Effects of Intermittent Hypoxic Training on Aerobic Capacity and Second Ventilatory Threshold in Untrained Men
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Somatic Measurements
2.3. Physical Activity and Diet
2.4. Aerobic Capacity and Ventilatory Thresholds
2.5. Training
2.6. Statistical Analysis
3. Results
3.1. Physical Activity and Diet
3.2. Aerobic Capacity and Ventilatory Thresholds
4. Discussion
Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coyle, E.F. Integration of the physiological factors determining endurance performance ability. Exerc. Sport Sci. Rev. 1995, 23, 25–64. [Google Scholar] [CrossRef] [PubMed]
- Mahood, N.V.; Kenefick, R.W.; Kertzer, R.; Quinn, T.J. Physiological determinants of cross-country ski racing performance. Med. Sci. Sports Exerc. 2001, 33, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, K.; Beaver, W.L.; Whipp, B.J. Gas exchange theory and the lactic acidosis (anaerobic) threshold. Circulation 1990, 81 (Suppl. S1), II14-30. [Google Scholar]
- Maciejczyk, M.; Szymura, J.; Cempla, J.; Gradek, J.; Więcek, M.; Bawelski, M. Respiratory compensation point during incremental test in overweight and normoweight boys: Is it useful in assessing aerobic performance? A longitudinal study. Clin. Physiol. Funct. Imaging 2014, 34, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Maciejczyk, M.; Wiecek, M.; Szymura, J.; Cempla, J.; Wiecha, S.; Szygula, Z.; Brown, L.E. Effect of body composition on respiratory compensation point during an incremental test. J. Strength Cond. Res. 2014, 28, 2071–2077. [Google Scholar] [CrossRef] [PubMed]
- Meyer, T.; Faude, O.; Scharhag, J.; Urhausen, A.; Kindermann, W. Is lactic acidosis a cause of exercise induced hyperventilation at the respiratory compensation point? Br. J. Sports Med. 2004, 38, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Herms, J.; Julià-Sánchez, S.; Hamlin, M.J.; Corbi, F.; Pagès, T.; Viscor, G. Popularity of hypoxic training methods for endurance-based professional and amateur athletes. Physiol. Behav. 2015, 143, 35–38. [Google Scholar] [CrossRef]
- Millet, G.P.; Faiss, R.; Brocherie, F.; Girard, O. Hypoxic training and team sports: A challenge to traditional methods? Br. J. Sports Med. 2013, 47 (Suppl. S1), i6–i7. [Google Scholar] [CrossRef]
- Sinex, J.A.; Chapman, R.F. Hypoxic training methods for improving endurance exercise performance. J. Sport Health Sci. 2015, 4, 325–332. [Google Scholar] [CrossRef]
- Girard, O.; Brocherie, F.; Goods, P.S.; Millet, G.P. An updated panorama of “living low-training high” altitude/hypoxic methods. Front. Sports Act. Living 2020, 2, 26. [Google Scholar] [CrossRef]
