Prediction of Sensor Data in a Greenhouse for Cultivation of Paprika Plants Using a Stacking Ensemble for Smart Farms
Abstract
:1. Introduction
2. Related Work
2.1. Long Short-Term Memory (LSTM)
2.2. Bidirectional Long Short-Term Memory (BI-LSTM)
2.3. Gated Recurrent Unit (GRU)
3. Proposed Method
3.1. Data Acquisition
3.1.1. Process of Acquiring Environmental Sensor Data
3.1.2. Establishment of Smart Farm Environment Database
3.1.3. Preprocessing of Environmental Sensor Data
3.2. Stacking Ensemble
4. Results and Discussion
4.1. Kernel Density Estimation Analysis
4.2. Data Analysis
4.2.1. Air Temperature
4.2.2. Humidity
4.2.3. CO2
4.2.4. Soil Temperature
4.2.5. Soil Moisture
4.2.6. Insolation
4.2.7. Soil EC
4.2.8. Drainage EC
4.2.9. Drainage pH
4.3. Correlation Heatmap Analysis
4.4. Performance Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muhie, S. Novel approaches and practices to sustainable agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Moreira, R.; Moreira, L.; Munhoz, P.; Lopes, E.; Ruas, R. AgroLens: A low-cost and green-friendly Smart Farm Architecture to support real-time leaf disease diagnostics. Internet Things 2022, 19, 100570. [Google Scholar] [CrossRef]
- Yoon, C.; Lim, D.; Park, C. Factors affecting adoption of smart farms: The case of Korea. Comput. Hum. Behav. 2020, 108, 106309. [Google Scholar] [CrossRef]
- Kim, S.; Lee, M.; Shin, C. IoT-Based Strawberry Disease Prediction System for Smart Farming. Sensors 2018, 18, 4051. [Google Scholar] [CrossRef] [PubMed]
- Son, K.; Sim, H.; Lee, J.; Lee, J. Precise Sensing of Leaf Temperatures for Smart Farm Applications. Horticulturae 2023, 9, 518. [Google Scholar] [CrossRef]
- Chae, C.; Cho, H.; Cho, H. Enhanced secure device authentication algorithm in P2P-based smart farm system. Peer-to-Peer Netw. Appl. 2018, 11, 1230–1239. [Google Scholar] [CrossRef]
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Choi, S.; Shin, Y.J. Role of Smart Farm as a Tool for Sustainable Economic Growth of Korean Agriculture: Using Input–Output Analysis. Sustainability 2023, 15, 3450. [Google Scholar] [CrossRef]
- Inoue, Y. Satellite-and drone-based remote sensing of crops and soils for smart farming—A review. Soil Sci. Plant Nutr. 2020, 66, 798–810. [Google Scholar] [CrossRef]
- Al-Ali, A.; Nabulsi, A.; Mukhopadhyay, S.; Awal, M.; Fernandes, S.; Ailabouni, K. IoT-solar energy powered smart farm irrigation system. J. Electron. Sci. Technol. 2019, 17, 100017. [Google Scholar] [CrossRef]
- Smart Agriculture Domestic and Overseas Market Status (Marketsandmarkets, 2020). Available online: https://www.mafra.go.kr/home/5281/subview.do (accessed on 10 July 2023).
- Smart Farm Overview. Available online: https://www.mafra.go.kr/home/5280/subview.do (accessed on 10 July 2023).
- Analysis on the Status and Future Development of Smart Farming Projects. Available online: https://korea.nabo.go.kr/naboEng/bbs/BMSR00154/view.do?boardId=3109&gubunCd=B154001&menuNo=17700027&pageIndex=1 (accessed on 10 July 2023).
