A Rapid Bridge Crack Detection Method Based on Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Establishment of the Dataset
2.2. The Theory of DCGAN
- (1)
- Generator
- (2)
- Discriminator
2.3. The Architecture of the DCGAN
2.4. The Architecture of YOLOv5
3. Results
3.1. The Training Process and Results of DCGAN
3.2. The Training Process and Results of YOLOv5
4. Discussion
- (1)
- Cracks can weaken the structure, making it susceptible to sudden failure, particularly under heavy traffic loads or extreme weather conditions.
- (2)
- Cracks can accelerate the degradation and deterioration of bridge materials. Moisture penetration through cracks can promote corrosion in reinforced concrete or steel elements, further compromising their structural integrity.
- (3)
- Cracks can affect the dynamic behavior of bridges, leading to decreased stability and increased vulnerability to external forces, such as earthquakes or strong winds. Moreover, fatigue cracks caused by repetitive loading and stress cycles introduce a gradual deterioration process that can eventually lead to catastrophic failure.
- (4)
- A key concern related to cracks on bridges is their impact on the safety of transportation users.
- (5)
- Settlement cracks, arising from the differential settlement of bridge foundations, can cause misalignments and deformations that affect the overall stability and functionality of the structure.
5. Conclusions
- (1)
- The trained DCGAN can learn the characteristics of cracks and quickly generate a large number of artificial bridge crack images which are used to extend the real dataset. The time cost of generating 1000 artificial crack samples was on the order of 10 s. The generated images were balanced and feature-rich.
- (2)
- The YOLOv5 target detection neural network can perform crack identification and rapid detection. The time cost of detecting one crack image is on the order of 10 ms.
- (3)
- The results indicate that when YOLOv5 was trained on extended dataset, it had a similar detection accuracy compared with when it was trained on the original dataset (real dataset), which provides a new idea for the cost control of maintenance and monitoring of large-scale concrete structures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khem, F.C.; Kai, S.W.; Jee, K.H.; Jee, H.L.; Foo, W.L.; Yee, L.L. Experimental and numerical study of the strength performance of deep beams with perforated thin mild steel plates as shear reinforcement. Appl. Sci. 2023, 13, 8217. [Google Scholar]
- Jack, M.; Marcus, P.; Christos, V.; Lorena, B.; Brenden, L. Robotic spray coating of self-sensing metakaolin geopolymer for concrete monitoring. Automat. Constr. 2021, 121, 103415. [Google Scholar]
- Zhang, C.Y.; Wang, M.; Liu, R.T.; Li, X.H.; Yan, J.; Du, H.J. Enhancing self-healing efficiency of concrete using multifunctional granules and PVA fibers. J. Build. Eng. 2023, 76, 107314. [Google Scholar] [CrossRef]
- Gabriele, B.; Mario, F.; Luca, G.; Marzia, M. Preliminary investigation on steel jacketing retrofitting of concrete bridges half-joints. Appl. Sci. 2023, 13, 8181. [Google Scholar]
- Jang, K.; Jung, H.; An, Y. Automated bridge crack evaluation through deep super resolution network-based hybrid image matching. Automat. Constr. 2022, 137, 104229. [Google Scholar] [CrossRef]
- Zhang, T.J. Analysis on the causes of cracks in bridges. J. Constr. Res. 2018, 1, 13–26. [Google Scholar] [CrossRef]