- Faiss, R.; Girard, O.; Millet, G.P. Advancing hypoxic training in team sports: From intermittent hypoxic training to repeated sprint training in hypoxia. Br. J. Sports Med. 2013, 47 (Suppl. S1), i45–i50. [Google Scholar] [CrossRef]
- McLean, B.D.; Gore, C.J.; Kemp, J. Application of ‘live low-train high’for enhancing normoxic exercise performance in team sport athletes. Sports Med. 2014, 44, 1275–1287. [Google Scholar] [CrossRef]
- Millet, G.P.; Brocherie, F. Hypoxic training is beneficial in elite athletes. Med. Sci. Sports Exerc. 2020, 52, 515–518. [Google Scholar] [CrossRef]
- Wilber, R.L. Application of altitude/hypoxic training by elite athletes. Med. Sci. Sports Exerc. 2007, 39, 1610–1624. [Google Scholar] [CrossRef]
- Ambroży, T.; Maciejczyk, M.; Klimek, A.T.; Wiecha, S.; Stanula, A.; Snopkowski, P.; Palka, T.; Jaworski, J.; Ambrozy, D.; Rydzik, L.; et al. The effects of intermittent hypoxic training on anaerobic and aerobic power in boxers. Int. J. Environ. Res. Public Health 2020, 17, 9361. [Google Scholar] [CrossRef]
- Czuba, M.; Waskiewicz, Z.; Zajac, A.; Poprzecki, S.; Cholewa, J.; Roczniok, R. The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. J. Sports Sci. Med. 2011, 10, 175–183. [Google Scholar]
- Morton, J.P.; Cable, N.T. The effects of intermittent hypoxic training on aerobic and anaerobic performance. Ergonomics 2005, 48, 1535–1546. [Google Scholar] [CrossRef]
- Levine, B.D. Intermittent hypoxic training: Fact and fancy. High Alt. Med. Biol. 2002, 3, 177–193. [Google Scholar] [CrossRef]
- Treff, G.; Sareban, M.; Schmidt, W. Hypoxic training in natural and artificial altitude. Dtsch. Z. Sportmed 2022, 73, 112–117. [Google Scholar] [CrossRef]
- MacInnis, M.J.; Gibala, M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Phys. 2017, 595, 2915–2930. [Google Scholar] [CrossRef]
- Blair, S.N.; Haskell, W.L.; Ho, P.; Paffenbarger, R.S., Jr.; Vranizan, K.M.; Farquhar, J.W.; Wood, P.D. Assessment of habitual physical activity by a seven-day recall in a community survey and controlled experiments. Am. J. Epidemiol. 1985, 122, 794–804. [Google Scholar] [CrossRef]
- Sarkin, J.; Campbell, J.; Gross, L.; Roby, J.; Bazzo, S.; Sallis, J.; Calfas, K. Seven-day physical activity recall. Med. Sci. Sports Exerc. 1997, 29, 89–103. [Google Scholar]
- Mistura, L.; Comendador Azcarraga, F.J.; D’Addezio, L.; Martone, D.; Turrini, A. An Italian case study for assessing nutrient intake through nutrition-related mobile apps. Nutrients 2021, 13, 3073. [Google Scholar] [CrossRef]
- Bhambhani, Y.; Singh, M. Ventilatory thresholds during a graded exercise test. Respiration 1985, 47, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Binder, R.K.; Wonisch, M.; Corra, U.; Cohen-Solal, A.; Vanhees, L.; Saner, H.; Schmid, J. Methodological approach to the firstand second lactate threshold in incremental cardiopulmonary exercise testing. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 726–734. [Google Scholar] [CrossRef]
