Towards Mirror-Less Graphene-Based Perfect Absorbers
Abstract
:1. Introduction
2. Graphene Perfect Absorbers with External Mirror
2.1. ‘Single-Resonance/Mirror Absorber’ Scheme
2.1.1. Absorption Control by Oblique Incidence
2.1.2. Absorption Control by Patterned Structures
2.2. Performance Improvement of Absorbers
2.2.1. Angle-Insensitive Absorption
2.2.2. Ultra-Broadband Absorption
3. Graphene Perfect Absorbers without External Mirror
3.1. ‘Degenerate Critical Coupling Absorber’ Scheme
3.2. ‘All-Pass Filter-Based Absorber’ Scheme
3.3. ‘One-Port Mimicking Absorber’ Scheme
4. Applications
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Watts, C.M.; Liu, X.; Padilla, W.J. Metamaterial Electromagnetic Wave Absorbers. Adv. Mater. 2012, 24, OP98–OP120. [Google Scholar] [CrossRef]
- Cui, Y.; He, Y.; Jin, Y.; Ding, F.; Yang, L.; Ye, Y.; Zhong, S.; Lin, Y.; He, S. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev. 2014, 8, 495–520. [Google Scholar] [CrossRef]
- Ogawa, S.; Kimata, M. Metal-Insulator-Metal-Based Plasmonic Metamaterial Absorbers at Visible and Infrared Wavelengths: A Review. Materials 2018, 11, 458. [Google Scholar] [CrossRef]
- Yu, P.; Besteiro, L.V.; Huang, Y.; Wu, J.; Fu, L.; Tan, H.H.; Jagadish, C.; Wiederrecht, G.P.; Govorov, A.O.; Wang, Z. Broadband Metamaterial Absorbers. Adv. Opt. Mater. 2019, 7, 1800995. [Google Scholar] [CrossRef]
- Yao, Y.; Liao, Z.; Liu, Z.; Liu, X.; Zhou, J.; Liu, G.; Yi, Z.; Wang, J. Recent progresses on metamaterials for optical absorption and sensing: A review. J. Phys. D Appl. Phys. 2021, 54, 113002. [Google Scholar] [CrossRef]
- Li, Q.; Lu, J.; Gupta, P.; Qiu, M. Engineering Optical Absorption in Graphene and Other 2D Materials: Advances and Applications. Adv. Opt. Mater. 2019, 7, 1900595. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, J.; Xu, W.; Liu, K.; Yuan, X.; Qin, S.; Zhu, Z. Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications. Nanomaterials 2018, 8, 1033. [Google Scholar] [CrossRef] [PubMed]
- Hajian, H.; Ghobadi, A.; Butun, B.; Ozbay, E. Active metamaterial nearly perfect light absorbers: A review. J. Opt. Soc. Am. B 2019, 36, F131–F143. [Google Scholar] [CrossRef]
- Luo, X.; Zhou, Y.; Cai, Y.; Cheng, Z.; Liu, Z.; Wan, W. A review of perfect absorbers based on the two dimensional materials in the visible and near-infrared regimes. J. Phys. D Appl. Phys. 2022, 55, 093002. [Google Scholar] [CrossRef]
- Nematpour, A.; Grilli, M.L.; Lancellotti, L.; Lisi, N. Towards Perfect Absorption of Single Layer CVD Graphene in an Optical Resonant Cavity. Materials 2022, 15, 352. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef]
- Mueller, T.; Xia, F.N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301. [Google Scholar] [CrossRef]
- Liu, C.H.; Chang, Y.C.; Norris, T.B.; Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 2014, 9, 273–278. [Google Scholar] [CrossRef]
- Yao, Y.; Shankar, R.; Kats, M.A.; Song, Y.; Kong, J.; Loncar, M.; Capasso, F. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 2014, 14, 6526–6532. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jang, M.S.; Brar, V.W.; Mauser, K.W.; Kim, L.; Atwater, H.A. Electronically Tunable Perfect Absorption in Graphene. Nano Lett. 2018, 18, 971–979. [Google Scholar] [CrossRef]