- Huang, Y.F.; Chen, Y.G.; Deng, F.M.; Wang, X.M. Design of CB-PDMS flexible sensing for monitoring of bridge cracks. Sensors 2022, 22, 9817. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; He, F.C.; Zhang, J.R. Experimental PIV radial splitting study on expansive soil during the drying process. Appl. Sci. 2023, 13, 8050. [Google Scholar] [CrossRef]
- Hawley, C.J.; Gräbe, P.J. Water leakage mapping in concrete railway tunnels using LiDAR generated point clouds. Constr. Build. Mater. 2022, 361, 129644. [Google Scholar] [CrossRef]
- Jiang, C.; Gu, X.L.; Huang, Q.H.; Zhang, W.P. Carbonation depth predictions in concrete bridges under changing climate conditions and increasing traffic loads. Cement. Concrete Comp. 2018, 93, 140–154. [Google Scholar] [CrossRef]
- Oday, I.M.; Salah, S.A.; Alaa, S.A.; Hassane, L.; Belkheir, H.; Abdelkarim, C.; Young, G.K. On the development of an intelligent Poly(aniline-co-o-toluidine)/Fe3O4/Alkyd coating for corrosion protection in carbon steel. Appl. Sci. 2023, 13, 8189. [Google Scholar]
- Li, G.; Liu, T.; Fang, Z.Y.; Shen, Q.; Ali, J. Automatic bridge crack detection using boundary refinement based on real-time segmentation network. Struct. Control. Health Monitor. 2022, 29, 2991. [Google Scholar] [CrossRef]
- Sepasdar, R.; Karpatne, A.; Shakiba, M. A data-driven approach to full-field nonlinear stress distribution and failure pattern prediction in composites using deep learning. Comput. Method. Appl. Mech. Eng. 2022, 397, 115126. [Google Scholar] [CrossRef]
- Yaser, G.; Jonny, N.; Taufik, N.; Andrzej, C. Formwork pressure prediction in cast-in-place self-compacting concrete using deep learning. Automat. Constr. 2023, 151, 104869. [Google Scholar]
- Masi, F.; Stefanou, I. Multiscale modeling of inelastic materials with Thermodynamics-based Artificial Neural Networks (TANN). Comput. Method. Appl. Mech. Eng. 2022, 398, 115190. [Google Scholar] [CrossRef]
- Li, G.; Fang, Z.Y.; Mohammed, A.M.; Liu, T.; Deng, Z.H. Automated bridge crack detection based on improving encoder–decoder network and strip pooling. J. Infrastruct. Syst. 2023, 29, 218. [Google Scholar] [CrossRef]
- Li, R.X.; Yu, J.Y.; Li, F.; Yang, R.T.; Wang, Y.D.; Peng, Z.H. Automatic bridge crack detection using unmanned aerial vehicle and Faster R-CNN. Constr. Build Mater. 2023, 362, 129659. [Google Scholar] [CrossRef]
- Xu, H.Y.; Su, X.; Wang, Y.; Cai, H.Y.; Cui, K.R.; Chen, X.D. Automatic bridge crack detection using a convolutional neural network. Appl. Sci. 2019, 9, 2867. [Google Scholar] [CrossRef]
- Oh, K.; Kim, E.; Park, C.Y.; Chen, X.D. A physical model-based data-driven approach to overcome data scarcity and predict building energy consumption. Sustainability 2022, 14, 9464. [Google Scholar] [CrossRef]
- Abdelhalim, I.S.A.; Mohamed, M.F.; Mahdy, Y.B. Data augmentation for skin lesion using self-attention based progressive generative adversarial network. Expert. Syst. Appl. 2021, 165, 113922. [Google Scholar] [CrossRef]
- Pawar, S.P.; Talbar, S.N. LungSeg-Net: Lung field segmentation using generative adversarial network. Biomed. Signal Process. Control 2021, 64, 102296. [Google Scholar] [CrossRef]
- Kazuhiro, K.; Werner, R.A.; Toriumi, F.; Javadi, M.S.; Pomper, M.G.; Solnes, L.B.; Verde, F.; Higuchi, T.; Rowe, S.P. Generative adversarial networks for the creation of realistic artificial brain magnetic resonance images. Tomography 2018, 4, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Huang, J.; Li, H. A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis. J. Intell. Manuf. 2021, 32, 407–425. [Google Scholar] [CrossRef]