- Howley, E.T.; Basset, D.R.; Welch, H.G. Criteria for maximal oxygen uptake: Review and commentary. Med. Sci. Sports Exerc. 1995, 27, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: New York, NY, USA, 1988; ISBN 9780203771587. [Google Scholar]
- Julian, C.G.; Gore, C.J.; Wilber, R.L.; Daniels, J.T.; Fredericson, M.; Stray-Gundersen, J.; Hahn, A.G.; Parisotto, R.; Levine, B.D. Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. J. Appl. Physiol. 2004, 96, 1800–1807. [Google Scholar] [CrossRef]
- Rodriguez, F.A.; Truijens, M.J.; Townsend, N.E.; Martini, E.R.; Stray-Gundersen, J.; Gore, C.J.; Levine, B.D. Effects of four weeks of intermittent hypobaric hypoxia on sea level running and swimming performance. Med. Sci. Sports Exerc. 2004, 36 (Suppl. S5), S338. [Google Scholar]
- Roels, B.; Millet, G.P.; Marcoux, C.J.; Coste, O.; Bentley, D.J.; Candau, R.B. Effects of hypoxic interval training on cycling performance. Med. Sci. Sports Exerc. 2005, 37, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Katayama, K.; Matsuo, H.; Ishida, K.; Mori, S.; Miyamura, M. Intermittent hypoxia improves endurance performance and submaximal exercise efficiency. High Alt. Med. Biol. 2003, 4, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Bonetti, D.L.; Hopkins, W.G.; Kilding, A.E. High-intensity kayak performance after adaptation to intermittent hypoxia. Int. J. Sports Physiol. Perform. 2006, 1, 246–260. [Google Scholar] [CrossRef] [PubMed]
- Ventura, N.; Hoppeler, H.; Seiler, R.; Binggeli, A.; Mullis, P.; Vogt, M. The response of trained athletes to six weeks of endurance training in hypoxia or normoxia. Int J. Sports Med. 2003, 24, 166–172. [Google Scholar] [CrossRef]
- Vogt, M.; Puntschart, A.; Geiser, J.; Zuleger, C.; Billeter, R.; Hoppeler, H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J. Appl. Phys. 2001, 91, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Hendriksen, I.J.; Meeuwsen, T. The effect of intermittent training in hypobaric hypoxia on sea-level exercise: A cross-over study in humans. Eur. J. Appl. Phys. 2003, 88, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Hamlin, M.J.; Marshall, H.C.; Hellemans, J.; Ainslie, P.N.; Anglem, N. Effect of intermittent hypoxic training on 20 km time trial and 30 s anaerobic performance. Scand. J. Med. Sci. Sports 2010, 20, 651–661. [Google Scholar] [CrossRef] [PubMed]
Variable | Group | Pre | Post | Effect: Group F p ηp2 | Effect: Time F p ηp2 | Interaction F p ηp2 |
---|---|---|---|---|---|---|
