A Game-Theoretical Approach to Clinical Decision Making with Immersive Visualisation
Abstract
:1. Introduction
2. Related Works
3. Proposed Method
3.1. Game Theory
- is a finite set of agents.
- For each agent , is a set of possible actions (strategies). The set of all joint actions, called strategy profiles, is denoted by . Each vector is called an action profile.
- For each agent , : is a utility function that maps an action profile to a real number, indicating the player’s payoff for each possible joint action.
3.2. Decision Support in Immersive Environment: VROOM
3.3. Data Sets
4. Results and Discussion
4.1. Game Theory Application
4.2. Use Case Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qu, Z.; Lau, C.W.; Nguyen, Q.V.; Zhou, Y.; Catchpoole, D.R. Visual Analytics of Genomic and Cancer Data: A Systematic Review. Cancer Inform. 2019, 18, 1176935119835546. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.V.; Khalifa, N.H.; Alzamora, P.; Gleeson, A.; Catchpoole, D.; Kennedy, P.J.; Simoff, S. Visual Analytics of Complex Genomics Data to Guide Effective Treatment Decisions. J. Imaging 2016, 2, 29. [Google Scholar] [CrossRef]
- Catchpoole, D.; Kennedy, P.; Skillicorn, D.; Simoff, S. The Curse of Dimensionality: A Blessing to Personalized Medicine. J. Clin. Oncol. 2010, 28, e723–e724. [Google Scholar] [CrossRef] [PubMed]
- ElShawi, R.; Sherif, Y.; Al-Mallah, M.; Sakr, S. Interpretability in healthcare: A comparative study of local machine learning interpretability techniques. Comput. Intell. 2021, 37, 1633–1650. [Google Scholar] [CrossRef]
- Vilone, G.; Longo, L. Explainable Artificial Intelligence: A Systematic Review. arXiv 2020, arXiv:2006.00093. [Google Scholar]
- Card, S.K.; Mackinlay, J.D.; Shneiderman, B. Readings in Information Visualization: Using Vision to Think; Morgan Kaufmann: Burlington, MA, USA, 1999. [Google Scholar]
- Chaoli, W.; Han-Wei, S. Information Theory in Scientific Visualization. Entropy 2011, 13, 254–273. [Google Scholar] [CrossRef]
- Fox, P.; Hendler, J. Changing the Equation on Scientific Data Visualization. Science 2011, 331, 705–708. [Google Scholar] [CrossRef]
- Moloney, J.; Spehar, B.; Globa, A.; Wang, R. The affordance of virtual reality to enable the sensory representation of multi-dimensional data for immersive analytics: From experience to insight. J. Big Data 2018, 5, 53. [Google Scholar] [CrossRef]
- Stuerzlinger, W.; Dwyer, T.; Drucker, S.; Görg, C.; North, C.; Scheuermann, G. Immersive Human-Centered Computational Analytics. In Immersive Analytics; Springer International Publishing: Cham, Switzerland, 2018; pp. 139–163. [Google Scholar] [CrossRef]
- Maes, A.; Martinez, X.; Druart, K.; Laurent, B.; Guégan, S.; Marchand, C.H.; Lemaire, S.D.; Baaden, M. MinOmics, an Integrative and Immersive Tool for Multi-Omics Analysis. J. Integr. Bioinform. 2018, 15, 20180006. [Google Scholar] [CrossRef]
- Yang, A.; Yao, Y.; Li, J.; Ho, J.W. starmap: Immersive visualisation of single cell data using smartphone-enabled virtual reality. bioRxiv 2018. [Google Scholar] [CrossRef]
- Zhang, J.F.; Paciorkowski, A.R.; Craig, P.A.; Cui, F. BioVR: A platform for virtual reality assisted biological data integration and visualization. BMC Bioinform. 2019, 20, 78. [Google Scholar] [CrossRef]
- Stein, D.F.; Chen, H.; Vinyard, M.E.; Qin, Q.; Combs, R.D.; Zhang, Q.; Pinello, L. singlecellVR: Interactive Visualization of Single-Cell Data in Virtual Reality. Front. Genet. 2021, 12, 764170. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.W.; Qu, Z.; Draper, D.; Quan, R.; Braytee, A.; Bluff, A.; Zhang, D.; Johnston, A.; Kennedy, P.J.; Simoff, S.; et al. Virtual reality for the observation of oncology models (VROOM): Immersive analytics for oncology patient cohorts. Sci. Rep. 2022, 12, 11337. [Google Scholar] [CrossRef] [PubMed]
