Teleportation-Based Error Correction Protocol of Time–Frequency Qubit States
Abstract
:1. Introduction
2. Time–Frequency Qubit States
2.1. Time–Frequency Cat State
2.2. Time–Frequency GKP State
2.3. Sources of Time–Frequency Noise
2.4. Time–Frequency Entangled GKP State and Error Correction Protocols
3. Spatial Separation of the Two Logical Time–Frequency Qubit States
3.1. Spatial Separation of the Two Logical Time–Frequency Cat States
3.2. Spatial Separation of the Two Logical Time–Frequency GKP States
4. Teleportation-Based Error Correction of Time–Frequency Qubit States
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Spatial Separation of a Two-Photon State
Appendix B. Teleportation-Based Error Correction Protocol with Physical Time–Frequency GKP State
References
- Fabre, N.; Maltese, G.; Appas, F.; Felicetti, S.; Ketterer, A.; Keller, A.; Coudreau, T.; Baboux, F.; Amanti, M.I.; Ducci, S.; et al. Generation of a time-frequency grid state with integrated biphoton frequency combs. Phys. Rev. A 2020, 102, 012607. [Google Scholar] [CrossRef]
- Fabre, N. Quantum Information in Time-Frequency Continuous Variables. Ph.D. Thesis, Université de Paris, Paris, France, 2020. [Google Scholar]
- Tasca, D.S.; Gomes, R.M.; Toscano, F.; Ribeiro, P.H.S.; Walborn, S.P. Continuous variable quantum computation with spatial degrees of freedom of photons. Phys. Rev. A 2011, 83, 052325. [Google Scholar] [CrossRef]
- Fabre, N.; Keller, A.; Milman, P. Time and frequency as quantum continuous variables. Phys. Rev. A 2022, 105, 052429. [Google Scholar] [CrossRef]
- Tsang, M.; Nair, R.; Lu, X.M. Quantum Theory of Superresolution for Two Incoherent Optical Point Sources. Phys. Rev. X 2016, 6, 031033. [Google Scholar] [CrossRef]
- Cochrane, P.T.; Milburn, G.J.; Munro, W.J. Macroscopically distinct quantum superposition states as a bosonic code for amplitude damping. Phys. Rev. A 1999, 59, 2631–2634. [Google Scholar] [CrossRef]
- Guillaud, J.; Mirrahimi, M. Repetition Cat Qubits for Fault-Tolerant Quantum Computation. Phys. Rev. X 2019, 9, 041053. [Google Scholar] [CrossRef]
- Albert, V.V.; Mundhada, S.O.; Grimm, A.; Touzard, S.; Devoret, M.H.; Jiang, L. Pair-cat codes: Autonomous error-correction with low-order nonlinearity. Quantum Sci. Technol. 2019, 4, 035007. [Google Scholar] [CrossRef]
- Gottesman, D.; Kitaev, A.; Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 2001, 64, 012310. [Google Scholar] [CrossRef]
- Flühmann, C.; Nguyen, T.L.; Marinelli, M.; Negnevitsky, V.; Mehta, K.; Home, J.P. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 2019, 566, 513–517. [Google Scholar] [CrossRef]
- Vuillot, C.; Asasi, H.; Wang, Y.; Pryadko, L.P.; Terhal, B.M. Quantum error correction with the toric Gottesman-Kitaev-Preskill code. Phys. Rev. A 2019, 99, 032344. [Google Scholar] [CrossRef]
- Campagne-Ibarcq, P.; Eickbusch, A.; Touzard, S.; Zalys-Geller, E.; Frattini, N.E.; Sivak, V.V.; Reinhold, P.; Puri, S.; Shankar, S.; Schoelkopf, R.J.; et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 2020, 584, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Calcluth, C.; Ferraro, A.; Ferrini, G. The vacuum provides quantum advantage to otherwise simulatable architectures. Phys. Rev. A 2022, 107, 062414. [Google Scholar] [CrossRef]
- Hastrup, J.; Larsen, M.V.; Neergaard-Nielsen, J.S.; Menicucci, N.C.; Andersen, U.L. Unsuitability of cubic phase gates for non-Clifford operations on Gottesman-Kitaev-Preskill states. Phys. Rev. A 2021, 103, 032409. [Google Scholar] [CrossRef]