- Furchi, M.; Urich, A.; Pospischil, A.; Lilley, G.; Unterrainer, K.; Detz, H.; Klang, P.; Andrews, A.M.; Schrenk, W.; Strasser, G.; et al. Microcavity-integrated graphene photodetector. Nano Lett. 2012, 12, 2773–2777. [Google Scholar] [CrossRef] [PubMed]
- Vasić, B.; Gajić, R. Tunable Fabry–Perot resonators with embedded graphene from terahertz to near-infrared frequencies. Opt. Lett. 2014, 39, 6253–6256. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, F.; Lin, H.; Hu, J.; Yu, Z.; Wang, X.; Fan, S. Angle-selective perfect absorption with two-dimensional materials. Light Sci. Appl. 2016, 5, e16052. [Google Scholar] [CrossRef]
- Deng, X.-H.; Liu, J.-T.; Yuan, J.; Wang, T.-B.; Liu, N.-H. Tunable THz absorption in graphene-based heterostructures. Opt. Express 2014, 24, 30177–30183. [Google Scholar] [CrossRef]
- Lu, H.; Gan, X.; Jia, B.; Mao, D.; Zhao, J. Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons. Opt. Lett. 2016, 41, 4743–4746. [Google Scholar] [CrossRef]
- Thongrattanasiri, S.; Koppens, F.H.L.; Garcia de Abajo, F.J. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 2012, 108, 047401. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, G.; Tang, P.; Fu, G.; Du, G.; Chen, Q.; Liu, Z. Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers. Carbon 2018, 140, 362–367. [Google Scholar] [CrossRef]
- Lee, S.; Tran, T.Q.; Kim, M.; Heo, H.; Heo, J.; Kim, S. Angle- and position-insensitive electrically tunable absorption in graphene by epsilon-near-zero effect. Opt. Express 2015, 23, 33350–33358. [Google Scholar] [CrossRef] [PubMed]
- Piper, J.R.; Fan, S. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 2014, 1, 347–353. [Google Scholar] [CrossRef]
- Fan, Y.S.; Guo, C.C.; Zhu, Z.H.; Xu, W.; Wu, F.; Yuan, X.D.; Qin, S.Q. Monolayer-graphene-based perfect absorption structures in the near infrared. Opt. Express 2017, 25, 13079–13086. [Google Scholar] [CrossRef]
- Wang, W.; Klots, A.; Yang, Y.; Li, W.; Kravchenko, I.I.; Briggs, D.P.; Bolotin, K.I.; Valentine, J. Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals. Appl. Phys. Lett. 2015, 106, 181104. [Google Scholar] [CrossRef]
- Liu, Y.; Chadha, A.; Zhao, D.; Piper, J.R.; Jia, Y.; Shuai, Y.; Menon, L.; Yang, H.; Ma, Z.; Fan, S. Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling. Appl. Phys. Lett. 2014, 105, 181105. [Google Scholar] [CrossRef]
- Long, Y.; Shen, L.; Xu, H.; Deng, H.; Li, Y. Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals. Sci. Rep. 2016, 6, 32312. [Google Scholar] [CrossRef]
- Guo, C.C.; Zhu, Z.H.; Yuan, X.D.; Ye, W.M.; Liu, K.; Zhang, J.F.; Xu, W.; Qin, S.Q. Experimental Demonstration of Total Absorption over 99% in the Near Infrared for Monolayer-Graphene-Based Subwavelength Structures. Adv. Opt. Mater. 2016, 4, 1955–1960. [Google Scholar] [CrossRef]
- Zhao, B.; Zhao, J.M.; Zhang, Z.M. Enhancement of near-infrared absorption in graphene with metal gratings. Appl. Phys. Lett. 2014, 105, 031905. [Google Scholar] [CrossRef]
