J. Clean. Prod. 2019, 210, 1343–1365. [Google Scholar] [CrossRef]
- Büyükzkan, G.; Ger, F. Application of a new combined intuitionistic fuzzy mcdm approach based on axiomatic design methodology for the supplier selection problem. Appl. Soft Comput. 2017, 52, 1222–1238. [Google Scholar] [CrossRef]
- Carnevalli, J.A.; Miguel, P.C. Review, analysis and classification of the literature on qfd—Types of research, difficulties and benefits. Int. J. Prod. Econ. 2008, 114, 737–754. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Li, X.L.; Zhao, W.; Hu, W. Creative thinking and computer aided product innovation. Comput. Integr. Manuf. Syst. 2003, 9, 1092–1096. [Google Scholar]
- Li, X.; Qiu, S.; Ming, H.X.G. An integrated module-based reasoning and axiomatic design approach for new product design under incomplete information environment. Comput. Ind. Eng. 2019, 127, 63–73. [Google Scholar] [CrossRef]
- Kudrowitz, B.M.; Wallace, D. Assessing the quality of ideas from prolific, early-stage product ideation. J. Eng. Des. 2013, 24, 120–139. [Google Scholar] [CrossRef]
- Bonnardel, N.; Didier, J. Brainstorming variants to favor creative design. Appl. Ergon. 2020, 83, 102987. [Google Scholar] [CrossRef] [PubMed]
- Youn, H.; Strumsky, D.; Bettencourt, L.M.; Lobo, J. Invention as a combinatorial process: Evidence from us patents. J. R. Soc. Interface 2015, 12, 20150272. [Google Scholar] [CrossRef]
- Zarraonandia, T.; Diaz, P.; Aedo, I. Using combinatorial creativity to support end-user design of digital games. Multimed. Tools Appl. 2017, 76, 9073–9098. [Google Scholar] [CrossRef]
- Sakao, T.; Lindahl, M. A value based evaluation method for product/service system using design information. CIRP Ann. Manuf. Technol. 2012, 61, 51–54. [Google Scholar] [CrossRef]
- Vieira, J.; Osório, J.M.A.; Mouta, S.; Delgado, P.; Portinha, A.; Meireles, J.F.; Santos, J.A. Kansei engineering as a tool for the design of in-vehicle rubber keypads. Appl. Ergon. 2017, 61, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nagamachi, M. Kansei engineering in consumer product design. Ergon. Des. Q. Hum. Factors Appl. 2016, 10, 5–9. [Google Scholar] [CrossRef]
- Nagamachi, M. Kansei engineering: A new ergonomic consumer-oriented technology for product development. Int. J. Ind. Ergon. 1995, 15, 3–11. [Google Scholar] [CrossRef]
- Nagamachi, M. Successful points of kansei product development. In Proceedings of the 7th International Conference on Kansei Engineering & Emotion Research, Kuching, Malaysia, 19–22 March 2018; Linköping University Electronic Press: Linköping, Sweden, 2018; pp. 177–187. [Google Scholar]
- Nagamachi, M.; Lokman, A.M. Innovations of Kansei Engineering; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Ishihara, S.; Nagamachi, M.; Schütte, S.; Eklund, J. Affective Meaning: The Kansei Engineering Approach; Elsevier: Amsterdam, The Netherlands, 2008; pp. 477–496. [Google Scholar]
- Schütte, S. Designing Feelings into Products: Integrating Kansei Engineering Methodology in Product Development. Master’s Thesis, Linköping University, Linköping, Sweden, 2002. [Google Scholar]
- Schütte, S. Engineering Emotional Values in Product Design: Kansei Engineering in Development. Ph.D. Thesis, Institutionen för Konstruktions-och Produktionsteknik, Linköping, Sweden, 2005. [Google Scholar]
- Schütte, S.; Eklund, J. Design of rocker switches for work-vehicles—An application of kansei engineering. Appl. Ergon. 2005, 36, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Marco Almagro, L.; Tort-Martorell Llabrés, X.; Schütte, S. A Discussion on the Selection of Prototypes for Kansei Engineering Study; Universitat Politècnica de Catalunya: Barcelona, Spain, 2016. [Google Scholar]
- Schütte, S.T.; Eklund, J.; Axelsson, J.R.; Nagamachi, M. Concepts, methods and tools in Kansei engineering. Theor. Issues Ergon. Sci. 2004, 5, 214–231. [Google Scholar] [CrossRef]
- Ishihara, S.; Nagamachi, M.; Tsuchiya, T. Development of a Kansei engineering artificial intelligence sightseeing application. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Orlando, FL, USA, 21–25 July 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 312–322. [Google Scholar]
- Djatna, T.; Kurniati, W.D. A system analysis and design for packaging design of powder shaped fresheners based on Kansei engineering. Procedia Manuf. 2015, 4, 115–123. [Google Scholar] [CrossRef]
- Shi, F.; Dey, N.; Ashour, A.S.; Sifaki-Pistolla, D.; Sherratt, R.S. Meta-kansei modeling with valence-arousal fmri dataset of brain. Cogn. Comput. 2019, 11, 227–240. [Google Scholar] [CrossRef]
- Xiao, W.; Cheng, J. Perceptual design method for smart industrial robots based on virtual reality and synchronous quantitative physiological signals. Int. J. Distrib. Sens. Netw. 2020, 16, 1–15. [Google Scholar] [CrossRef]
- Kano, N.; Seraku, N.; Takahashi, F.; Tsuji, S.-I. Attractive quality and must-be quality. J. Jpn. Soc. Qual. Control. 1984, 14, 147–156. [Google Scholar]
- Avikal, S.; Jain, R.; Mishra, P. A kano model, ahp and m-topsis method-based technique for disassembly line balancing under fuzzy environment. Appl. Soft Comput. 2014, 25, 519–529. [Google Scholar] [CrossRef]
- Violante, M.G.; Vezzetti, E. Kano qualitative vs quantitative approaches: An assessment framework for products attributes analysis. Comput. Ind. 2017, 86, 15–25. [Google Scholar] [CrossRef]
- He, L.; Song, W.; Wu, Z.; Xu, Z.; Zheng, M.; Ming, X. Quantification and integration of an improved kano model into qfd based on multi-population adaptive genetic algorithm. Comput. Ind. Eng. 2017, 114, 183–194. [Google Scholar] [CrossRef]
- Geng, X.; Chu, X. A new importance–performance analysis approach for customer satisfaction evaluation supporting pss design. Expert Syst. Appl. 2012, 39, 1492–1502. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Sheu, L.-C.; Tsou, Y.-G. Quality function deployment implementation based on fuzzy kano model: An application in plm system. Comput. Ind. Eng. 2008, 55, 48–63. [Google Scholar] [CrossRef]
