Feedback Devices for Cardiopulmonary Resuscitation: A Narrative Review
Abstract
:1. Introduction
2. Classification of Feedback Devices for Cardiopulmonary Resuscitation
2.1. Audio-Visual Feedback Devices
Device | Feedback | Feedback Technology | Disadvantages | References |
---|---|---|---|---|
CPR-plus | Compression depth; Compression rate | Pressure sensor and metronome | Run on batteries; Unable to record historical data; Unable to connect with external devices; No feedback on pulmonary ventilation; The incorrect angle of compression cannot be detected; Not easy to read | Elding et al. [13] |
CPREzy™ | Compression depth; Compression rate; Angle of compression; Full chest relaxation | Pressure sensor and metronome | Run on batteries; Unable to record historical data; Unable to connect with external devices; No feedback on pulmonary ventilation; Use carries a certain risk of injury to rescuers; Requires more vigorous compression to drain energy | Perkins et al. [14]; Boyle et al. [15] |
Zoll PocketCPR™ | Compression depth; Compression rate | Accelerometer; Metronome; Voice prompt | Run on batteries; Unable to record historical data; Unable to connect with external devices; No feedback on pulmonary ventilation; The incorrect angle of compression cannot be detected; May interfere with normal compression | Zapletal et al. [16] |
Laerdal CPRmeter™ | Compression depth; Compression rate, duration, and chest compression scores; Full chest relaxation | Accelerometer; Pressure sensor; Metronome | Run on batteries; No feedback on pulmonary ventilation | Zapletal et al. [16] Skorning et al. [17] |
TrueCPR™ | Visual overview of compression depth; Compression rate; Compression score; Maximum pause time; Compression with pause time | Triaxial magnetic field induction | Run on batteries; Unable to connect with external devices; No feedback on pulmonary ventilation | Smereka et al. [18] Rodríguez-Venegas et al. [19] |
Feedback Sensor Push | Compression depth; Compression rate | / | Run on batteries; No feedback on pulmonary ventilation; The incorrect angle of compression cannot be detected | / |
Cardio First Angel™ | Compression depth; Full chest relaxation | Tensile springs | Unable to record compression parameters; Unable to record historical data; Unable to connect with external devices; No feedback on pulmonary ventilation; The incorrect angle of compression cannot be detected | Vahedian-Azimi et al. [20] Guenther et al. [21] |
Beaty | Compression depth | Pressure sensor and metronome | Only compression depth feedback; Run on batteries; Unable to record historical data; Unable to connect with external devices; No feedback on pulmonary ventilation; The incorrect angle of compression cannot be detected | / |
CPR-1100 CPR Assist | Compression depth; Compression rate; Device tilt; Sinking of patient’s back | Accelerometer | Run on batteries; No feedback on pulmonary ventilation; The incorrect angle of compression cannot be detected | / |
SUNLIFE Palm CPR | Compression depth; Compression rate | Pressure sensor; Metronome; Voice feedback | Poor consistency in achieving adequate recoil; Run on batteries; Unable to connect with external devices; No feedback on pulmonary ventilation; The incorrect angle of compression cannot be detected | Wu et al. [22] |
2.2. Research on Feedback Devices Based on Physiological Information Data Monitoring in China and Abroad
2.3. Application Status and Effects of Cardiopulmonary Resuscitation Feedback Devices
2.4. Integration of Feedback Devices with Defibrillator and Related Equipment
3. Current Limitations of Cardiopulmonary Resuscitation Closed-Loop Feedback Devices and Future Development
- Limited Application Scenario
- A Non-Intuitive Feedback Mode
- Limitations of Feedback Parameters
- Limited Contribution to Improving Chest Compression Quality
4. Equipment Support of CPR Feedback Physiological Parameter Monitoring
4.1. End-Tidal Carbon Dioxide Monitoring Equipment
4.2. The Application of End-Tidal Carbon Dioxide in Cardiopulmonary Resuscitation Feedback
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kiguchi, T.; Okubo, M.; Nishiyama, C.; Maconochie, I.; Ong, M.E.H.; Kern, K.B.; Wyckoff, M.H.; McNally, B.; Christensen, E.F.; Tjelmeland, I.; et al. Out-of-hospital cardiac arrest across the World: First report from the International Liaison Committee on Resuscitation (ILCOR). Resuscitation 2020, 152, 39–49. [Google Scholar] [CrossRef]
- Dai, Z.; Lin, Q.; Xu, Y. A 5-year trend observation study on out-of-hospital cardiac arrest resuscitation outcomes. Chin. J. Emerg. Med. 2022, 31, 497–503. [Google Scholar]