- Noh, K.; Albert, V.V.; Jiang, L. Quantum Capacity Bounds of Gaussian Thermal Loss Channels and Achievable Rates With Gottesman-Kitaev-Preskill Codes. IEEE Trans. Inf. Theory 2019, 65, 2563–2582. [Google Scholar] [CrossRef]
- Michael, M.H.; Silveri, M.; Brierley, R.T.; Albert, V.V.; Salmilehto, J.; Jiang, L.; Girvin, S.M. New class of quantum error-correcting codes for a bosonic mode. Phys. Rev. X 2016, 6, 031006. [Google Scholar] [CrossRef]
- Hu, L.; Ma, Y.; Cai, W.; Mu, X.; Xu, Y.; Wang, W.; Wu, Y.; Wang, H.; Song, Y.P.; Zou, C.L.; et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys. 2019, 15, 503–508. [Google Scholar] [CrossRef]
- Chamberland, C.; Noh, K.; Arrangoiz-Arriola, P.; Campbell, E.T.; Hann, C.T.; Iverson, J.; Putterman, H.; Bohdanowicz, T.C.; Flammia, S.T.; Keller, A.; et al. Building a Fault-Tolerant Quantum Computer Using Concatenated Cat Codes. PRX Quantum 2022, 3, 010329. [Google Scholar] [CrossRef]
- Baragiola, B.Q.; Pantaleoni, G.; Alexander, R.N.; Karanjai, A.; Menicucci, N.C. All-Gaussian Universality and Fault Tolerance with the Gottesman-Kitaev-Preskill Code. Phys. Rev. Lett. 2019, 123, 200502. [Google Scholar] [CrossRef]
- Bourassa, J.E.; Alexander, R.N.; Vasmer, M.; Patil, A.; Tzitrin, I.; Matsuura, T.; Su, D.; Baragiola, B.Q.; Guha, S.; Dauphinais, G.; et al. Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer. Quantum 2021, 5, 392. [Google Scholar] [CrossRef]
- Rozpedek, F.; Noh, K.; Xu, Q.; Guha, S.; Jiang, L. Quantum repeaters based on concatenated bosonic and discrete-variable quantum codes. npj Quantum Inf. 2021, 7, 102. [Google Scholar] [CrossRef]
- Duivenvoorden, K.; Terhal, B.M.; Weigand, D. Single-mode displacement sensor. Phys. Rev. A 2017, 95. [Google Scholar] [CrossRef]
- Terhal, B.M.; Weigand, D. Encoding a qubit into a cavity mode in circuit QED using phase estimation. Phys. Rev. A 2016, 93. [Google Scholar] [CrossRef]
- Fabre, N.; Belhassen, J.; Minneci, A.; Felicetti, S.; Keller, A.; Amanti, M.I.; Baboux, F.; Coudreau, T.; Ducci, S.; Milman, P. Producing a delocalized frequency-time Schrödinger-cat-like state with Hong-Ou-Mandel interferometry. Phys. Rev. A 2020, 102, 023710. [Google Scholar] [CrossRef]
- Yamazaki, T.; Arizono, T.; Kobayashi, T.; Ikuta, R.; Yamamoto, T. Linear optical quantum computation with frequency-comb qubits and passive devices. Phys. Rev. Lett. 2023, 130. [Google Scholar] [CrossRef] [PubMed]
- Glancy, S.; Knill, E. Error Analysis For Encoding A Qubit In An Oscillator. Phys. Rev. A 2006, 73, 012325. [Google Scholar] [CrossRef]
- Le Jeannic, H.; Tiranov, A.; Carolan, J.; Ramos, T.; Wang, Y.; Appel, M.H.; Scholz, S.; Wieck, A.D.; Ludwig, A.; Rotenberg, N.; et al. Dynamical photon–photon interaction mediated by a quantum emitter. Nat. Phys. 2022, 18, 1191–1195. [Google Scholar] [CrossRef]
- Walshe, B.W.; Baragiola, B.Q.; Alexander, R.N.; Menicucci, N.C. Continuous-variable gate teleportation and bosonic-code error correction. Phys. Rev. A 2020, 102, 062411. [Google Scholar] [CrossRef]
- Fukui, K.; Alexander, R.N.; van Loock, P. All-optical long-distance quantum communication with Gottesman-Kitaev-Preskill qubits. Phys. Rev. Res. 2021, 3, 033118. [Google Scholar] [CrossRef]
- Sisodia, M.; Verma, V.; Thapliyal, K.; Pathak, A. Teleportation of a qubit using entangled non-orthogonal states: A comparative study. Quantum Inf. Process 2017, 16, 76. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895–1899. [Google Scholar] [CrossRef]
- Bouwmeester, D.; Pan, J.W.; Weinfurter, H.; Zeilinger, A. High-Fidelity Teleportation of Independent Qubits. J. Mod. Opt. 2000, 47, 279–289. [Google Scholar] [CrossRef]