- Parsons, S.; Wooldridge, M. Game Theory and Decision Theory in Multi-Agent Systems. Auton. Agents Multi-Agent. Syst. 2002, 5, 243–254. [Google Scholar] [CrossRef]
- Gmytrasiewicz, P.; Parsons, S. Editorial: Decision theory and game theory in agent design. Decis. Support. Syst. 2005, 39, 151–152. [Google Scholar] [CrossRef]
- Raoof, O. Theory of Games: An Introduction; IntechOpen: London, UK, 2010. [Google Scholar]
- McFadden, D.; Tsai, M.; Kadry, B.; Souba, W.W. Game theory: Applications for surgeons and the operating room environment. Surgery 2012, 152, 915–922. [Google Scholar] [CrossRef]
- Yamamoto, M. Considering people’s hospitality toward others in urban and rural areas: An application of game theory. J. Glob. Tour. Res. 2017, 2, 39–44. [Google Scholar] [CrossRef]
- Blake, A.; Carroll, B.T. Game theory and strategy in medical training. Med. Educ. 2016, 50, 1094–1106. [Google Scholar] [CrossRef]
- Osborne, M.J.; Rubinstein, A. A Course in Game Theory; MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Mazalov, V.V. Mathematical Game Theory and Applications; Wiley: Chichester, UK, 2014. [Google Scholar]
- Mendonça, F.V.; Catalão-Lopes, M.; Marinho, R.T.; Figueira, J.R. Improving medical decision-making with a management science game theory approach to liver transplantation. Omega 2020, 94, 102050. [Google Scholar] [CrossRef]
- Cheng-Kuang, W. Using game theory for medical resources scheduling in emergency department. In Proceedings of the 2014 5th International Conference on Game Theory for Networks, Beijing, China, 25–27 November 2014; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- Glycopantis, D.; Stavropoulou, C. An agency relationship under general conditions of uncertainty: A game theory application to the doctor–patient interaction. Econ. Theory Bull. 2017, 6, 15–28. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, L.; Ye, M.; Sun, L.; Gragnoli, C.; Wu, R. Integrating Evolutionary Game Theory into Mechanistic Genotype–Phenotype Mapping. Trends Genet. 2016, 32, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Archetti, M. Evolutionary game theory of growth factor production: Implications for tumour heterogeneity and resistance to therapies. Br. J. Cancer 2013, 109, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- Khadem, H.; Kebriaei, H.; Veisi, Z. Inactivation of tumor suppressor genes and cancer therapy: An evolutionary game theory approach. Math. Biosci. 2017, 288, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Barron, E.N. Game Theory: An Introduction, 2nd ed.; Wiley Series in Operations Research and Management Science; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Shoham, Y.; Leyton-Brown, K. Multiagent Systems Algorithmic, Game-Theoretic, and Logical Foundations; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Leyton-Brown, K. Essentials of Game Theory: A Concise, Multidisciplinary Introduction; Shoham, Y., Ed.; Morgan & Claypool Publishers: San Rafael, CA, USA, 2008. [Google Scholar]
- Easley, D.; Kleinberg, J. Networks, Crowds, and Markets: Reasoning about a Highly Connected World; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Maaten, L.v.d.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Amir, E.-a.D.; Davis, K.L.; Tadmor, M.D.; Simonds, E.F.; Levine, J.H.; Bendall, S.C.; Shenfeld, D.K.; Krishnaswamy, S.; Nolan, G.P.; Pe’er, D. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 2013, 31, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Becht, E.; McInnes, L.; Healy, J.; Dutertre, C.-A.; Kwok, I.W.H.; Ng, L.G.; Ginhoux, F.; Newell, E.W. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 2018, 37, 38–44. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- Tegegne, Y.; Qu, Z.; Qian, Y.; Nguyen, Q.V. Parallel Nonlinear Dimensionality Reduction Using GPU Acceleration. Proceedings of Australasian Conference on Data Mining, Brisbane, QLD, Australia, 14–15 December 2021; Springer: Singapore, 2021; pp. 3–15. [Google Scholar]