- Kouwenhoven, W.B.; Jude, J.R.; Knickerbocker, G.G. Closed-chest cardiac massage. JAMA 1960, 173, 1064–1067. [Google Scholar] [CrossRef] [PubMed]
- Merchant, R.M.; Topjian, A.A.; Panchal, A.R.; Cheng, A.; Aziz, K.; Berg, K.M.; Lavonas, E.J.; Magid, D.J. Part 1: Executive Summary: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142, S337–S357. [Google Scholar] [CrossRef] [PubMed]
- Ateyyah, K.A.; Cady, C.E.; Poltrock, J.T.; Pirrallo, R.G. A Novel Use of a Metronome in Dispatcher-assisted Cardiopulmonary Resuscitation. Prehosp. Emerg. Care 2015, 19, 131–134. [Google Scholar] [CrossRef]
- Youness, H.; Al Halabi, T.; Hussein, H.; Awab, A.; Jones, K.; Keddissi, J. Review and Outcome of Prolonged Cardiopulmonary Resuscitation. Crit. Care Res. Pract. 2016, 2016, 7384649. [Google Scholar] [CrossRef]
- Hightower, D.; Thomas, S.H.; Stone, C.K.; Dunn, K.; March, J.A. Decay in quality of closed-chest compression over time. Ann. Emerg. Med. 1995, 26, 300–303. [Google Scholar] [CrossRef]
- Lancaster, G.D.; Stilley, J.D.; Franke, W.D. How Does Rescuer Fitness Affect the Quality of Prolonged Cardiopulmonary Resuscitation? Prehosp. Emerg. Care 2022, 26, 195–203. [Google Scholar] [CrossRef]
- Hamilton, R. Nurses’ knowledge and skill retention following cardiopulmonary resuscitation training: A review of the literature. J. Adv. Nurs. 2005, 51, 288–297. [Google Scholar] [CrossRef]
- Kaye, W.; Mancini, M.E. Retention of cardiopulmonary resuscitation skills by physicians, registered nurses, and the general public. Crit. Care Med. 1986, 14, 620–622. [Google Scholar] [CrossRef]
- Pozner, C.N.; Almozlino, A.; Elmer, J.; Poole, S.; McNamara, D.; Barash, D. Cardiopulmonary resuscitation feedback improves the quality of chest compression provided by hospital health care professionals. Am. J. Emerg. Med. 2011, 29, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Gruber, J.; Stumpf, D.; Zapletal, B.; Neuhold, S.; Fischer, H. Real-time feedback systems in CPR. Trends Anaesth. Crit. Care 2012, 2, 287–294. [Google Scholar] [CrossRef]
- Elding, C.; Baskett, P.; Hughes, A. The study of the effectiveness of chest compression using the CPR-plus. Resuscitation 1998, 36, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Perkins, G.D.; Augre, C.; Rogers, H.; Allan, M.; Thickett, D.R. CPREzy (TM): An evaluation during simulated cardiac arrest on a hospital bed. Resuscitation 2005, 64, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.J.; Wilson, A.M.; Connelly, K.; McGuigan, L.; Wilson, J.; Whitbourn, R. Improvement in timing and effectiveness of external cardiac compression with a new non-invasive device: The CPR-Ezy. Resuscitation 2002, 54, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Zapletal, B.; Greif, R.; Stumpf, D.; Nierscher, F.; Frantal, S.; Haugk, M.; Ruetzler, K.; Schlimp, C.; Fischer, H. Comparing three CPR feedback devices and standard BLS in a single rescuer scenario: A randomised simulation study. Resuscitation 2014, 85, 560–566. [Google Scholar] [CrossRef]
- Skorning, M.; Beckers, S.K.; Brokmann, J.; Roertgen, D.; Bergrath, S.; Veiser, T.; Heussen, N.; Rossaint, R. New visual feedback device improves performance of chest compression by professionals in simulated cardiac arrest. Resuscitation 2010, 81, 53–58. [Google Scholar] [CrossRef]
- Smereka, J.; Szarpak, L.; Czekajlo, M.; Abelson, A.; Zwolinski, P.; Plusa, T.; Dunder, D.; Dabrowski, M.; Wiesniewska, Z.; Robak, O.; et al. The TrueCPR device in the process of teaching cardiopulmonary resuscitation A randomized simulation trial. Medicine 2019, 98, e15995. [Google Scholar] [CrossRef]
- Rodríguez-Venegas, J.C.; Carmona-Jiménez, F.; Muñoz, I.; Palma-Padró, P.; Alonso, S. The True-CPR device. A new way to give great quality CPR? Resuscitation 2015, 96, 69–70. [Google Scholar] [CrossRef]
- Vahedian-Azimi, A.; Hajiesmaeili, M.; Amirsavadkouhi, A.; Jamaati, H.; Izadi, M.; Madani, S.J.; Hashemian, S.M.; Miller, A.C. Effect of the Cardio First Angel device on CPR indices: A randomized controlled clinical trial. Crit. Care 2016, 20, 147. [Google Scholar] [CrossRef]
- Guenther, S.P.W.; Schirren, M.; Boulesteix, A.L.; Busen, H.; Poettinger, T.; Pichlmaier, A.M.; Khaladj, N.; Hagl, C. Effects of the Cardio First AngelTM on chest compression performance. Technol. Health Care 2018, 26, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z. Consistency Study on Compression Quality of Two CPR Feedback Devices. Lingnan J. Emerg. Med. 2020, 25, 143–145. [Google Scholar]
- Philips. Q-CPR™ Measurement and Feedback Tool CPR Meter. Available online: https://www.usa.philips.com/healthcare/product/HCNOCTN89/qcpr-measurement-and-feedback-tool-cpr-meter#features (accessed on 7 October 2022).