- Lukens, J.M.; Lougovski, P. Frequency-encoded photonic qubits for scalable quantum information processing. Optica 2017, 4, 8. [Google Scholar] [CrossRef]
- Lu, H.H.; Lukens, J.M.; Williams, B.P.; Imany, P.; Peters, N.A.; Weiner, A.M.; Lougovski, P. A controlled-NOT gate for frequency-bin qubits. npj Quantum Inf. 2019, 5, 24. [Google Scholar] [CrossRef]
- Francesconi, S.; Raymond, A.; Duhamel, R.; Filloux, P.; Lemaître, A.; Milman, P.; Amanti, M.I.; Baboux, F.; Ducci, S. On-chip generation of hybrid polarization-frequency entangled biphoton states. Photon. Res. 2022, 11, 270–278. [Google Scholar] [CrossRef]
- Chen, Y.; Fink, M.; Steinlechner, F.; Torres, J.P.; Ursin, R. Hong-Ou-Mandel interferometry on a biphoton beat note. npj Quantum Inf. 2019, 5, 43. [Google Scholar] [CrossRef]
- Jayakumar, H.; Predojević, A.; Kauten, T.; Huber, T.; Solomon, G.S.; Weihs, G. Time-bin entangled photons from a quantum dot. Nat. Commun. 2014, 5, 4251. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Chae, J.W.; Jeong, Y.C.; Kim, Y.H. Quantum communication with time-bin entanglement over a wavelength-multiplexed fiber network. APL Photonics 2022, 7, 016106. [Google Scholar] [CrossRef]
- Ketterer, A.; Keller, A.; Walborn, S.P.; Coudreau, T.; Milman, P. Quantum information processing in phase space: A modular variables approach. Phys. Rev. A 2016, 94, 022325. [Google Scholar] [CrossRef]
- Albert, V.V.; Noh, K.; Duivenvoorden, K.; Young, D.J.; Brierley, R.T.; Reinhold, P.; Vuillot, C.; Li, L.; Shen, C.; Girvin, S.M.; et al. Performance and structure of single-mode bosonic codes. Phys. Rev. A 2018, 97, 032346. [Google Scholar] [CrossRef]
- Hong, K.H.; Baek, S.Y.; Kwon, O.; Kim, Y.H. Dispersive Broadening of Two-photon Wave Packets Generated via Type-I and Type-II Spontaneous Parametric Down-conversion. J. Korean Phys. Soc. 2018, 73, 1650–1656. [Google Scholar] [CrossRef]
- Maram, R.; Azaña, J. Spectral self-imaging of time-periodic coherent frequency combs by parabolic cross-phase modulation. Opt. Express 2013, 21, 28824. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, C.; Mecozzi, A. Pulse broadening due to polarization mode dispersion with first-order compensation. Opt. Lett. 2005, 30, 1626. [Google Scholar] [CrossRef] [PubMed]
- Poon, P.S.Y.; Law, C.K. Polarization and frequency disentanglement of photons via stochastic polarization mode dispersion. Phys. Rev. A 2008, 77, 032330. [Google Scholar] [CrossRef]
- Gordon, J.P.; Kogelnik, H. PMD fundamentals: Polarization mode dispersion in optical fibers. Proc. Natl. Acad. Sci. USA 2000, 97, 4541–4550. [Google Scholar] [CrossRef] [PubMed]
- Chang-hua, Z.; Chang-xing, P.; Dong-xiao, Q.; Nan, C.; Yun-hui, Y. Polarization State Dynamics of Single Photon Pulse. arXiv 2009, arXiv:0908.4370. [Google Scholar]
- Matsuda, N. Deterministic reshaping of single-photon spectra using cross-phase modulation. Sci. Adv. 2016, 2, e1501223. [Google Scholar] [CrossRef]
- Kurzyna, S.; Jastrzebski, M.; Fabre, N.; Wasilewski, W.; Lipka, M.; Parniak, M. Variable electro-optic shearing interferometry for ultrafast single-photon-level pulse characterization. Optics Express 2022, 30, 39826. [Google Scholar] [CrossRef]
- Golestani, A.; Davis, A.O.C.; Sośnicki, F.; Mikołajczyk, M.; Treps, N.; Karpiński, M. Electro-Optic Fourier Transform Chronometry of Pulsed Quantum Light. Phys. Rev. Lett. 2022, 129, 123605. [Google Scholar] [CrossRef]
- Fukui, K.; Tomita, A.; Okamoto, A.; Fujii, K. High-threshold fault-tolerant quantum computation with analog quantum error correction. Phys. Rev. X 2018, 8, 021054. [Google Scholar] [CrossRef]