- Fan, Y.; Guo, C.; Zhu, Z.; Xu, W.; Wu, F.; Yuan, X.; Qin, S. Monolayer-graphene-based broadband and wide-angle perfect absorption structures in the near infrared. Sci. Rep. 2018, 8, 13709. [Google Scholar] [CrossRef] [PubMed]
- Mahigir, A.; Veronis, G. Nanostructure for near total light absorption in a monolayer of graphene in the visible. J. Opt. Soc. Am. B 2018, 35, 3153–3158. [Google Scholar] [CrossRef]
- Lee, S.; Heo, H.; Kim, S. High fabrication-tolerant narrowband perfect graphene absorber based on guided-mode resonance in distributed Bragg reflector. Sci. Rep. 2019, 9, 4294. [Google Scholar] [CrossRef]
- Alaee, R.; Farhat, M.; Rockstuhl, C.; Lederer, F. A perfect absorber made of a graphene micro-ribbon metamaterial. Opt. Express 2012, 20, 28017–28024. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Zhai, X. Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber. Sci. Rep. 2016, 6, 36651. [Google Scholar] [CrossRef]
- Vasić, B.; Gajić, R. Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies. Appl. Phys. Lett. 2013, 103, 261111. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.; Zhu, B.; Zhao, J.; Jiang, T. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt. Express 2014, 22, 22743–22752. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ma, Q.; Yan, S.; Wu, F.; He, X.; Jiang, J. Tunable terahertz absorption in graphene-based metamaterial. Opt. Commun. 2015, 353, 70–75. [Google Scholar] [CrossRef]
- Luo, X.; Liu, Z.; Wang, L.; Liu, J.; Lin, Q. Tunable ultra-narrowband and wide-angle graphene-based perfect absorber in the optical communication region. Appl. Phys. Express 2018, 11, 105102. [Google Scholar] [CrossRef]
- Song, S.; Chen, Q.; Jin, L.; Sun, F. Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber. Nanoscale 2013, 5, 9615–9619. [Google Scholar] [CrossRef]
- Pirruccio, G.; Moreno, L.M.; Lozano, G.; Rivas, J.G. Coherent and broadband enhanced optical absorption in graphene. ACS Nano 2013, 7, 4810–4817. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, S. Practical Perfect Absorption in Monolayer Graphene by Prism Coupling. IEEE Photonics J. 2017, 9, 2700810. [Google Scholar] [CrossRef]
- Heo, H.; Lee, S.; Kim, S. Broadband absorption enhancement of monolayer graphene by prism coupling in the visible range. Carbon 2019, 154, 42–47. [Google Scholar] [CrossRef]
- Lee, S.; Heo, H.; Kim, S. Graphene perfect absorber of ultra-wide bandwidth based on wavelength-insensitive phase matching in prism coupling. Sci. Rep. 2019, 9, 11967. [Google Scholar] [CrossRef]
- Zhou, H.; Zhen, B.; Hsu, C.W.; Miller, O.D.; Johnson, S.G.; Joannopoulos, J.D.; Soljačić, M. Perfect single-sided radiation and absorption without mirrors. Optica 2016, 3, 1079. [Google Scholar] [CrossRef]
- Lee, S.; Tran, T.Q.; Heo, H.; Kim, M.; Kim, S. A proposal of a perfect graphene absorber with enhanced design and fabrication tolerance. Sci. Rep. 2017, 7, 4760. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Song, J.; Kim, S. Graphene perfect absorber design based on an approach of mimicking a one-port system in an asymmetric single resonator. Opt. Express 2021, 29, 29631–29640. [Google Scholar] [CrossRef]