- Choi, S.H.; Jung, S.H.; Li, H. Similarity analysis of actual fake fingerprints and generated fake fingerprints by DCGAN. Int. J. Fuzzy Log. Intell. Syst. 2019, 19, 40–47. [Google Scholar] [CrossRef]
- Zhang, K.G.; Zhang, Y.T.; Cheng, H.D. CrackGAN: Pavement crack detection using partially accurate ground truths based on generative adversarial learning. IEEE Trans. Intell. Transp. 2021, 22, 1306–1319. [Google Scholar] [CrossRef]
- Yang, H.Y.; Yang, L.N.; Wu, T.; Meng, Z.Q.; Huang, Y.J.; Wang, P.S.; Li, P.; Li, X.C. Automatic detection of bridge surface crack using improved Yolov5s. Int. J. Pattern. Recogn. 2022, 36, 2250047. [Google Scholar] [CrossRef]
- Mahaur, B.; Mishra, K.K. Small-object detection based on Yolov5 in autonomous driving systems. Pattern. Recogn. Lett. 2023, 168, 115–122. [Google Scholar] [CrossRef]
- Zhou, S.; Bi, Y.; Wei, X.; Liu, J.; Ye, Z.; Li, F.; Du, Y. Automated detection and classification of spilled loads on freeways based on improved YOLO network. Mach. Vis. Appl. 2021, 32, 44. [Google Scholar] [CrossRef]
- Hu, W.X.; Xiong, J.T.; Liang, J.H.; Xie, Z.M.; Liu, Z.Y.; Huang, Q.Y.; Yang, Z.G. A method of citrus epidermis defects detection based on an improved YOLOv5. Biosyst. Eng. 2023, 227, 19–35. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, L.; Qi, F.; Chen, H.R. An improved lightweight and real-time YOLOv5 network for detection of surface defects on indocalamus leaves. J. Real-Time Image Process. 2023, 20, 14. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, H. Silicon energy bulk material cargo ship detection and tracking method combining YOLOv5 and DeepSort. Energy. Rep. 2023, 9, 151–158. [Google Scholar] [CrossRef]
- Lan, J.G.; Jean, P.; Mehdi, M.; Xu, B.; David, W.; Sherjil, O.; Aaron, C.; Yoshua, B. Generative Adversarial Networks. CoRR. 2014, 1–9. [Google Scholar] [CrossRef]
- Won, U.Y.; An, V.Q.; Park, S.B.; Park, M.H.; Dam, D.V.; Park, H.J.; Yang, H.; Lee, Y.; Yu, W.J. Multi-neuron connection using multi-terminal floating-gate memristor for unsupervised learning. Nat. Commun. 2023, 14, 3070. [Google Scholar] [CrossRef]
- Koochak, R.; Sayyafzadeh, M.; Nadian, A.; Bunch, M.; Haghighi, M. A variability aware GAN for improving spatial representativeness of discrete geobodies. Comput. Geosci. 2022, 166, 105188. [Google Scholar] [CrossRef]
- Kenshi, M.; Isal, N.; Yasuhiro, W. Transposed convolution as alternative preprocessor for brain-computer interface using electroencephalogram. Appl. Sci. 2023, 13, 3578. [Google Scholar]
- Swamy, A.S.A.; Shylashree, N. HDR Image compression by multi-scale down sampling of intensity levels. Int. J. Image Graph 2021, 21, 2150048. [Google Scholar] [CrossRef]
- Hamzah, N.A.b.A.; Hadhrami, B.A.G.; Al-Selwi, H.F.; Hassan, N.; Aziz, A.b.A. Facial Mask Detection and Energy Monitoring Dashboard Using YOLOv5 and Jetson Nano. In Proceedings of the Multimedia University Engineering Conference (MECON 2022); Atlantis Press: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Liu, Y.F.; Zhang, J.; Zhao, T.T.; Wang, Z.Y.; Wang, Z.H. Reconstruction of the meso-scale concrete model using a deep convolutional generative adversarial network (DCGAN). Constr. Build Mater. 2023, 370, 130704. [Google Scholar] [CrossRef]