- Ghorbani, M.; Mohammad Arabzad, S.; Shahin, A. A novel approach for supplier selection based on the kano model and fuzzy mcdm. Int. J. Prod. Res. 2013, 51, 5469–5484. [Google Scholar] [CrossRef]
- Chen, C.-C.; Chuang, M.-C. Integrating the kano model into a robust design approach to enhance customer satisfaction with product design. Int. J. Prod. Econ. 2008, 114, 667–681. [Google Scholar] [CrossRef]
- Basfirinci, C.; Mitra, A. A cross cultural investigation of airlines service quality through integration of servqual and the kano model. J. Air Transp. Manag. 2015, 42, 239–248. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, Z.; Jeon, S.; Zhou, Y. Mining customer requirements from online reviews: A product improvement perspective. Inf. Manag. 2016, 53, 951–963. [Google Scholar] [CrossRef]
- Bellandi, V.; Ceravolo, P.; Ehsanpour, M. A case study in smart healthcare platform design. In Proceedings of the IEEE World Congress on Services, Beijing, China, 18–24 October 2020; pp. 7–12. [Google Scholar]
- Almannai, B.; Greenough, R.; Kay, J. A decision support tool based on qfd and fmea for the selection of manufacturing automation technologies. Robot. Comput. -Integr. Manuf. 2008, 24, 501–507. [Google Scholar] [CrossRef]
- Lee, C.H.; Chen, C.H.; Lee, Y.C. Customer requirement-driven design method and computer-aided design system for supporting service innovation conceptualization handling. Adv. Eng. Inform. 2020, 45, 1–16. [Google Scholar] [CrossRef]
- Yan, H.B.; Meng, X.S.; Ma, T.; Huynh, V.N. An uncertain target-oriented qfd approach to service design based on service standardization with an application to bank window service. IISE Trans. 2019, 51, 1167–1189. [Google Scholar] [CrossRef]
- Kim, K.-J.; Moskowitz, H.; Dhingra, A.; Evans, G. Fuzzy multicriteria models for quality function deployment. Eur. J. Oper. Res. 2000, 121, 504–518. [Google Scholar] [CrossRef]
- Kahraman, C.; Ertay, T.; Büyüközkan, G. A fuzzy optimization model for qfd planning process using analytic network approach. Eur. J. Oper. Res. 2006, 171, 390–411. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Lee, C.-H.; Trappey, A.J. Service design blueprint approach incorporating triz and service qfd for a meal ordering system: A case study. Comput. Ind. Eng. 2017, 107, 388–400. [Google Scholar] [CrossRef]
- Dursun, M.; Karsak, E.E. A qfd-based fuzzy mcdm approach for supplier selection. Appl. Math. Model. 2013, 37, 5864–5875. [Google Scholar] [CrossRef]
- Li, M.; Jin, L.; Wang, J. A new mcdm method combining qfd with topsis for knowledge management system selection from the user’s perspective in intuitionistic fuzzy environment. Appl. Soft Comput. 2014, 21, 28–37. [Google Scholar] [CrossRef]
- Liu, H.-T. Product design and selection using fuzzy qfd and fuzzy mcdm approaches. Appl. Math. Model. 2011, 35, 482–496. [Google Scholar] [CrossRef]
- Yazdani, M.; Chatterjee, P.; Zavadskas, E.K.; Zolfani, S.H. Integrated qfd-mcdm framework for green supplier selection. J. Clean. Prod. 2017, 142, 3728–3740. [Google Scholar] [CrossRef]
- Wang, X.; Fang, H.; Song, W. Technical attribute prioritisation in qfd based on cloud model and grey relational analysis. Int. J. Prod. Res. 2020, 58, 5751–5768. [Google Scholar] [CrossRef]
- Yazdani, M.; Kahraman, C.; Zarate, P.; Onar, S.C. A fuzzy multi attribute decision framework with integration of qfd and grey relational analysis. Expert Syst. Appl. 2019, 115, 474–485. [Google Scholar] [CrossRef]
- Zhai, L.-Y.; Khoo, L.-P.; Zhong, Z.-W. A rough set based qfd approach to the management of imprecise design information in product development. Adv. Eng. Inform. 2009, 23, 222–228. [Google Scholar] [CrossRef]
- Zhai, L.-Y.; Khoo, L.P.; Zhong, Z.-W. Towards a qfd-based expert system: A novel extension to fuzzy qfd methodology using rough set theory. Expert Syst. Appl. 2010, 37, 8888–8896. [Google Scholar] [CrossRef]
- Moussa, F.Z.B.; Rasovska, I.; Dubois, S.; De Guio, R.; Benmoussa, R. Reviewing the use of the theory of inventive problem solving (triz) in green supply chain problems. J. Clean. Prod. 2017, 142, 2677–2692. [Google Scholar] [CrossRef]
- Ai, X.; Jiang, Z.; Zhang, H.; Wang, Y. Low-carbon product conceptual design from the perspectives of technical system and human use. J. Clean. Prod. 2020, 244, 118819. [Google Scholar] [CrossRef]
- Li, Z.; Tian, Z.; Wang, J.; Wang, W.; Huang, G. Dynamic mapping of design elements and affective responses: A machine learning based method for affective design. J. Eng. Des. 2018, 29, 358–380. [Google Scholar] [CrossRef]
- Jiao, J.R.; Zhang, Y.; Helander, M. A kansei mining system for affective design. Expert Syst. Appl. 2006, 30, 658–673. [Google Scholar] [CrossRef]
- Gandomi, A.; Haider, M. Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag. 2015, 35, 137–144. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Rosa, H.; Brogueira, G.; Batista, F. Misnis: An intelligent platform for twitter topic mining. Expert Syst. Appl. 2017, 89, 374–388. [Google Scholar] [CrossRef]
- Lau, R.Y.; Li, C.; Liao, S.S. Social analytics: Learning fuzzy product ontologies for aspect-oriented sentiment analysis. Decis. Support Syst. 2014, 65, 80–94. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, C.; Zhao, H. Using contextual features and multi-view ensemble learning in product defect identification from online discussion forums. Decis. Support Syst. 2018, 105, 1–12. [Google Scholar] [CrossRef]
- Park, Y.; Lee, S. How to design and utilize online customer center to support new product concept generation. Expert Syst. Appl. 2011, 38, 10638–10647. [Google Scholar] [CrossRef]
- Ren, L.; Zhu, B.; Xu, Z. Data-driven fuzzy preference analysis from an optimization perspective. Fuzzy Sets Syst. 2019, 377, 85–101. [Google Scholar] [CrossRef]