- Song, J.; Heo, H.; Lee, S.; Kim, S. Mirror-Less Unidirectional Radiation in an Asymmetric Single Resonator. J. Lightw. Technol. 2022, 40, 5163–5170. [Google Scholar] [CrossRef]
- Lee, S.; Song, J.; Kim, S. Graphene perfect absorber with loss adaptive Q-factor control function enabled by quasi-bound states in the continuum. Sci. Rep. 2021, 11, 22819. [Google Scholar] [CrossRef]
- Ghivela, G.C.; Sengupta, J. The Promise of Graphene: A Survey of Microwave Devices Based on Graphene. IEEE Microw. Mag. 2020, 21, 48–65. [Google Scholar] [CrossRef]
- Nematpour, A.; Lisi, N.; Chierchia, R.; Grilli, M.L. Experimental demonstration of mid-IR absorption enhancement in single layer CVD graphene. Opt. Lett. 2020, 45, 3861–3864. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Chen, Q.; Zhang, H.; O’Hara, J.F.; Abele, E.; Taylor, A.J.; Chen, H.-T.; Azad, A.K. Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies. Sci. Rep. 2016, 5, 18463. [Google Scholar] [CrossRef]
- Xu, H.; Hu, L.; Lu, Y.; Xu, J.; Chen, Y. Dual-Band Metamaterial Absorbers in the Visible and Near-Infrared Regions. J. Phys. Chem. C 2019, 123, 10028–10033. [Google Scholar] [CrossRef]
- Zhou, K.; Cheng, Q.; Lu, L.; Li, B.; Song, J.; Luo, Z. Dual-band tunable narrowband near-infrared light trapping control based on a hybrid grating-based Fabry–Perot structure. Opt. Express 2020, 28, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Luo, X.; Zhai, X.; Wang, L.L.; Lin, Q. A tunable dual-band graphene-based perfect absorber in the optical communication band. Opt. Laser Technol. 2018, 108, 404–408. [Google Scholar] [CrossRef]
- Wu, P.; Chen, Z.; Xu, D.; Zhang, C.; Jian, R. A Narrow Dual-Band Monolayer Unpatterned Graphene-Based Perfect Absorber with Critical Coupling in the Near Infrared. Micromachines 2020, 11, 58. [Google Scholar] [CrossRef]
- Ning, R.; Bao, J.; Jiao, Z.; Xu, Y. Omnidirectional polarization-insensitive tunable absorption in graphene metamaterial of nanodisk structure. J. Appl. Phys. 2015, 118, 203101. [Google Scholar] [CrossRef]
- Xia, S.X.; Zhai, X.; Huang, Y.; Liu, J.Q.; Wang, L.L.; Wen, S.C. Multi-band perfect plasmonic absorptions using rectangular graphene gratings. Opt. Lett. 2017, 42, 3052–3055. [Google Scholar] [CrossRef]
- Meng, H.Y.; Wang, L.L.; Liu, G.D.; Xue, X.X.; Lin, Q.; Zhai, X. Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region. Appl. Opt. 2017, 56, 6022–6027. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.Y.; Xue, X.X.; Lin, Q.; Liu, G.D.; Zhai, X.; Wang, L.L. Tunable and multi-channel perfect absorber based on graphene at mid-infrared region. Appl. Phys. Express 2018, 11, 052002. [Google Scholar] [CrossRef]
- Wang, J.; Hou, Y. Ultra-multiband absorption enhancement of graphene in a metal-dielectric-graphene sandwich structure covering terahertz to mid-infrared regime. Opt. Express 2017, 25, 19185–19194. [Google Scholar] [CrossRef]
- Li, H.-J.; Chen, B.; Zhai, X.; Xu, L.; Wang, L.-L. Tunable Ultra-Multispectral Metamaterial Perfect Absorbers Based on Out-of-Plane Metal-Insulator-Graphene Heterostructures. J. Light. Technol. 2020, 38, 1858–1864. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, Z.; Zhang, J.; Xu, W.; Guo, C.; Liu, K.; Zhu, M.; Chen, H.; Zhang, R.; Yuan, X.; et al. Mie resonance induced broadband near-perfect absorption in nonstructured graphene loaded with periodical dielectric wires. Opt. Express 2018, 26, 20174–20182. [Google Scholar] [CrossRef]