- Xu, X.; Qiao, H.B.; Ma, X.M.; Yin, G.H.; Wang, Y.K.; Zhao, J.P.; Li, H.Y. An automatic wheat ear counting model based on the minimum area intersection ratio algorithm and transfer learning. Measurement 2023, 216, 112849. [Google Scholar] [CrossRef]
- Yevick, D.; Melko, R. The accuracy of restricted Boltzmann machine models of Ising systems. Comput. Phys. Commun. 2021, 258, 107518. [Google Scholar] [CrossRef]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. CoRR. 2015, 1–12. [Google Scholar] [CrossRef]
- Llya, L.; Frank, H. Decoupled weight decay regularization. CoRR. 2019, 1–11. [Google Scholar] [CrossRef]
- Huang, W.X.; Huo, Y.; Yang, S.C.; Liu, M.J.; Li, H.; Zhang, M. Detection of Laodelphax striatellus (small brown planthopper) based on improved YOLOv5. Comput. Electron. Agric. 2023, 206, 107657. [Google Scholar] [CrossRef]
- Zheng, X.; Qian, S.R.; Wei, S.D.; Zhou, S.Y.; Hou, Y. The combination of transformer and you only look once for automatic concrete pavement crack detection. Appl. Sci. 2023, 13, 9211. [Google Scholar] [CrossRef]
- Pei, L.L.; Sun, Z.Y.; Sun, J.; Li, W.; Zhang, H. Generation method of pavement crack images based on deep convolutional generative adversarial networks. J. Cent. South Univ. (Sci. Technol.) 2021, 52, 2899–3906. [Google Scholar]
- Marwan, H.; Khaled, K. Studying the effectiveness of changing parameters in pavement management systems on optimum maintenance strategies of low-volume paved roads. J. Transp. Eng. Part B Pavements 2021, 147, 04020075. [Google Scholar]
- La, M.L.; Oddo, M.C.; Cucchiara, C.; Granata, M.F.; Barile, S.; Pappalardo, F.; Pennisi, A. Experimental investigation on innovative stress sensors for existing masonry structures monitoring. Appl. Sci. 2023, 13, 3712. [Google Scholar]
- Orlowsky, J.; Beβling, M.; Kryzhanovskyi, V. Prospects for the use of textile-reinforced concrete in buildings and structures maintenance. Buildings 2023, 13, 189. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, Y.; Wang, J.F.; Wang, Q.; Liu, X.D.; Pappalardo, F.; Pennisi, A. Establishment and effect analysis of traffic load for long-span bridge via fusion of parameter correlation. Structure 2023, 55, 1992–2002. [Google Scholar]
- Eslam, M.A.; Osama, M.; Mohamed, M.; Tarek, Z. Entropy-Based automated method for detection and assessment of spalling severities in reinforced concrete bridges. J. Perform. Conster. Fac. 2021, 35, 04020132. [Google Scholar]
- Barros, J.A.O.; Baghi, H.; Ventura-Gouveia, A. Assessing the applicability of a smeared crack approach for simulating the behaviour of concrete beams flexurally reinforced with GFRP bars and failing in shear. Eng. Struct. 2021, 227, 111391. [Google Scholar] [CrossRef]
- Qian, H.J.; Li, Y.; Yang, J.F.; Xie, L.H.; Tang, K.H. Segmentation and analysis of cement particles in cement paste with deep learning. Cement Concrete Comp. 2023, 136, 104819. [Google Scholar] [CrossRef]
- Dai, X.; Nagahara, M. Platooning control of drones with real-time deep learning object detection. Adv. Robot. 2023, 37, 220–225. [Google Scholar] [CrossRef]
- Jiang, S.; Wu, Y.Q.; Zhang, J. Bridge coating inspection based on two-stage automatic method and collision-tolerant unmanned aerial system. Automat. Constr. 2023, 146, 104685. [Google Scholar] [CrossRef]
- Junwon, S.; Luis, D.; Jim, W. Drone-enabled bridge inspection methodology and application. Automat. Constr. 2018, 94, 112–126. [Google Scholar]
- Zhang, X.Y.; Zhao, T.T.; Liu, Y.F.; Chen, Q.Q.; Wang, Z.Y.; Wang, Z.H. A data-driven model for predicting the mixed-mode stress intensity factors of a crack in composites. Eng. Fract. Mech. 2023, 288, 109385. [Google Scholar] [CrossRef]