- Hong, H.; Xu, D.; Wang, G.A.; Fan, W. Understanding the determinants of online review helpfulness: A meta-analytic investigation. Decis. Support Syst. 2017, 102, 1–11. [Google Scholar] [CrossRef]
- Min, H.-J.; Park, J.C. Identifying helpful reviews based on customer’s mentions about experiences. Expert Syst. Appl. 2012, 39, 11830–11838. [Google Scholar] [CrossRef]
- Choi, J.; Yoon, J.; Chung, J.; Coh, B.-Y.; Lee, J.-M. Social media analytics and business intelligence research: A systematic review. Inf. Process. Manag. 2020, 57, 102279–102298. [Google Scholar] [CrossRef]
- Xiao, S.; Wei, C.-P.; Dong, M. Crowd intelligence: Analyzing online product reviews for preference measurement. Inf. Manag. 2016, 53, 169–182. [Google Scholar] [CrossRef]
- Zhao, K.; Stylianou, A.C.; Zheng, Y. Sources and impacts of social influence from online anonymous user reviews. Inf. Manag. 2018, 55, 16–30. [Google Scholar] [CrossRef]
- Lee, A.J.; Yang, F.-C.; Chen, C.-H.; Wang, C.-S.; Sun, C.-Y. Mining perceptual maps from consumer reviews. Decis. Support Syst. 2016, 82, 12–25. [Google Scholar] [CrossRef]
- Bi, J.-W.; Liu, Y.; Fan, Z.-P.; Cambria, E. Modelling customer satisfaction from online reviews using ensemble neural network and effect-based kano model. Int. J. Prod. Res. 2019, 57, 7068–7088. [Google Scholar] [CrossRef]
- Hu, M.; Liu, B. Mining opinion features in customer reviews. AAAI 2004, 4, 755–760. [Google Scholar]
- Kang, D.; Park, Y. Review-based measurement of customer satisfaction in mobile service: Sentiment analysis and vikor approach. Expert Syst. Appl. 2014, 41, 1041–1050. [Google Scholar] [CrossRef]
- Kangale, A.; Kumar, S.K.; Naeem, M.A.; Williams, M.; Tiwari, M.K. Mining consumer reviews to generate ratings of different product attributes while producing feature-based review-summary. Int. J. Syst. Sci. 2016, 47, 3272–3286. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, X.; Tan, Y. Impact of product attributes on customer satisfaction: An analysis of online reviews for washing machines. Electron. Commer. Res. Appl. 2018, 29, 1–11. [Google Scholar] [CrossRef]
- Aguwa, C.; Olya, M.H.; Monplaisir, L. Modeling of fuzzy-based voice of customer for business decision analytics. Knowl.-Based Syst. 2017, 125, 136–145. [Google Scholar] [CrossRef]
- Zhan, J.; Loh, H.T.; Liu, Y. Gather customer concerns from online product reviews–a text summarization approach. Expert Syst. Appl. 2009, 36, 2107–2115. [Google Scholar] [CrossRef]
- Archak, N.; Ghose, A.; Ipeirotis, P.G. Deriving the pricing power of product features by mining consumer reviews. Manag. Sci. 2011, 57, 1485–1509. [Google Scholar] [CrossRef]
- Law, D.; Gruss, R.; Abrahams, A.S. Automated defect discovery for dishwasher appliances from online consumer reviews. Expert Syst. Appl. 2017, 67, 84–94. [Google Scholar] [CrossRef]
- Winkler, M.; Abrahams, A.S.; Gruss, R.; Ehsani, J.P. Toy safety surveillance from online reviews. Decis. Support Syst. 2016, 90, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, H.; Wan, W. Weakness finder: Find product weakness from chinese reviews by using aspects based sentiment analysis. Expert Syst. Appl. 2012, 39, 10283–10291. [Google Scholar] [CrossRef]
- Jin, J.; Ji, P.; Gu, R. Identifying comparative customer requirements from product online reviews for competitor analysis. Eng. Appl. Artif. Intell. 2016, 49, 61–73. [Google Scholar] [CrossRef]
- Chatterjee, S. Explaining customer ratings and recommendations by combining qualitative and quantitative user generated contents. Decis. Support Syst. 2019, 119, 14–22. [Google Scholar] [CrossRef]
- Fan, Z.-P.; Li, G.-M.; Liu, Y. Processes and methods of information fusion for ranking products based on online reviews: An overview. Inf. Fusion 2020, 60, 87–97. [Google Scholar] [CrossRef]
- Liu, P.; Teng, F. Probabilistic linguistic todim method for selecting products through online product reviews. Inf. Sci. 2019, 485, 441–455. [Google Scholar] [CrossRef]
- Liu, Y.; Bi, J.-W.; Fan, Z.-P. Ranking products through online reviews: A method based on sentiment analysis technique and intuitionistic fuzzy set theory. Inf. Fusion 2017, 36, 149–161. [Google Scholar] [CrossRef]
- Siering, M.; Deokar, A.V.; Janze, C. Disentangling consumer recommendations: Explaining and predicting airline recommendations based on online reviews. Decis. Support Syst. 2018, 107, 52–63. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, D.; Lu, M. Combining sentiment analysis with a fuzzy kano model for product aspect preference recommendation. IEEE Access 2018, 6, 59163–59172. [Google Scholar] [CrossRef]
- Jin, J.; Ji, P.; Kwong, C.K. What makes consumers unsatisfied with your products: Review analysis at a fine-grained level. Eng. Appl. Artif. Intell. 2016, 47, 38–48. [Google Scholar] [CrossRef]
- Jin, J.; Liu, Y.; Ji, P.; Liu, H. Understanding big consumer opinion data for market-driven product design. Int. J. Prod. Res. 2016, 54, 3019–3041. [Google Scholar] [CrossRef]
- Wang, W.M.; Wang, J.; Li, Z.; Tian, Z.; Tsui, E. Multiple affective attribute classification of online customer product reviews: A heuristic deep learning method for supporting Kansei engineering. Eng. Appl. Artif. Intell. 2019, 85, 33–45. [Google Scholar] [CrossRef]
- Kumar, S.; Yadava, M.; Roy, P.P. Fusion of eeg response and sentiment analysis of products review to predict customer satisfaction. Inf. Fusion 2019, 52, 41–52. [Google Scholar] [CrossRef]
- Li, S.; Nahar, K.; Fung, B.C. Product customization of tablet computers based on the information of online reviews by customers. J. Intell. Manuf. 2015, 26, 97–110. [Google Scholar] [CrossRef]
- Sun, J.-T.; Zhang, Q.-Y. Product typicality attribute mining method based on a topic clustering ensemble. Artif. Intell. Rev. 2022, 55, 6629–6654. [Google Scholar] [CrossRef]
- Zhang, H.; Sekhari, A.; Ouzrout, Y.; Bouras, A. Jointly identifying opinion mining elements and fuzzy measurement of opinion intensity to analyze product features. Eng. Appl. Artif. Intell. 2016, 47, 122–139. [Google Scholar] [CrossRef]