- Gao, F.; Zhu, Z.H.; Xu, W.; Zhang, J.F.; Guo, C.C.; Liu, K.; Yuan, X.D.; Qin, S.Q. Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect. Opt. Express 2017, 25, 9579–9586. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.W.; Zhu, Z.Z.; Zhang, J.F.; Guo, C.C.; Xu, W.; Liu, K.; Yuan, X.D.; Qin, S.Q. Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure. Sci. Rep. 2018, 8, 3239. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Cao, Y.; Liu, Y.; Zhang, H. Graphene induced tunable and polarization-insensitive broadband metamaterial absorber. Opt. Commun. 2017, 382, 281–287. [Google Scholar] [CrossRef]
- Nourbakhsh, M.; Zareian-Jahromi, E.; Basiri, R. Ultra-wideband terahertz metamaterial absorber based on Snowflake Koch Fractal dielectric loaded graphene. Opt. Express 2019, 27, 32958–32969. [Google Scholar] [CrossRef]
- Mou, N.; Sun, S.; Dong, H.; Dong, S.; He, Q.; Zhou, L.; Zhang, L. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Opt. Express 2018, 26, 11728–11736. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, C.; Zhang, J.; Liu, K.; Yuan, X.; Qin, S. Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width. Appl. Phys. Express 2015, 8, 015102. [Google Scholar] [CrossRef]
- Ye, L.; Chen, Y.; Cai, G.; Liu, N.; Zhu, J.; Song, Z.; Liu, Q. Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range. Opt. Express 2017, 25, 11223–11232. [Google Scholar] [CrossRef]
- Huang, M.L.; Cheng, Y.Z.; Cheng, Z.Z.; Chen, H.R.; Mao, X.S.; Gong, R.Z. Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene. Materials 2018, 11, 540. [Google Scholar] [CrossRef]
- Zakir, S.; Bilal, R.M.H.; Naveed, M.A.; Baqir, M.A.; Khan, M.U.A.; Ali, M.M.; Saeed, M.A.; Mehmood, M.Q.; Massoud, Y. Polarization-Insensitive, Broadband, and Tunable Terahertz Absorber Using Slotted-Square Graphene Meta-Rings. IEEE Photonics J. 2023, 15, 4600108. [Google Scholar] [CrossRef]
- Lin, H.; Sturmberg, B.C.P.; Lin, K.-T.; Yang, Y.; Zheng, X.; Chong, T.K.; de Sterke, C.M.; Jia, B. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics 2019, 13, 270–276. [Google Scholar] [CrossRef]
- Fu, P.; Liu, F.; Ren, G.J.; Su, F.; Li, D.; Yao, J.Q. A broadband metamaterial absorber based on multi-layer graphene in the terahertz region. Opt. Commun. 2018, 417, 62–66. [Google Scholar] [CrossRef]
- Rahmanzadeh, M.; Rajabalipanah, H.; Abdolali, A. Multilayer graphene-based metasurfaces: Robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers. Appl. Opt. 2018, 57, 959–968. [Google Scholar] [CrossRef]
- He, S.; Chen, T. Broadband THz Absorbers with Graphene-Based Anisotropic Metamaterial Films. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 757–763. [Google Scholar] [CrossRef]
- Cui, Y.; Fung, K.H.; Xu, J.; Ma, H.; Jin, Y.; He, S.; Fang, N.X. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 2012, 12, 1443–1447. [Google Scholar] [CrossRef]