- Dhillon, I.S.; Sra, S. Generalized nonnegative matrix approximations with Bregman divergences. In Proceedings of the 18th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 5 December 2005; MIT Press: Cambridge, MA, USA, 2005; pp. 283–290. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Kramer, M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 1991, 37, 233–243. [Google Scholar] [CrossRef]
- Nguyen, Q.V.; Qu, Z.; Lau, C.W.; Tegegne, Y.; Tran, J.; Karetla, G.R.; Kennedy, P.J.; Simoff, S.; Catchpoole, D. Biomedical Data Analytics and Visualization—A Methodological Framework. In Data Driven Science for Clinically Actionable Knowledge in Diseases; Nguyen, Q.V., Kennedy, P.J., Simoff, S., Catchpoole, D., Eds.; CRC Press: Boca Raton, FL, USA, 2023; pp. 174–196. [Google Scholar]
- Ng, S.W.K.; Mitchell, A.; Kennedy, J.A.; Chen, W.C.; McLeod, J.; Ibrahimova, N.; Arruda, A.; Popescu, A.; Gupta, V.; Schimmer, A.D.; et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature 2016, 540, 433–437. [Google Scholar] [CrossRef]
- Elsayed, A.H.; Wu, H.; Cao, X.; Raimondi, S.C.; Downing, J.R.; Ribeiro, R.; Gruber, T.A.; Rubnitz, J.; Pounds, S.; Lamba, J.K. Pediatric LSC3 (pLSC3) Score Derived from DNMT3B-CD34-GPR56 as a Prognostic Tool to Predict AML Patient Outcome: Results from Two Independent Pediatric AML Cohorts. Blood 2018, 132 (Suppl. 1), 290. [Google Scholar] [CrossRef]
Patient | DNMT3B | ZBTB46 | NYNRIN | ARHGAP22 | … | CD34 | AKR1C3 | GPR56 |
aml_ohsu_2018_15-00626 | 5.125 | 5.081 | 3.678 | 3.785 | 9.080 | 4.879 | 7.1123 | |
aml_ohsu_2018_15-00674 | 3.702 | 4.607 | 3.131 | 3.560 | 6.403 | 3.2101 | 5.427 | |
… |
Doctor B | ||||||
LSC17 | DNMT3B_ZBTB46_NYNRIN | CD34 | DNMT3B_ZBTB46_LAPTM4B | DNMT3B_ZBTB46_MMRN1 | ||
Doctor A | t-SNE | (0.6, 0.3) | (0.2, 0.4) | (0.4, 0.4) | (0.6, 0.5) | (0.3, 0) |
PCA | (0.4, 0.3) | (0.4, 0.4) | (0.4, 0.4) | (0.5, 0.5) | (0.3, 0.1) | |
NMF | (0.2, 0.2) | (0.5, 0.5) | (0.4, 0.4) | (0.4, 0.4) | (0.3, 0.2) | |
UMAP | (0.3, 0.2) | (0.3, 0.4) | (0.4, 0.4) | (0.4, 0.4) | (0.4, 0.2) |
Doctor B | ||||||
LSC17 | DNMT3B_ZBTB46_NYNRIN | CD34 | DNMT3B_ZBTB46_LAPTM4B | DNMT3B_ZBTB46_MMRN1 | ||
Doctor A | t-SNE | 0.9 | 0.6 | 0.8 | 1.1 | 0.3 |
PCA | 0.7 | 0.8 | 0.8 | 1.0 | 0.4 | |
NMF | 0.4 | 1.0 | 0.8 | 0.8 | 0.5 | |
UMAP | 0.5 | 0.7 | 0.8 | 0.8 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, C.W.; Catchpoole, D.; Simoff, S.; Zhang, D.; Nguyen, Q.V. A Game-Theoretical Approach to Clinical Decision Making with Immersive Visualisation. Appl. Sci. 2023, 13, 10178. https://doi.org/10.3390/app131810178
Lau CW, Catchpoole D, Simoff S, Zhang D, Nguyen QV. A Game-Theoretical Approach to Clinical Decision Making with Immersive Visualisation. Applied Sciences. 2023; 13(18):10178. https://doi.org/10.3390/app131810178
Chicago/Turabian StyleLau, Chng Wei, Daniel Catchpoole, Simeon Simoff, Dongmo Zhang, and Quang Vinh Nguyen. 2023. "A Game-Theoretical Approach to Clinical Decision Making with Immersive Visualisation" Applied Sciences 13, no. 18: 10178. https://doi.org/10.3390/app131810178
APA StyleLau, C. W., Catchpoole, D., Simoff, S., Zhang, D., & Nguyen, Q. V. (2023). A Game-Theoretical Approach to Clinical Decision Making with Immersive Visualisation. Applied Sciences, 13(18), 10178. https://doi.org/10.3390/app131810178