- Tubishat, M.; Idris, N.; Abushariah, M. Explicit aspects extraction in sentiment analysis using optimal rules combination. Future Gener. Comput. Syst. 2021, 114, 448–480. [Google Scholar] [CrossRef]
- Quan, C.; Ren, F. Unsupervised product feature extraction for feature-oriented opinion determination. Inf. Sci. 2014, 272, 16–28. [Google Scholar] [CrossRef]
- Sun, H.; Guo, W.; Shao, H.; Rong, B. Dynamical mining of ever-changing user requirements: A product design and improvement perspective. Adv. Eng. Inform. 2020, 46, 101174–101186. [Google Scholar] [CrossRef]
- Ristoski, P.; Petrovski, P.; Mika, P.; Paulheim, H. A machine learning approach for product matching and categorization. Semant. Web 2018, 9, 707–728. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, Q.; Tang, X.; Wang, A.; Baron, C. An implicit opinion analysis model based on feature-based implicit opinion patterns. Artif. Intell. Rev. 2020, 53, 4547–4574. [Google Scholar] [CrossRef]
- Putthividhya, D.; Hu, J. Bootstrapped named entity recognition for product attribute extraction. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK, 27–31 July 2011; pp. 1557–1567. [Google Scholar]
- Tubishat, M.; Idris, N.; Abushariah, M.A. Implicit aspect extraction in sentiment analysis: Review, taxonomy, oppportunities, and open challenges. Inf. Process. Manag. 2018, 54, 545–563. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, F.; Wang, W. Implicit feature identification in chinese reviews using explicit topic mining model. Knowl.-Based Syst. 2015, 76, 166–175. [Google Scholar] [CrossRef]
- Kang, Y.; Zhou, L. Rube: Rule-based methods for extracting product features from online consumer reviews. Inf. Manag. 2017, 54, 166–176. [Google Scholar] [CrossRef]
- Hu, M.; Liu, B. Mining and summarizing customer reviews. In Proceedings of the Tenth International Conference on Knowledge Discovery and Data Mining, Seattle, DC, USA, 22–25 August 2004; ACM: New York, NY, USA, 2004; pp. 168–177. [Google Scholar] [CrossRef]
- Wang, Y.; Mo, D.Y.; Tseng, M.M. Mapping customer needs to design parameters in the front end of product design by applying deep learning. CIRP Ann. 2018, 67, 145–148. [Google Scholar] [CrossRef]
- Li, S.B.; Quan, H.F.; Hu, J.J.; Wu, Y.; Zhang, A. Perceptual evaluation method of products based on online reviews data driven. Comput. Integr. Manuf. Syst. 2018, 24, 752–762. [Google Scholar]
- Wang, W.M.; Li, Z.; Tian, Z.; Wang, J.; Cheng, M. Extracting and summarizing affective features and responses from online product descriptions and reviews: A kansei text mining approach. Eng. Appl. Artif. Intell. 2018, 73, 149–162. [Google Scholar] [CrossRef]
- Chen, L.; Qi, L.; Wang, F. Comparison of feature-level learning methods for mining online consumer reviews. Expert Syst. Appl. 2012, 39, 9588–9601. [Google Scholar] [CrossRef]
- Moraes, R.; Valiati, J.F.; Neto, W.P.G. Document-level sentiment classification: An empirical comparison between svm and ann. Expert Syst. Appl. 2013, 40, 621–633. [Google Scholar] [CrossRef]
- Bordoloi, M.; Biswas, S.K. Sentiment analysis: A survey on design framework, applications and future scopes. Artif. Intell. Rev. 2023, 1–56. [Google Scholar] [CrossRef]
- Do, H.H.; Prasad, P.; Maag, A.; Alsadoon, A. Deep learning for aspect-based sentiment analysis: A comparative review. Expert Syst. Appl. 2019, 118, 272–299. [Google Scholar] [CrossRef]
- Liu, Y.; Bi, J.-W.; Fan, Z.-P. Multi-class sentiment classification: The experimental comparisons of feature selection and machine learning algorithms. Expert Syst. Appl. 2017, 80, 323–339. [Google Scholar] [CrossRef]
- Liu, Y.; Jian-Wu, B.; Fan, Z.P. A method for multi-class sentiment classification based on an improved one-vs-one (ovo) strategy and the support vector machine (svm) algorithm. Inf. Sci. 2017, 394, 38–52. [Google Scholar] [CrossRef]
- Zengcai, S.; Yunfeng, X.; Dongwen, Z. Chinese comments sentiment classification based on word2vec and svmperf. Expert Syst. Appl. 2015, 42, 1857–1863. [Google Scholar]
- Dehdarbehbahani, I.; Shakery, A.; Faili, H. Semi-supervised word polarity identification in resource-lean languages. Neural Netw. 2014, 58, 50–59. [Google Scholar] [CrossRef]
- Cho, H.; Kim, S.; Lee, J.; Lee, J.-S. Data-driven integration of multiple sentiment dictionaries for lexicon-based sentiment classification of product reviews. Knowl.-Based Syst. 2014, 71, 61–71. [Google Scholar] [CrossRef]
- Araque, O.; Zhu, G.; Iglesias, C.A. A semantic similarity-based perspective of affect lexicons for sentiment analysis. Knowl.-Based Syst. 2019, 165, 346–359. [Google Scholar] [CrossRef]
- Bravo-Marquez, F.; Mendoza, M.; Poblete, B. Meta-level sentiment models for big social data analysis. Knowl.-Based Syst. 2014, 69, 86–99. [Google Scholar] [CrossRef]
- Yadollahi, A.; Shahraki, A.G.; Zaiane, O.R. Current state of text sentiment analysis from opinion to emotion mining. ACM Comput. Surv. 2017, 50, 1–33. [Google Scholar] [CrossRef]
- Dang, Y.; Zhang, Y.; Chen, H. A lexicon-enhanced method for sentiment classification: An experiment on online product reviews. IEEE Intell. Syst. 2009, 25, 46–53. [Google Scholar] [CrossRef]
- Chen, Z.; Ai, S.; Jia, C. Structure-aware deep learning for product image classification. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2019, 15, 1–20. [Google Scholar] [CrossRef]
- Li, Q.; Peng, X.; Cao, L.; Du, W.; Xing, H.; Qiao, Y.; Peng, Q. Product image recognition with guidance learning and noisy supervision. Comput. Vis. Image Underst. 2020, 196, 102963–102971. [Google Scholar] [CrossRef]
- Liu, S.; Feng, J.; Domokos, C.; Xu, H.; Huang, J.; Hu, Z.; Yan, S. Fashion parsing with weak color-category labels. IEEE Trans. Multimed. 2013, 16, 253–265. [Google Scholar] [CrossRef]