- Amin, M.; Farhat, M.; Bağcı, H. An ultra-broadband multilayered graphene absorber. Opt. Express 2013, 21, 29938–29948. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zhao, W. Nanoscale electro-optic modulators based on graphene-slot waveguides. J. Opt. Soc. Am. B 2012, 29, 1490–1496. [Google Scholar] [CrossRef]
- Piper, J.R.; Liu, V.; Fan, S. Total absorption by degenerate critical coupling. Appl. Phys. Lett. 2014, 104, 251110. [Google Scholar] [CrossRef]
- Ming, X.; Liu, X.; Sun, L.; Padilla, W.J. Degenerate critical coupling in all-dielectric metasurface absorbers. Opt. Express 2017, 25, 24658–24669. [Google Scholar] [CrossRef]
- Chen, W.; Wang, X.; Duan, J.; Zhou, C.; Liu, T.; Xiao, S. Perfect absorption in free-standing GaAs nanocylinder arrays by degenerate critical coupling. Opt. Mater. 2021, 121, 111558. [Google Scholar] [CrossRef]
- Tian, J.; Luo, H.; Li, Q.; Pei, X.; Du, K.; Qiu, M. Near-Infrared Super-Absorbing All-Dielectric Metasurface Based on Single-Layer Germanium Nanostructures. Laser Photonics Rev. 2018, 12, 1800076. [Google Scholar] [CrossRef]
- Tian, J.; Li, Q.; Belov, P.A.; Sinha, R.K.; Qian, W.; Qiu, M. High-Q All-Dielectric Metasurface: Super and Suppressed Optical Absorption. ACS Photonics 2020, 7, 1436–1443. [Google Scholar] [CrossRef]
- Liu, X.; Fan, K.; Shadrivov, I.V.; Padilla, W.J. Experimental realization of a terahertz all-dielectric metasurface absorber. Opt. Express 2017, 25, 191–201. [Google Scholar] [CrossRef]
- Xu, R.; Takahara, J. Radiative loss control of an embedded silicon perfect absorber in the visible region. Opt. Lett. 2021, 46, 805–808. [Google Scholar] [CrossRef]
- Nishida, K.; Sasai, K.; Xu, R.; Yen, T.-H.; Tang, Y.-L.; Takahara, J.; Chu, S.-W. All-optical scattering control in an all-dielectric quasi-perfect absorbing Huygens’ metasurface. Nanophotonics 2022, 12, 139–146. [Google Scholar] [CrossRef]
- Tran, T.Q.; Lee, S.; Kim, S. A graphene-assisted all-pass filter for a tunable terahertz transmissive modulator with near-perfect absorption. Sci. Rep. 2019, 9, 12558. [Google Scholar] [CrossRef]
- Suh, W.; Fan, S. All-pass transmission or flattop reflection filters using a single photonic crystal slab. Appl. Phys. Lett. 2004, 84, 4905. [Google Scholar] [CrossRef]
- Suh, W.; Fan, S. Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top ref lection characteristics. Opt. Lett. 2003, 28, 1763–1765. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, S. Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines. Phys. Rev. E 2003, 68, 066616. [Google Scholar] [CrossRef] [PubMed]
- Suh, W.; Wang, Z.; Fan, S. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron. 2004, 40, 1511–1518. [Google Scholar] [CrossRef]
- Sherrott, M.C.; Hon, P.W.C.; Fountaine, K.T.; Garcia, J.C.; Ponti, S.M.; Brar, V.W.; Sweatlock, L.A.; Atwater, H.A. Experimental Demonstration of 230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces. Nano Lett. 2017, 17, 3027–3034. [Google Scholar] [CrossRef]
- Tasolamprou, A.C.; Koulouklidis, A.D.; Daskalaki, C.; Mavidis, C.P.; Kenanakis, G.; Deligeorgis, G.; Viskadourakis, Z.; Kuzhir, P.; Tzortzakis, S.; Kafesaki, M.; et al. Experimental Demonstration of Ultrafast THz Modulation in a Graphene-Based Thin Film Absorber through Negative Photoinduced Conductivity. ACS Photonics 2019, 6, 720–727. [Google Scholar] [CrossRef]