Age (yrs) | ctrl | 22.9 ± 2.9 | - | - | - | - |
NT | 20.5 ± 1.0 | - | ||||
IHT | 21.5 ± 1.5 | - | ||||
BH (cm) | ctrl | 178.9 ± 5.9 | - | - | - | - |
NT | 179.7 ± 5.6 | - | ||||
IHT | 182.0 ± 5.5 | - | ||||
BM (kg) | ctrl | 75.8 ± 11.5 | 75.9 ± 11.7 | 0.55 0.58 0.02 | 0.07 0.80 0.01 | 0.71 0.49 0.03 |
NT | 76.7 ± 8.3 | 76.9 ± 8.2 | ||||
IHT | 79.6 ± 10.4 | 79.2 ± 9.6 | ||||
LBM (kg) | ctrl | 61.5 ± 7.3 | 61.9 ± 7.7 | 1.45 0.24 0.05 | 2.49 0.12 0.05 | 0.55 0.57 0.02 |
NT | 63.1 ± 6.0 | 63.1 ± 6.1 | ||||
IHT | 65.6 ± 7.5 | 66.1 ± 7.9 | ||||
FAT (%) | ctrl | 18.3 ± 5.3 | 18.0 ± 5.0 | 0.35 0.70 0.01 | 3.27 0.08 0.06 | 2.25 0.11 0.09 |
NT | 17.6 ± 3.9 | 17.7 ± 4.4 | ||||
IHT | 17.4 ± 3.9 | 16.3 ± 3.8 | ||||
FM (kg) | ctrl | 14.3 ± 5.4 | 14.0 ± 5.2 | 0.07 0.92 0.003 | 3.20 0.08 0.06 | 2.44 0.1 0.09 |
NT | 13.7 ± 3.9 | 13.8 ± 4.4 | ||||
IHT | 14.1 ± 4.5 | 13.0 ± 4.1 | ||||
BMI | ctrl | 23.6 ± 2.9 | 23.7 ± 2.9 | 0.04 0.95 0.001 | 0.12 0.72 0.002 | 0.55 0.57 0.02 |
NT | 23.7 ± 2.2 | 23.8 ± 2.2 | ||||
IHT | 24.0 ± 2.3 | 23.9 ± 2.1 |
Variable | Group | Pre | Post | Effect: Group F p ƞp2 | Effect: Time F p ƞp2 | Interaction F p ƞp2 | Post Hoc Pre vs. Post p | Pre vs. Post ES |
---|---|---|---|---|---|---|---|---|
Pmax (W) | ctrl | 273 ± 11.5 | 286 ± 43.4 | 1.44 0.25 0.06 | 57.15 <0.001 0.55 | 6.67 0.002 0.22 | 0.06 | 0.58 |
NT | 285 ± 33.1 | 297 ± 35.5 | 0.08 | 0.35 | ||||
IHT | 286 ± 41.6 | 319 ± 40.4 | <0.001 | 0.80 | ||||
rel_Pmax (W/kg) | ctrl | 3.65 ± 0.59 | 3.80 ± 0.62 | 0.15 0.85 0.02 | 49.50 <0.001 0.51 | 6.45 0.003 0.21 | 0.07 | 0.25 |
NT | 3.74 ± 0.47 | 3.89 ± 0.44 | 0.17 | 0.32 | ||||
IHT | 3.62 ± 0.60 | 4.04 ± 0.49 | <0.001 | 0.77 | ||||
HRmax (bpm) | ctrl | 183 ± 11 | 181 ± 11 | 0.16 0.85 0.006 | 0.60 0.44 0.01 | 1.66 0.20 0.07 | - | - |
NT | 184 ± 11 | 184 ± 14 | - | - | ||||
IHT | 181 ± 7 | 184 ± 7 | - | - | ||||
RER | ctrl | 1.08 ± 0.06 | 1.12 ± 0.08 | 1.42 0.25 0.06 | 2.14 0.15 0.04 | 4.97 0.01 0.18 | 0.30 | - |
NT | 1.12 ± 0.04 | 1.09 ± 0.07 | 0.52 | - | ||||
IHT | 1.11 ± 0.06 | 1.15 ± 0.08 | 0.25 | - | ||||
VO2max (L/min) | ctrl | 3.34 ± 0.43 | 3.38 ± 0.43 | 2.96 0.06 0.11 | 21.90 <0.001 0.32 | 3.05 0.05 0.11 | 0.96 | 0.09 |
NT | 3.55 ± 0.37 | 3.74 ± 0.38 | 0.02 | 0.51 | ||||
IHT | 3.59 ± 0.50 | 3.85 ± 0.60 | 0.002 | 0.47 | ||||
VO2max (mL/kg/min) | ctrl | 44.6 ± 6.0 | 45.1 ± 5.6 | 1.97 0.31 0.05 | 16.67 0.26 <0.001 | 2.57 0.08 0.10 | 0.99 | 0.08 |
NT | 46.7 ± 5.8 | 49.1 ± 6.1 | 0.07 | 0.40 | ||||
IHT | 45.5 ± 7.2 | 48.7 ± 6.1 | 0.008 | 0.48 |
Variable | Group | Pre | Post | Effect: Group F p ƞp2 | Effect: Time F p ƞp2 | Interaction F p ƞp2 | Post Hoc Pre vs. Post p | Pre vs. Post ES |
---|---|---|---|---|---|---|---|---|