- Li, Y.; Dai, Y.; Liu, L.-J.; Tan, H. Advanced designing assistant system for smart design based on product image dataset. In Proceedings of the International Conference on Human-Computer Interaction, Orlando, FL, USA, 26–31 July 2019; Springer: Cham, Switzerland; pp. 18–33. [Google Scholar]
- Dai, Y.; Li, Y.; Liu, L.-J. New product design with automatic scheme generation. Sens. Imaging 2019, 20, 1–16. [Google Scholar] [CrossRef]
- Kovacs, B.; O’Donovan, P.; Bala, K.; Hertzmann, A. Context-aware asset search for graphic design. IEEE Trans. Vis. Comput. Graph. 2018, 25, 2419–2429. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Kiapour, M.H.; Ortiz, L.E.; Berg, T.L. Retrieving similar styles to parse clothing. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 1028–1040. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.; Bala, K. Learning visual similarity for product design with convolutional neural networks. ACM Trans. Graph. (TOG) 2015, 34, 1–10. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Huang, T.; Tian, Q. E2bows: An end-to-end bag-of-words model via deep convolutional neural network for image retrieval. Neurocomputing 2020, 395, 188–198. [Google Scholar] [CrossRef]
- Rubio, A.; Yu, L.; Simo-Serra, E.; Moreno-Noguer, F. Multi-modal joint embedding for fashion product retrieval. In Proceedings of the IEEE International Conference on Image Processing, Beijing, China, 17–20 September 2017; pp. 400–404. [Google Scholar]
- Tautkute, I.; Trzciński, T.; Skorupa, A.P.; Brocki, Ł.; Marasek, K. Deepstyle: Multimodal search engine for fashion and interior design. IEEE Access 2019, 7, 84613–84628. [Google Scholar] [CrossRef]
- Andreeva, E.; Ignatov, D.I.; Grachev, A.; Savchenko, A.V. Extraction of visual features for recommendation of products via deep learning. In Proceedings of the International Conference on Analysis of Images, Social Networks and Texts, Moscow, Russia, 5–7 July 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 201–210. [Google Scholar]
- Wang, X.; Sun, Z.; Zhang, W.; Zhou, Y.; Jiang, Y.-G. Matching user photos to online products with robust deep features. In Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval, New York, NY, USA, 6–9 June 2016; pp. 7–14. [Google Scholar]
- Zhan, H.; Shi, B.; Duan, L.-Y.; Kot, A.C. Deepshoe: An improved multi-task view-invariant cnn for street-to-shop shoe retrieval. Comput. Vis. Image Underst. 2019, 180, 23–33. [Google Scholar] [CrossRef]
- Jiang, S.; Wu, Y.; Fu, Y. Deep bidirectional cross-triplet embedding for online clothing shopping. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2018, 14, 1–22. [Google Scholar] [CrossRef]
- Jiang, Y.-G.; Li, M.; Wang, X.; Liu, W.; Hua, X.-S. Deepproduct: Mobile product search with portable deep features. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2018, 14, 1–18. [Google Scholar] [CrossRef]
- Liu, S.; Song, Z.; Liu, G.; Xu, C.; Lu, H.; Yan, S. Street-to-shop: Cross-scenario clothing retrieval via parts alignment and auxiliary set. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Providence, RL, USA, 16–21 June 2012; pp. 3330–3337. [Google Scholar]
- Yu, Q.; Liu, F.; Song, Y.-Z.; Xiang, T.; Hospedales, T.M.; Loy, C.-C. Sketch me that shoe. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 799–807. [Google Scholar]
- Ullah, F.; Zhang, B.; Khan, R.U.; Ullah, I.; Khan, A.; Qamar, A.M. Visual-based items recommendation using deep neural network. In Proceedings of the International Conference on Computing, Networks and Internet of Things, Sanya, China, 24–26 April 2020; pp. 122–126. [Google Scholar]
- Liang, X.; Lin, L.; Yang, W.; Luo, P.; Huang, J.; Yan, S. Clothes co-parsing via joint image segmentation and labeling with application to clothing retrieval. IEEE Trans. Multimed. 2016, 18, 1175–1186. [Google Scholar] [CrossRef]
- Chu, W.-T.; Wu, Y.-L. Image style classification based on learnt deep correlation features. IEEE Trans. Multimed. 2018, 20, 2491–2502. [Google Scholar] [CrossRef]
- Hu, Z.; Wen, Y.; Liu, L.; Jiang, J.; Hong, R.; Wang, M.; Yan, S. Visual classification of furniture styles. ACM Trans. Intell. Syst. Technol. 2017, 8, 1–20. [Google Scholar] [CrossRef]
- Poursaeed, O.; Matera, T.; Belongie, S. Vision-based real estate price estimation. Mach. Vis. Appl. 2018, 29, 667–676. [Google Scholar] [CrossRef]
- Pan, T.-Y.; Dai, Y.-Z.; Hu, M.-C.; Cheng, W.-H. Furniture style compatibility recommendation with cross-class triplet loss. Multimed. Tools Appl. 2019, 78, 2645–2665. [Google Scholar] [CrossRef]
- Shin, Y.-G.; Yeo, Y.-J.; Sagong, M.-C.; Ji, S.-W.; Ko, S.-J. Deep fashion recommendation system with style feature decomposition. In Proceedings of the International Conference on Consumer Electronics, Las Vegas, NV, USA, 11–13 January 2019; pp. 301–305. [Google Scholar]
- Zhan, H.; Shi, B.; Chen, J.; Zheng, Q.; Duan, L.-Y.; Kot, A.C. Fashion recommendation on street images. In Proceedings of the International Conference on Image Processing, Taipei, Taiwan, 22–25 September 2019; pp. 280–284. [Google Scholar]
- Zhang, H.; Huang, W.; Liu, L.; Chow, T.W. Learning to match clothing from textual feature-based compatible relationships. IEEE Trans. Ind. Inform. 2019, 16, 6750–6759. [Google Scholar] [CrossRef]
- Aggarwal, D.; Valiyev, E.; Sener, F.; Yao, A. Learning style compatibility for furniture. In Proceedings of the German Conference on Pattern Recognition, Stuttgart, Germany, 9–12 October 2018; Springer: Cham, Switzerland, 2018; pp. 552–566. [Google Scholar]
- Polania, L.F.; Flores, M.; Nokleby, M.; Li, Y. Learning furniture compatibility with graph neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 366–367. [Google Scholar]
- Dan, Y.; Zhao, Y.; Li, X.; Li, S.; Hu, M.; Hu, J. Generative adversarial networks (gan) based efficient sampling of chemical composition space for inverse design of inorganic materials. npj Comput. Mater. 2020, 6, 1–7. [Google Scholar] [CrossRef]