- Sensale-Rodriguez, B.; Yan, R.; Rafique, S.; Zhu, M.D.; Li, W.; Liang, X.L.; Gundlach, D.; Protasenko, V.; Kelly, M.M.; Jena, D.; et al. Extraordinary Control of Terahertz Beam Reflectance in Graphene Electro-absorption Modulators. Nano Lett. 2012, 12, 4518–4522. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tian, Z.; Lu, Y.; Xu, Y.; Zhang, X.; Ouyang, C.; Gu, J.; Han, J.; Zhang, W. Electrically Tunable Perfect Terahertz Absorber Based on a Graphene Salisbury Screen Hybrid Metasurface. Adv. Opt. Mater. 2020, 8, 1900660. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Guo, C.C.; Liu, K.; Zhang, J.F.; Ye, W.M.; Yuan, X.D.; Qin, S.Q. Electrically tunable polarizer based on anisotropic absorption of graphene ribbons. Appl. Phys. A 2014, 114, 1017–1021. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Guo, C.C.; Liu, K.; Zhang, J.F.; Ye, W.M.; Yuan, X.D.; Qin, S.Q. Electrically controlling the polarizing direction of a graphene polarizer. J. Appl. Phys. 2014, 116, 104304. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Gu, P.; Yan, Z.; Tang, C.; Xu, Z.; Liu, B.; Liu, Z. Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials. Carbon 2020, 162, 187–194. [Google Scholar] [CrossRef]
- Qing, Y.M.; Ma, H.F.; Ren, Y.Z.; Yu, S.; Cui, T.J. Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial. Opt. Express 2019, 27, 5253–5263. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, J.; Liu, X.; Fu, G.; Liu, G.; Tang, C.; Chen, J. High-Q plasmonic graphene absorbers for electrical switching and optical detection. Carbon 2020, 166, 256–264. [Google Scholar] [CrossRef]
- Liu, J.; Tang, S.; Ren, B.; Song, J.; Jiang, Y. Tunable ultra-high quality factor graphene absorber based on semicylindrical silica array and distributed Bragg reflector structure. AIP Adv. 2022, 12, 055125. [Google Scholar] [CrossRef]
- Zhong, H.; Liu, Z.; Liu, X.; Fu, G.; Liu, G.; Chen, J.; Tang, C. Ultra-high quality graphene perfect absorbers for high performance switching manipulation. Opt. Express 2020, 28, 37294–37306. [Google Scholar] [CrossRef]
- Wan, S.; Qin, C.; Wang, K.; Li, Y.; Guan, C.; Lv, B.; Li, W.; Shi, J. Ultra-high quality perfect absorber based on quasi bound states in the continuum. J. Appl. Phys. 2022, 131, 213104. [Google Scholar] [CrossRef]
- Zhu, J.; Yin, J.; Wu, C. Tunable Perfect Absorber of Graphene Metamaterial in the Terahertz Band and Its Sensing Properties. Adv. Photonics Res. 2022, 3, 2100291. [Google Scholar] [CrossRef]
- Yan, Z.D.; Zhu, Q.; Wan, M.J.; Lu, X.; Pu, X.T.; Tang, C.J.; Yu, L.L. Graphene ultraviolet ultrahigh-Q perfect absorption for nanoscale optical sensing. Opt. Express 2020, 28, 6095–6101. [Google Scholar] [CrossRef]
- Nematpour, A.; Lisi, N.; Lancellotti, L.; Chierchia, R.; Grilli, M.L. Experimental Mid-Infrared Absorption (84%) of Single-Layer Graphene in a Reflective Asymmetric Fabry–Perot Filter: Implications for Photodetectors. ACS Appl. Nano Mater. 2021, 4, 1495–1502. [Google Scholar] [CrossRef]