- Physio-Control TrueCPR Coaching Device. Available online: https://www.aedsuperstore.com/physio-control-true-cpr-coaching-device.html (accessed on 7 October 2022).
- Feedback Sensor for Effective Chest Compression. Available online: https://www.corscience.com/products/defibrillation/feedback-sensor-push/ (accessed on 29 July 2023).
- Beaty. The Power to Save Lives. Available online: https://www.imbeaty.com/ (accessed on 29 July 2023).
- Kohden, N. CPR Assist Improving Quality of Resuscitation. Available online: https://ae.nihonkohden.com/en/products/resuscitation/cpr-1100.html (accessed on 29 July 2023).
- PalmCPR Chest Compression Feedback Device. Available online: https://www.sunlifescience.com/cn/PalmCPR.htm (accessed on 7 October 2022).
- Lampe, J.W.; Padmanaban, S.; Becker, L.B.; Zanos, T.P. Towards Personalized Closed-Loop Mechanical CPR: A Model Relating Carotid Blood Flow to Chest Compression Rate and Duration. IEEE Trans. Biomed. Eng. 2020, 67, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, P.S.; Kosmopoulos, M.N.; Gandhi, M.; Oshin, A.; Olson, M.D.; Ripeckyj, A.; Bahmer, L.; Bartos, J.A.; Theodorou, E.A.; Yannopoulos, D. Closed-loop machine-controlled CPR system optimises haemodynamics during prolonged CPR. Resuscitation Plus 2020, 3, 100021. [Google Scholar] [CrossRef]
- Jaureguibeitia, X.; Irusta, U.; Aramendi, E.; Owens, P.C.; Wang, H.E.; Idris, A.H. Automatic Detection of Ventilations During Mechanical Cardiopulmonary Resuscitation. IEEE J. Biomed. Health Inform. 2020, 24, 2580–2588. [Google Scholar] [CrossRef]
- Zhang, G. Study on Optimization Control of Closed-Loop Automatic External Chest Compression CPR. Ph.D. Thesis, The Academy of Military Medical Sciences of the PLA Academy of Military Science, Beijing, China, 2013. [Google Scholar]
- Wang, C.F. Closed-loop controller for chest compression based on coronary perfusion pressure: A computer simulation study. Med. Biol. Eng. Comput. 2016, 54, 273–281. [Google Scholar] [CrossRef]
- Li, K. An Assistive Control Method and System for External Chest Compression Device Based on PETCO-2. CN Patent 202111493254.8, 8 December 2021. [Google Scholar]
- Misztal-Okonska, P.; Goniewicz, K.; Goniewicz, M.; Ranse, J.; Hertelendy, A.J.; Gray, L.; Carlstrom, E.; Sorensen, J.L.; Khorram-Manesh, A. Importance of Immediate Electronic-Based Feedback to Enhance Feedback for First-Time CPR Trainees. Int. J. Environ. Res. Public Health 2021, 18, 3885. [Google Scholar] [CrossRef]
- Gugelmin-Almeida, D.; Tobase, L.; Polastri, T.F.; Peres, H.H.C.; Timerman, S. Do automated real-time feedback devices improve CPR quality? A systematic review of literature. Resusc. Plus 2021, 6, 100108. [Google Scholar] [CrossRef]
- Lee, P.H.; Lai, H.Y.; Hsieh, T.C.; Wu, W.R. Using real-time device-based visual feedback in CPR recertification programs: A prospective randomised controlled study. Nurse Educ. Today 2023, 124, 105755. [Google Scholar] [CrossRef]
- Stumpf, E.; Ambati, R.; Shekhar, R.; Staffa, S.J.; Zurakowski, D.; Sinha, P. A Smartphone application to provide real-time cardiopulmonary resuscitation quality feedback. Am. J. Emerg. Med. 2022, 60, 34–39. [Google Scholar] [CrossRef]
- Malwina, B.; Zuzanna, S.; Jakub, R.; Tomasz, F. Improvement of the quality of cardiopulmonary resuscitation performed with Real CPR Help® device among medical students and medical workers. Med. Res. J. 2021, 6, 177–183. [Google Scholar]