- Kang, W.-C.; Fang, C.; Wang, Z.; McAuley, J. Visually-aware fashion recommendation and design with generative image models. In Proceedings of the IEEE International Conference on Data Mining, New Orleans, LA, USA, 18–21 November 2017; pp. 207–216. [Google Scholar]
- Zhang, H.; Sun, Y.; Liu, L.; Xu, X. Cascadegan: A category-supervised cascading generative adversarial network for clothes translation from the human body to tiled images. Neurocomputing 2020, 382, 148–161. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Bharadwaj, V.; Manjunath, V.; Srinath, R. Creative intelligence–automating car design studio with generative adversarial networks (gan). In International Cross-Domain Conference for Machine Learning and Knowledge Extraction; Springer: Berlin/Heidelberg, Germany, 2018; pp. 160–175. [Google Scholar]
- Ak, K.E.; Lim, J.H.; Tham, J.Y.; Kassim, A.A. Semantically consistent text to fashion image synthesis with an enhanced attentional generative adversarial network. Pattern Recognit. Lett. 2020, 135, 22–29. [Google Scholar] [CrossRef]
- Kim, T.; Cha, M.; Kim, H.; Lee, J.K.; Kim, J. Learning to discover cross-domain relations with generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1857–1865. [Google Scholar]
- Hsiao, W.-L.; Katsman, I.; Wu, C.-Y.; Parikh, D.; Grauman, K. Fashion++: Minimal edits for outfit improvement. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 5047–5056. [Google Scholar]
- Lang, Y.; He, Y.; Dong, J.; Yang, F.; Xue, H. Design-gan: Cross-category fashion translation driven by landmark attention. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 1968–1972. [Google Scholar]
- Liu, J.; Song, X.; Chen, Z.; Ma, J. Mgcm: Multi-modal generative compatibility modeling for clothing matching. Neurocomputing 2020, 414, 215–224. [Google Scholar] [CrossRef]
- Lu, Q.; Tao, Q.; Zhao, Y. Sketch simplification using generative adversarial networks. Acta Autom. Sin. 2018, 44, 75–89. [Google Scholar]
- Chai, C.; Liao, J.; Zou, N.; Sun, L. A one-to-many conditional generative adversarial network framework for multiple image-to-image translations. Multimed. Tools Appl. 2018, 77, 22339–22366. [Google Scholar] [CrossRef]
- Lee, Y.; Cho, S. Design of semantic-based colorization of graphical user interface through conditional generative adversarial nets. Int. J. Hum. Comput. Interact. 2020, 36, 699–708. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Wan, T.; Luo, Z. Auto-painter: Cartoon image generation from sketch by using conditional wasserstein generative adversarial networks. Neurocomputing 2018, 311, 78–87. [Google Scholar] [CrossRef]
- Liu, B.; Gan, J.; Wen, B.; LiuFu, Y.; Gao, W. An automatic coloring method for ethnic costume sketches based on generative adversarial networks. Appl. Soft Comput. 2021, 98, 106786–106797. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, S.; Zhao, J.; Zhou, Y.; Niu, Q.; Yao, R.; Zhu, D. Appearance and shape based image synthesis by conditional variational generative adversarial network. Knowl.-Based Syst. 2020, 193, 105450–105477. [Google Scholar] [CrossRef]
- Jetchev, N.; Bergmann, U. The conditional analogy gan: Swapping fashion articles on people images. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017; pp. 2287–2292. [Google Scholar]
- Huafeng, Q. Product Design Based on Big Data. Ph.D. Thesis, Guizhou University, Guizhou, China, 2019. [Google Scholar]
- Liu, L.; Zhang, H.; Ji, Y.; Wu, Q.J. Toward ai fashion design: An attribute-gan model for clothing match. Neurocomputing 2019, 341, 156–167. [Google Scholar] [CrossRef]
- Rahbar, M.; Mahdavinejad, M.; Bemanian, M.; Davaie Markazi, A.H.; Hovestadt, L. Generating synthetic space allocation probability layouts based on trained conditional-gans. Appl. Artif. Intell. 2019, 33, 689–705. [Google Scholar] [CrossRef]
- Wang, X.; Gupta, A. Generative image modeling using style and structure adversarial networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 318–335. [Google Scholar]
- Cheng, Q.; Gu, X. Cross-modal feature alignment based hybrid attentional generative adversarial networks for text-to-image synthesis. Digit. Signal Process. 2020, 107, 102866–102884. [Google Scholar] [CrossRef]
- Reed, S.; Akata, Z.; Yan, X.; Logeswaran, L.; Schiele, B.; Lee, H. Generative adversarial text to image synthesis. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1060–1069. [Google Scholar]
- Tan, H.; Liu, X.; Liu, M.; Yin, B.; Li, X. Kt-gan: Knowledge-transfer generative adversarial network for text-to-image synthesis. IEEE Trans. Image Process. 2020, 30, 1275–1290. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, P.; Huang, Q.; Zhang, H.; Gan, Z.; Huang, X.; He, X. Attngan: Fine-grained text to image generation with attentional generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1316–1324. [Google Scholar]
- Poole, B.; Jain, A.; Barron, J.T.; Mildenhall, B. Dreamfusion: Text-to-3d using 2d diffusion. arXiv 2022, arXiv:2209.14988. [Google Scholar]
- Jun, H.; Nichol, A. Shap-e: Generating conditional 3d implicit functions. arXiv 2023, arXiv:2305.02463. [Google Scholar]
- Wang, Z.; Lu, C.; Wang, Y.; Bao, F.; Li, C.; Su, H.; Zhu, J. Prolificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation. arXiv 2023, arXiv:2305.16213. [Google Scholar]
- Iizuka, S.; Simo-Serra, E.; Ishikawa, H. Let there be color! joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM Trans. Graph. 2016, 35, 1–11. [Google Scholar] [CrossRef]
- Lei, Y.; Du, W.; Hu, Q. Face sketch-to-photo transformation with multi-scale self-attention gan. Neurocomputing 2020, 396, 13–23. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Zhu, J.-Y.; Krähenbühl, P.; Shechtman, E.; Efros, A.A. Generative visual manipulation on the natural image manifold. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 597–613. [Google Scholar]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Pan, X.; Tewari, A.; Leimkühler, T.; Liu, L.; Meka, A.; Theobalt, C. Drag your gan: Interactive point-based manipulation on the generative image manifold. arXiv 2023, arXiv:2305.10973. [Google Scholar]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. A neural algorithm of artistic style. arXiv 2015, arXiv:1508.06576. [Google Scholar] [CrossRef]