PVT2 (W) | ctrl | 166.2 ± 20.2 | 163.9 ± 37.4 | 8.02 0.001 0.26 | 6.44 0.01 0.12 | 3.23 0.04 0.13 | 0.99 | 0.08 |
NT | 162.5 ± 21.1 | 173.4 ± 26.5 | 0.72 | 0.46 | ||||
IHT | 183.8 ± 29.2 | 209.2 ± 36.1 | 0.02 | 0.78 | ||||
rel_PVT2 (W/kg) | ctrl | 2.23 ± 0.39 | 2.20 ± 0.54 | 2.89 0.06 0.11 | 6.00 0.02 0.12 | 3.19 0.05 0.12 | 0.99 | 0.06 |
NT | 2.14 ± 0.37 | 2.27 ± 0.37 | 0.76 | 0.35 | ||||
IHT | 2.34 ± 0.46 | 2.65 ± 0.44 | 0.02 | 0.69 | ||||
%Pmax | ctrl | 61.4 ± 7.92 | 57.9 ± 12.8 | 4.11 0.02 0.15 | 0.10 0.74 0.002 | 1.24 0.29 0.05 | 0.67 | - |
NT | 57.4 ± 8.66 | 58.5 ± 7.92 | 0.99 | - | ||||
IHT | 64.5 ± 6.87 | 65.5 ± 6.55 | 0.99 | - | ||||
HRVT2 (bpm) | ctrl | 153 ± 17 | 144 ± 18 | 0.95 0.39 0.04 | 0.48 0.49 0.01 | 6.51 0.003 0.22 | 0.02 | - |
NT | 148 ± 13 | 148 ± 16 | 0.49 | - | ||||
IHT | 151 ± 7 | 157 ± 8 | 0.45 | - | ||||
%HRmax | ctrl | 83.5 ± 6.3 | 79.2 ± 8.2 | 2.24 0.11 0.09 | 1.53 0.22 0.03 | 4.31 0.01 0.16 | 0.03 | - |
NT | 80.5 ± 6.1 | 80.4 ± 6.0 | 0.99 | - | ||||
IHT | 83.5 ± 3.8 | 54.9 ± 3.9 | 0.92 | - | ||||
VO2_VT2 (L/min) | ctrl | 2.12 ± 0.22 | 2.13 ± 0.35 | 8.03 0.001 0.25 | 11.73 0.001 0.20 | 2.96 0.06 0.11 | 0.99 | 0.04 |
NT | 2.15 ± 0.28 | 2.34 ± 0.55 | 0.27 | 0.46 | ||||
IHT | 2.38 ± 0.35 | 2.68 ± 0.43 | 0.01 | 0.77 | ||||
%VO2max | ctrl | 64.1 ± 8.1 | 63.6 ± 11.1 | 3.09 0.05 0.11 | 1.35 0.25 0.03 | 0.83 0.44 0.03 | - | - |
NT | 61.2 ± 9.9 | 62.7 ± 8.4 | - | - | ||||
IHT | 66.5 ± 5.9 | 69.8 ± 4.4 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciejczyk, M.; Palka, T.; Wiecek, M.; Szymura, J.; Kusmierczyk, J.; Bawelski, M.; Masel, S.; Szygula, Z. Effects of Intermittent Hypoxic Training on Aerobic Capacity and Second Ventilatory Threshold in Untrained Men. Appl. Sci. 2023, 13, 9954. https://doi.org/10.3390/app13179954
Maciejczyk M, Palka T, Wiecek M, Szymura J, Kusmierczyk J, Bawelski M, Masel S, Szygula Z. Effects of Intermittent Hypoxic Training on Aerobic Capacity and Second Ventilatory Threshold in Untrained Men. Applied Sciences. 2023; 13(17):9954. https://doi.org/10.3390/app13179954
Chicago/Turabian StyleMaciejczyk, Marcin, Tomasz Palka, Magdalena Wiecek, Jadwiga Szymura, Justyna Kusmierczyk, Marek Bawelski, Sebastian Masel, and Zbigniew Szygula. 2023. "Effects of Intermittent Hypoxic Training on Aerobic Capacity and Second Ventilatory Threshold in Untrained Men" Applied Sciences 13, no. 17: 9954. https://doi.org/10.3390/app13179954
APA StyleMaciejczyk, M., Palka, T., Wiecek, M., Szymura, J., Kusmierczyk, J., Bawelski, M., Masel, S., & Szygula, Z. (2023). Effects of Intermittent Hypoxic Training on Aerobic Capacity and Second Ventilatory Threshold in Untrained Men. Applied Sciences, 13(17), 9954. https://doi.org/10.3390/app13179954