- Huang, C.H.; Wu, C.H.; Bikbaev, R.G.; Ye, M.J.; Chen, C.W.; Wang, T.J.; Timofeev, I.V.; Lee, W.; Chen, K.P. Wavelength- and Angle-Selective Photodetectors Enabled by Graphene Hot Electrons with Tamm Plasmon Polaritons. Nanomaterials 2023, 13, 693. [Google Scholar] [CrossRef]
- Lee, I.H.; Yoo, D.; Avouris, P.; Low, T.; Oh, S.H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 2019, 14, 313–319. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, Y.; Li, Y.; Han, L.; Sun, Z.; He, L.; Liu, R.; Hu, K. Recent Progress on Graphene Flexible Photodetectors. Materials 2022, 15, 4820. [Google Scholar] [CrossRef]
- Marchena, M.; Wagner, F.; Arliguie, T.; Zhu, B.; Johnson, B.; Fernández, M.; Chen, T.L.; Chang, T.; Lee, R.; Pruneri, V. Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer. 2D Mater. 2018, 5, 035022. [Google Scholar] [CrossRef]
- Lu, W.B.; Wang, J.W.; Zhang, J.; Liu, Z.G.; Chen, H.; Song, W.J.; Jiang, Z.H. Flexible and optically transparent microwave absorber with wide bandwidth based on graphene. Carbon 2019, 152, 70–76. [Google Scholar] [CrossRef]
Structure | Wavelength or Frequency | Absorption Efficiency (%) | FWHM | Fractional Bandwidth (%) | Sim. or Exp. | Ref. |
---|---|---|---|---|---|---|
with external mirror | ~1500 nm | 99.6 | ~5.5 nm | — | Sim. | [24] |
1306 nm | 99.4 | ~0.5 nm | — | Sim. | [39] | |
1586 nm | 95.52 | ~35 nm | — | Sim. | [54] | |
~1606 nm | ~95.8 | ~0.018 nm | — | Sim. | [103] | |
~7 μm | ~100 | ~1.5 μm | — | Exp. | [14] | |
~13 μm | 77.6 | ~1 μm | — | Exp. | [18] | |
1526.5 nm | 99 | ~18 nm | — | Exp. | [25] | |
1507 nm | 96 | ~3 nm | — | Exp. | [26] | |
~1545 nm | 85 | ~3.5 nm | — | Exp. | [27] | |
1483.5 nm | ~99 | ~20 nm | — | Exp. | [29] | |
650 nm | 86.1 | ~314 nm | — | Exp. | [43] | |
~3150 nm | 84 | ~44 nm | — | Exp. | [107] | |
~850 nm | ~60 | ~15 nm | — | Exp. | [108] | |
~8.5 μm | 94 | ~2 μm | — | Exp. | [109] | |
1370–1670 nm | >99 | — | ~20 | Sim. | [44] | |
0.66–1.21 THz | >99 | — | ~60 | Sim. | [63] | |
2.20–4.60 THz | >95 | — | ~70 | Sim. | [72] | |
6.98–9.10 THz | >90 | — | ~26 | Sim. | [74] | |
2.50–3.80 THz | >90 | — | ~43 | Sim. | [69] | |
0.55–3.12 THz | >90 | — | ~140 | Sim. | [75] | |
0.88–8.12 THz | >90 | — | ~160 | Sim. | [67] | |
300–2500 nm | >85 | — | ~157 | Exp. | [73] | |
without external mirror | 1320 nm | ~98 | ~6 nm | — | Sim. | [80] |
~50 μm | 99.8 | ~40 nm | — | Sim. | [88] | |
~1281 nm | ~100 | ~16 nm | — | Sim. | [46] | |
~1535 nm | 99.95 | ~1.52 nm | — | Sim. | [47] | |
~1547 nm | ~100 | ~4.5 nm | — | Sim. | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Kim, S. Towards Mirror-Less Graphene-Based Perfect Absorbers. Appl. Sci. 2023, 13, 9708. https://doi.org/10.3390/app13179708
Lee S, Kim S. Towards Mirror-Less Graphene-Based Perfect Absorbers. Applied Sciences. 2023; 13(17):9708. https://doi.org/10.3390/app13179708
Chicago/Turabian StyleLee, Sangjun, and Sangin Kim. 2023. "Towards Mirror-Less Graphene-Based Perfect Absorbers" Applied Sciences 13, no. 17: 9708. https://doi.org/10.3390/app13179708
APA StyleLee, S., & Kim, S. (2023). Towards Mirror-Less Graphene-Based Perfect Absorbers. Applied Sciences, 13(17), 9708. https://doi.org/10.3390/app13179708