- Huang, X.; Belongie, S. Arbitrary style transfer in real-time with adaptive instance normalization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Quan, H.; Li, S.; Hu, J. Product innovation design based on deep learning and kansei engineering. Appl. Sci. 2018, 8, 2397–2415. [Google Scholar] [CrossRef]
- Wu, Q.; Zhu, B.; Yong, B.; Wei, Y.; Jiang, X.; Zhou, R.; Zhou, Q. Clothgan: Generation of fashionable dunhuang clothes using generative adversarial networks. Connect. Sci. 2021, 33, 341–358. [Google Scholar] [CrossRef]
- Sohn, K.; Sung, C.E.; Koo, G.; Kwon, O. Artificial intelligence in the fashion industry: Consumer responses to generative adversarial network (gan) technology. Int. J. Retail. Distrib. Manag. 2020, 49, 1–20. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, J.; Liu, Q.; Liu, G. Learning image compressed sensing with sub-pixel convolutional generative adversarial network. Pattern Recognit. 2020, 98, 107051. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Z.; Shang, K.; Wu, H. Label-removed generative adversarial networks incorporating with k-means. Neurocomputing 2019, 361, 126–136. [Google Scholar] [CrossRef]
- Faezi, M.H.; Bijani, S.; Dolati, A. Degan: Decentralized generative adversarial networks. Neurocomputing 2021, 419, 335–343. [Google Scholar] [CrossRef]
- Sun, G.; Ding, S.; Sun, T.; Zhang, C. Sa-capsgan: Using capsule networks with embedded self-attention for generative adversarial network. Neurocomputing 2021, 423, 399–406. [Google Scholar] [CrossRef]
- Yao, S.; Wang, Y.; Niu, B. An efficient cascaded filtering retrieval method for big audio data. IEEE Trans. Multimed. 2015, 17, 1450–1459. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, M.; Liu, Z.; Qin, D.; Yao, X. Study of audio frequency big data processing architecture and key technology. Telecommun. Sci. 2013, 29, 1–5. [Google Scholar]
- Lee, C.-H.; Wang, Y.-H.; Trappey, A.J. Ontology-based reasoning for the intelligent handling of customer complaints. Comput. Ind. Eng. 2015, 84, 144–155. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, D.-L.; Yang, J.-B.; Chen, Y.-W. An evidential reasoning-based decision support system for handling customer complaints in mobile telecommunications. Knowl.-Based Syst. 2018, 162, 202–210. [Google Scholar] [CrossRef]
- Bingol, M.C.; Aydogmus, O. Performing predefined tasks using the human–robot interaction on speech recognition for an industrial robot. Eng. Appl. Artif. Intell. 2020, 95, 103903–103917. [Google Scholar] [CrossRef]
- Tanaka, T.; Masumura, R.; Oba, T. Neural candidate-aware language models for speech recognition. Comput. Speech Lang. 2021, 66, 101157–101170. [Google Scholar] [CrossRef]
- Dokuz, Y.; Tufekci, Z. Mini-batch sample selection strategies for deep learning based speech recognition. Appl. Acoust. 2021, 171, 107573–107583. [Google Scholar] [CrossRef]
- Mulimani, M.; Koolagudi, S.G. Extraction of mapreduce-based features from spectrograms for audio-based surveillance. Digit. Signal Process. 2019, 87, 1–9. [Google Scholar] [CrossRef]
- El Ayadi, M.; Kamel, M.S.; Karray, F. Survey on speech emotion recognition: Features, classification schemes, and databases. Pattern Recognit. 2011, 44, 572–587. [Google Scholar] [CrossRef]
- Fayek, H.M.; Lech, M.; Cavedon, L. Evaluating deep learning architectures for speech emotion recognition. Neural Netw. 2017, 92, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhou, Y.; Wang, Z.; Gao, D. Exploiting the potentialities of features for speech emotion recognition. Inf. Sci. 2021, 548, 328–343. [Google Scholar] [CrossRef]
- Badshah, A.M.; Ahmad, J.; Rahim, N.; Baik, S.W. Speech emotion recognition from spectrograms with deep convolutional neural network. In Proceedings of the International Conference on Platform Technology and Service, Busan, Republic of Korea, 13–15 February 2017. [Google Scholar]
- Nagamachi, M.; Lokman, A.M. Kansei Innovation: Practical Design Applications for Product and Service Development; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Hossain, M.S.; Muhammad, G. Emotion recognition using deep learning approach from audio–visual emotional big data. Inf. Fusion 2019, 49, 69–78. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, W.; Hossain, M.S.; Chen, M.; Alelaiwi, A.; Al-Hammadi, M. A snapshot research and implementation of multimodal information fusion for data-driven emotion recognition. Inf. Fusion 2020, 53, 209–221. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, Z.; Chen, P.; Nichele, S. Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review. Inf. Fusion 2020, 59, 103–126. [Google Scholar] [CrossRef]
- Li, G.; Wang, M.; Lu, Z.; Hong, R.; Chua, T.-S. In-video product annotation with web information mining. ACM Trans. Multimed. Comput. Commun. Appl. 2012, 8, 1–19. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, H.; Wang, X.; Ji, Y.; Wu, Q.J. Clothescounter: A framework for star-oriented clothes mining from videos. Neurocomputing 2020, 377, 38–48. [Google Scholar] [CrossRef]
- Zhang, H.; Ji, Y.; Huang, W.; Liu, L. Sitcom-star-based clothing retrieval for video advertising: A deep learning framework. Neural Comput. Appl. 2019, 31, 7361–7380. [Google Scholar] [CrossRef]
- Cheng, Z.-Q.; Wu, X.; Liu, Y.; Hua, X.-S. Video2shop: Exact matching clothes in videos to online shopping images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4048–4056. [Google Scholar]
- Wu, C.; Tan, Z.; Wang, Z.; Yang, S. A dataset for exploring user behaviors in vr spherical video streaming. In Proceedings of the ACM on Multimedia Systems Conference, Taipei, Taiwan, 20–23 June 2017; pp. 193–198. [Google Scholar]