- Seshadreesan, K.P.; Dhara, P.; Patil, A.; Jiang, L.; Guha, S. Coherent manipulation of graph states composed of finite-energy Gottesman-Kitaev-Preskill-encoded qubits. Phys. Rev. A 2022, 105, 052416. [Google Scholar] [CrossRef]
- Maltese, G.; Amanti, M.I.; Appas, F.; Sinnl, G.; Lemaître, A.; Milman, P.; Baboux, F.; Ducci, S. Generation and symmetry control of quantum frequency combs. NPJ Quantum Inf. 2020, 6, 13. [Google Scholar] [CrossRef]
- Fabre, N. Spectral single photons characterization using generalized Hong–Ou–Mandel interferometry. J. Mod. Opt. 2022, 69, 653–664. [Google Scholar] [CrossRef]
- Le Jeannic, H.; Ramos, T.; Simonsen, S.F.; Pregnolato, T.; Liu, Z.; Schott, R.; Wieck, A.D.; Ludwig, A.; Rotenberg, N.; García-Ripoll, J.J.; et al. Experimental Reconstruction of the Few-Photon Nonlinear Scattering Matrix from a Single Quantum Dot in a Nanophotonic Waveguide. Phys. Rev. Lett. 2021, 126, 023603. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, Z.; Cialdi, S.; Cipriani, D.; Olivares, S.; Paris, M.G.A. High-order dispersion effects in two-photon interference. Phys. Rev. A 2016, 94, 063842. [Google Scholar] [CrossRef]
- Alexander, R.N.; Wang, P.; Sridhar, N.; Chen, M.; Pfister, O.; Menicucci, N.C. One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator. Phys. Rev. A 2016, 94, 032327. [Google Scholar] [CrossRef]
- Lütkenhaus, N.; Calsamiglia, J.; Suominen, K.A. Bell measurements for teleportation. Phys. Rev. A 1999, 59, 3295–3300. [Google Scholar] [CrossRef]
- Eaton, M.; Hossameldin, A.; Birrittella, R.J.; Alsing, P.M.; Gerry, C.C.; Dong, H.; Cuevas, C.; Pfister, O. Resolution of 100 photons and quantum generation of unbiased random numbers. Nat. Photonics 2023, 17, 106–111. [Google Scholar] [CrossRef]
- Ewert, F.; van Loock, P. 3/4-Efficient Bell Measurement with Passive Linear Optics and Unentangled Ancillae. Phys. Rev. Lett. 2014, 113, 140403. [Google Scholar] [CrossRef]
- Vaidman, L.; Yoran, N. Methods for reliable teleportation. Phys. Rev. A 1999, 59, 116–125. [Google Scholar] [CrossRef]
- Zhong, T.; Zhou, H.; Horansky, R.D.; Lee, C.; Verma, V.B.; Lita, A.E.; Restelli, A.; Bienfang, J.C.; Mirin, R.P.; Gerrits, T.; et al. Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding. New J. Phys. 2015, 17, 022002. [Google Scholar] [CrossRef]
- Jin, J.; Bourgoin, J.P.; Tannous, R.; Agne, S.; Pugh, C.J.; Kuntz, K.B.; Higgins, B.L.; Jennewein, T. Genuine time-bin-encoded quantum key distribution over a turbulent depolarizing free-space channel. Opt. Express 2019, 27, 37214–37223. [Google Scholar] [CrossRef]
- Vagniluca, I.; Da Lio, B.; Rusca, D.; Cozzolino, D.; Ding, Y.; Zbinden, H.; Zavatta, A.; Oxenløwe, L.K.; Bacco, D. Efficient Time-Bin Encoding for Practical High-Dimensional Quantum Key Distribution. Phys. Rev. Appl. 2020, 14, 014051. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabre, N. Teleportation-Based Error Correction Protocol of Time–Frequency Qubit States. Appl. Sci. 2023, 13, 9462. https://doi.org/10.3390/app13169462
Fabre N. Teleportation-Based Error Correction Protocol of Time–Frequency Qubit States. Applied Sciences. 2023; 13(16):9462. https://doi.org/10.3390/app13169462
Chicago/Turabian StyleFabre, Nicolas. 2023. "Teleportation-Based Error Correction Protocol of Time–Frequency Qubit States" Applied Sciences 13, no. 16: 9462. https://doi.org/10.3390/app13169462
APA StyleFabre, N. (2023). Teleportation-Based Error Correction Protocol of Time–Frequency Qubit States. Applied Sciences, 13(16), 9462. https://doi.org/10.3390/app13169462