- Rubertsson, S.; Lindgren, E.; Smekal, D.; Ostlund, O.; Silfverstolpe, J.; Lichtveld, R.A.; Boomars, R.; Ahlstedt, B.; Skoog, G.; Kastberg, R.; et al. Mechanical chest compression and simultaneous defibrillation vs. conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest: The LINC randomized trial. JAMA 2014, 311, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.L.; Brooks, S.C. Mechanical versus manual chest compression for cardiac arrest. Cochrane Database Syst. Rev. 2018, 8, CD007260. [Google Scholar] [CrossRef]
- Sheraton, M.; Columbus, J.; Surani, S.; Chopra, R.; Kashyap, R. Effectiveness of Mechanical Chest Compression Devices over Manual Cardiopulmonary Resuscitation: A Systematic Review with Meta-analysis and Trial Sequential Analysis. West. J. Emerg. Med. 2021, 22, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Fan, B.; Fan, H.; Hou, S. Review of Portable Basic Life Support Equipment. Disaster Med. Public Health Prep. 2022, 16, 373–379. [Google Scholar] [CrossRef]
- Yin, L. Exploring New Physiological Monitoring Indicators for Cardiopulmonary Resuscitation and Innovations in AED Teaching Methods. Ph.D. Thesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China, 2021. [Google Scholar]
- Yalin, W.; Guang, Z.; Taihu, W. End-expiratory carbon dioxide monitoring technology and equipment brief introduction. Med. Equip. 2014, 35, 117–120. [Google Scholar]
- EtCO2 Monitoring Device. Available online: https://infiniummedical.com/etco2-monitoring-device/ (accessed on 7 October 2022).
- EMMA® Capnograph Portable Real-Time Capnography. Available online: https://www.masimo.com/products/ventilator/capnography/emma-capnograph/ (accessed on 7 October 2022).
- Edelson, D.P.; Eilevstjonn, J.; Weidman, E.K.; Retzer, E.; Vanden Hoek, T.L.; Abella, B.S. Capnography and chest-wall impedance algorithms for ventilation detection during cardiopulmonary resuscitation. Resuscitation 2010, 81, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Sheak, K.R.; Wiebe, D.J.; Leary, M.; Babaeizadeh, S.; Yuen, T.C.; Zive, D.; Owens, P.C.; Edelson, D.P.; Daya, M.R.; Idris, A.H.; et al. Quantitative relationship between end-tidal carbon dioxide and CPR quality during both in-hospital and out-of-hospital cardiac arrest. Resuscitation 2015, 89, 149–154. [Google Scholar] [CrossRef]
- Murphy, R.A.; Bobrow, B.J.; Spaite, D.W.; Hu, C.; McDannold, R.; Vadeboncoeur, T.F. Association between Prehospital CPR Quality and End-Tidal Carbon Dioxide Levels in Out-of-Hospital Cardiac Arrest. Prehosp. Emerg. Care 2016, 20, 369–377. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ma, S.; Chen, Z.; Fan, B.; Hou, S. Feedback Devices for Cardiopulmonary Resuscitation: A Narrative Review. Appl. Sci. 2023, 13, 10222. https://doi.org/10.3390/app131810222
Wang Y, Ma S, Chen Z, Fan B, Hou S. Feedback Devices for Cardiopulmonary Resuscitation: A Narrative Review. Applied Sciences. 2023; 13(18):10222. https://doi.org/10.3390/app131810222
Chicago/Turabian StyleWang, Yuxin, Shuai Ma, Zetao Chen, Bin Fan, and Shike Hou. 2023. "Feedback Devices for Cardiopulmonary Resuscitation: A Narrative Review" Applied Sciences 13, no. 18: 10222. https://doi.org/10.3390/app131810222
APA StyleWang, Y., Ma, S., Chen, Z., Fan, B., & Hou, S. (2023). Feedback Devices for Cardiopulmonary Resuscitation: A Narrative Review. Applied Sciences, 13(18), 10222. https://doi.org/10.3390/app131810222