- Peng, X.Y.; Rao, X.; Zhao, H.; Xun, Y.F.; Zhong, X.; Zhen, W.T.; Huang, L.Y. A proxy model to predict reservoir dynamic pressure profile of fracture network based on deep convolutional generative adversarial networks (DCGAN). J. Petrol. Sci. Eng. 2022, 208, 109577. [Google Scholar] [CrossRef]
- Klinwichit, P.; Yookwan, W.; Limchareon, S.; Chinnasarn, K.; Jang, J.S.; Onuean, A. BUU-LSPINE: A thai open lumbar spine dataset for spondylolisthesis detection. Appl. Sci. 2023, 13, 8646. [Google Scholar] [CrossRef]
Layer | Output Shape | Parameter |
---|---|---|
Reshape_1 | (1 × 1 × 100) | 0 |
Conv2D_transpose_1 | (4 × 4 × 1024) | 1,639,424 |
BN_1 | (4 × 4 × 1024) | 4096 |
Activation_1 | (4 × 4 × 1024) | 0 |
Conv2D_transpose_2 | (8 × 8 × 512) | 8,389,120 |
BN_2 | (8 × 8 × 512) | 2048 |
Activation_2 | (8 × 8 × 512) | 0 |
Conv2D_transpose_3 | (16 × 16 × 256) | 2,097,408 |
BN_3 | (16 × 16 × 256) | 1024 |
Activation_3 | (16 × 16 × 256) | 0 |
Conv2D_transpose_4 | (32 × 32 × 128) | 524,416 |
BN_4 | (32 × 32 × 128) | 512 |
Activation_4 | (32 × 32 × 128) | 0 |
Conv2D_transpose_5 | (64 × 64 × 64) | 131,136 |
BN_5 | (64 × 64 × 64) | 256 |
Activation_5 | (64 × 64 × 64) | 0 |
Conv2D_transpose_6 | (128 × 128 × 32) | 32,800 |
BN_6 | (128 × 128 × 32) | 128 |
Activation_6 | (128 × 128 × 32) | 0 |
Conv2D_transpose_7 | (256 × 256 × 1) | 513 |
Activation_7 | (256 × 256 × 1) | 0 |
Layer | Output Shape | Parameter |
---|---|---|
Conv2D_1 | (128 × 128 × 64) | 1088 |
BN_1 | (128 × 128 × 64) | 256 |
Leaky Relu_1 | (128 × 128 × 64) | 0 |
Conv2D_2 | (64 × 64 × 128) | 131,200 |
BN_2 | (64 × 64 × 128) | 512 |
Leaky Relu_2 | (64 × 64 × 128) | 0 |
Conv2D_3 | (32 × 32 × 256) | 524,544 |
BN_3 | (32 × 32 × 256) | 1024 |
Leaky Relu_3 | (32 × 32 × 256) | 0 |
Conv2D_4 | (16 × 16 × 512) | 2,097,664 |
BN_4 | (16 × 16 × 512) | 2048 |
Leaky Relu_4 | (16 × 16 × 512) | 0 |
Conv2D_5 | (8 × 8 × 1024) | 8,389,632 |
BN_5 | (8 × 8 × 1024) | 4096 |
Leaky Relu_5 | (8 × 8 × 1024) | 0 |
Conv2D_6 | (4 × 4 × 1) | 16,385 |
Flatten_1 | 16 | 0 |
Dense_1 | 1 | 17 |
Name | Parameter |
---|---|
System | Windows 10 |
CPU | Inter Core i7-11800H CPU @ 2.3 GHz |
Memory | 8 GB |
Graphics card | NIVIDA GeForce RTX3060 |
Environment | Python 3.6, Tensorfolw 2.8.0, Keras 2.8.0, Numpy 1.22.2 |
Configuration | CUDA 11.2 |
Name | Parameter |
---|---|
System | Windows 10 |
CPU | Inter Core i7-11800H CPU @ 2.3 GHz |
Memory | 8 GB |
Graphics card | NIVIDA GeForce RTX3060 |
Environment | Python 3.8.5, Pytorch 1.8.0, NUMPY 1.21.5 |
Configuration | CUDA 11.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Gao, W.; Zhao, T.; Wang, Z.; Wang, Z. A Rapid Bridge Crack Detection Method Based on Deep Learning. Appl. Sci. 2023, 13, 9878. https://doi.org/10.3390/app13179878
Liu Y, Gao W, Zhao T, Wang Z, Wang Z. A Rapid Bridge Crack Detection Method Based on Deep Learning. Applied Sciences. 2023; 13(17):9878. https://doi.org/10.3390/app13179878
Chicago/Turabian StyleLiu, Yifan, Weiliang Gao, Tingting Zhao, Zhiyong Wang, and Zhihua Wang. 2023. "A Rapid Bridge Crack Detection Method Based on Deep Learning" Applied Sciences 13, no. 17: 9878. https://doi.org/10.3390/app13179878
APA StyleLiu, Y., Gao, W., Zhao, T., Wang, Z., & Wang, Z. (2023). A Rapid Bridge Crack Detection Method Based on Deep Learning. Applied Sciences, 13(17), 9878. https://doi.org/10.3390/app13179878