- Taati, B.; Snoek, J.; Mihailidis, A. Video analysis for identifying human operation difficulties and faucet usability assessment. Neurocomputing 2013, 100, 163–169. [Google Scholar] [CrossRef]
- Chen, B.-H.; Huang, S.-C.; Yen, J.-Y. Counter-propagation artificial neural network-based motion detection algorithm for static-camera surveillance scenarios. Neurocomputing 2018, 273, 481–493. [Google Scholar] [CrossRef]
- Liu, S.; Liang, X.; Liu, L.; Lu, K.; Lin, L.; Cao, X.; Yan, S. Fashion parsing with video context. IEEE Trans. Multimed. 2015, 17, 1347–1358. [Google Scholar] [CrossRef]
- Dong, H.; Liang, X.; Shen, X.; Wu, B.; Chen, B.-C.; Yin, J. Fw-gan: Flow-navigated warping gan for video virtual try-on. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1161–1170. [Google Scholar]
- Yi, C.; Jiang, Z.; Benbasat, I. Enticing and engaging consumers via online product presentations: The effects of restricted interaction design. J. Manag. Inf. Syst. 2015, 31, 213–242. [Google Scholar] [CrossRef]
- An, S.; Liu, S.; Huang, Z.; Che, G.; Bao, Q.; Zhu, Z.; Chen, Y.; Weng, D.Z. Rotateview: A video composition system for interactive product display. IEEE Trans. Multimed. 2019, 21, 3095–3105. [Google Scholar] [CrossRef]
No. | Inventive Principle | No. | Inventive Principle |
---|---|---|---|
1 | Segmentation | 21 | Skipping |
2 | Taking out | 22 | Blessing in disguise |
3 | Local quality | 23 | Feedback |
4 | Asymmetry | 24 | Intermediary |
5 | Merging | 25 | Self-service |
6 | Universabrationlity | 26 | Copying |
7 | Nested dol1 | 27 | Cheap short-living |
8 | Anti-weight | 28 | Mechanics substitution |
9 | Preliminary anti-action | 29 | Pneumatics and hydraulics |
10 | Preliminary action | 30 | Flexible shells and thin films |
11 | Beforehand cushioning | 31 | Porous materials |
12 | Equipotentiality | 32 | Colours changes |
13 | The other way around | 33 | Homogeneity |
14 | Spheroidality | 34 | Discarding and recovering |
15 | Dynamics | 35 | Parameter changes |
16 | Partial or excessive actions | 36 | Phase transitions |
17 | Another dimension | 37 | Thermal expansion |
18 | Mechanical vibration | 38 | Strong oxidants |
19 | Periodic action | 39 | Inert atmosphere |
20 | Continuity of useful action | 40 | Composite material film |
No. | Engineering Parameter | No. | Engineering Parameter |
---|---|---|---|
1 | Weight of moving object | 21 | Power |
2 | Weight of nonmoving object | 22 | Waste of energy |
3 | Length of moving object | 23 | Waste of substance |
4 | Length of nonmoving object | 24 | Loss of information |
5 | Area of moving object | 25 | Waste of time |
6 | Area of nonmoving object | 26 | Amount of substance |
7 | Volume of moving object | 27 | Reliability |
8 | Volume of nonmoving object | 28 | Accuracy of measurement |
9 | Speed | 29 | Accuracy of manufacturing |
10 | Force | 30 | Harmful factors acting on object |
11 | Tension, pressure | 31 | Harmful side effects |
12 | Shape | 32 | Manufacturability |
13 | Stability of object | 33 | Convenience of use |
14 | Strength | 34 | Reparability |
15 | Durability of moving object | 35 | Adaptability |
16 | Durability of nonmoving object | 36 | Complexity of device |
17 | Temperature | 37 | Complexity of control |
18 | Brightness | 38 | Level of automation |
19 | Energy spent by moving object | 39 | Productivity |
20 | Energy spent by nonmoving object |
Methods | Description | Advantages | Disadvantages |
---|---|---|---|
User interview | The interviewer talks directly with the subject | Detailed; easy to implement | Time-consuming; one-time; subjective; labor-intensive; small survey scope |
Questionnaire | Record subjects’ opinions on specific questions | Easy to implement | Subjective; one-time; time-consuming; labor-intensive; centralized in time and place; small survey scope |
Web-based questionnaire | Distribute questionnaires on the Internet | Decentralized in time and place; large survey scope | Subjective; one-time |
Focus-group | Observe the opinions and behaviors of a group on the subject | Real data; low cost; in-depth questions | Time-consuming; labor-intensive; one-time; complex; small survey scope |
Usability testing | Subjects test the product and give feedback | Detailed; high reliability | One-time; labor-intensive; small survey scope; time-consuming |
Experience | Analyze the data generated by consumers during usage | Easy to implement | Time-consuming; slow; inefficiency; subjective; small survey scope |
Experimental | Record the psychological and physiological data of the subject | Detailed; high reliability | Expensive; one-time; time-consuming; labor-intensive; complex; small survey scope |
Category | Parameter |
---|---|
Prosody parameter | Duration |
Pitch | |
Energy | |
Intensity | |
Spectral parameter | Linear predictor coefficient (LPC) |
One-sided autocorrelation linear predictor coefficient(OSALPC) | |
Log-frequency power coefficient(LFPC) | |
Linear predictor cepstral coefficient(LPCC) | |
Cepstral-based OSALPC(OSALPCC) | |
Mel-frequency cepstral coefficient(MFCC) | |
Sound quality parameter | Format frequency and bandwidth |
Jitter and shimmer | |
Glottal parameter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, H.; Li, S.; Zeng, C.; Wei, H.; Hu, J. Big Data and AI-Driven Product Design: A Survey. Appl. Sci. 2023, 13, 9433. https://doi.org/10.3390/app13169433
Quan H, Li S, Zeng C, Wei H, Hu J. Big Data and AI-Driven Product Design: A Survey. Applied Sciences. 2023; 13(16):9433. https://doi.org/10.3390/app13169433
Chicago/Turabian StyleQuan, Huafeng, Shaobo Li, Changchang Zeng, Hongjing Wei, and Jianjun Hu. 2023. "Big Data and AI-Driven Product Design: A Survey" Applied Sciences 13, no. 16: 9433. https://doi.org/10.3390/app13169433
APA StyleQuan, H., Li, S., Zeng, C., Wei, H., & Hu, J. (2023). Big Data and AI-Driven Product Design: A Survey. Applied Sciences, 13(16), 9433. https://doi.org/10.3390/app13169433