- Tong, R.C.; Whitehead, C.S.; Fawole, O.A. Effects of Conventional and Bokashi Hydroponics on Vegetative Growth, Yield and Quality Attributes of Bell Peppers. Plants 2021, 10, 1281. [Google Scholar] [CrossRef]
- Nguyen, G.N.; Lantzke, N. Mitigating the Adverse Effects of Semi-Arid Climate on Capsicum Cultivation by Using the Retractable Roof Production System. Plants 2022, 11, 2794. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Karetha, K.M.; Yau, Y.Y.; Easterling, M. Vertical Cultivation: Moving Towards a Sustainable and Eco-Friendly Farming. In Biotechnological Innovations for Environmental Bioremediation; Arora, S., Kumar, A., Ogita, S., Yau, Y.Y., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 487–507. [Google Scholar]
- Yuan, G.N.; Marquez, G.P.B.; Deng, H.; Iu, A.; Fabella, M.; Salonga, R.B.; Ashardiono, F.; Cartagena, J.A. A Review on Urban Agriculture: Technology, Socio-Economy, and Policy. Heliyon 2022, 8, e11583. [Google Scholar] [CrossRef]
- Kim, K.H.; Shawon, M.R.A.; An, J.H.; Lee, H.J.; Kwon, D.J.; Hwang, I.-C.; Bae, J.H.; Choi, K.Y. Effect of Shade Screen on Sap Flow, Chlorophyll Fluorescence, NDVI, Plant Growth and Fruit Characteristics of Cultivated Paprika in Greenhouse. Agriculture 2022, 12, 1405. [Google Scholar] [CrossRef]
- Kwon, Y.B.; Lee, J.H.; Roh, Y.H.; Choi, I.-L.; Kim, Y.; Kim, J.; Kang, H.-M. Effect of Supplemental Inter-Lighting on Paprika Cultivated in an Unheated Greenhouse in Summer Using Various Light-Emitting Diodes. Plants 2023, 12, 1684. [Google Scholar] [CrossRef] [PubMed]
- Srinivasarao, C.H.; Rao, K.V.; Gopinath, K.A.; Prasad, Y.G.; Arunachalam, A.; Ramana, D.B.V.; Mohapatra, T. Agriculture Contingency Plans for Managing Weather Aberrations and Extreme Climatic Events: Development, Implementation, and Impacts in India. Adv. Agron. 2020, 159, 35–91. [Google Scholar] [CrossRef]
- Gallic, E.; Vermandel, G. Weather Shocks. Eur. Econ. Rev. 2020, 124, 103409. [Google Scholar] [CrossRef]
- Ahmed, D.M.; Hassan, M.M.; Mstafa, R.J. A Review on Deep Sequential Models for Forecasting Time Series Data. Appl. Comput. Intell. Soft Comput. 2022, 2022, 6596397. [Google Scholar] [CrossRef]
- Alkinani, M.H.; Khan, W.Z.; Arshad, Q. Detecting Human Driver Inattentive and Aggressive Driving Behavior Using Deep Learning: Recent Advances, Requirements, and Open Challenges. IEEE Access 2020, 8, 105008–105030. [Google Scholar] [CrossRef]
- Smagulova, K.; James, A.P. A Survey on LSTM Memristive Neural Network Architectures and Applications. Eur. Phys. J. Spec. Top 2019, 228, 2313–2324. [Google Scholar] [CrossRef]
- Yadav, A.; Jha, C.K.; Sharan, A. Optimizing LSTM for Time Series Prediction in Indian Stock Market. Procedia Comput. Sci. 2020, 167, 2091–2100. [Google Scholar] [CrossRef]
- Memarzadeh, G.; Keynia, F. A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets. Energy Convers. Manag. 2020, 213, 112824. [Google Scholar] [CrossRef]
- Farzad, A.; Mashayekhi, H.; Hassanpour, H. A Comparative Performance Analysis of Different Activation Functions in LSTM Networks for Classification. Neural Comput. Appl. 2019, 31, 2507–2521. [Google Scholar] [CrossRef]
- Ding, G.; Liangxi, Q. Study on the prediction of stock price based on the associated network model of LSTM. Int. J. Mach. Learn. Cybern. 2020, 11, 1307–1317. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Xiao, F.; Wang, Y.; Sun, L. Water Quality Prediction Method Based on IGRA and LSTM. Water 2018, 10, 1148. [Google Scholar] [CrossRef]
- Landi, F.; Baraldi, L.; Cornia, M.; Cucchiara, R. Working Memory Connections for LSTM. Neural Netw. 2021, 144, 334–341. [Google Scholar] [CrossRef]
- Lindemann, B.; Maschler, B.; Sahlab, N.; Weyrich, M. A survey on anomaly detection for technical systems using LSTM net-works. Comput. Ind. 2021, 131, 103498. [Google Scholar] [CrossRef]
- Salehin, i.; Talha, I.; Hasan, M.; Dip, S.; Saifuzzaman, M.; Moon, N. An artificial intelligence based rainfall prediction using LSTM and neural network. In Proceedings of the 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), Bhubaneswar, India, 26–27 December 2020; pp. 5–8. [Google Scholar] [CrossRef]
- Siami-Namini, S.; Tavakoli, N.; Namin, A. The performance of LSTM and BiLSTM in forecasting time series. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 9–12. [Google Scholar] [CrossRef]
- Alharbi, F.R.; Csala, D. Wind Speed and Solar Irradiance Prediction Using a Bidirectional Long Short-Term Memory Model Based on Neural Networks. Energies 2021, 14, 6501. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, J.; Zhuo, Y.; Yang, D.; Liu, R. Spatial distribution model of DEHP contamination categories in soil based on Bi-LSTM and sparse sampling. Ecotoxicol. Environ. Saf. 2022, 229, 113092. [Google Scholar] [CrossRef]
- Zhao, H.; Hou, C.; Alrobassy, H.; Zeng, X. Recognition of Transportation State by Smartphone Sensors Using Deep Bi-LSTM Neural Network. J. Comput. Netw. Commun. 2019, 2019, 4967261. [Google Scholar] [CrossRef]
- Becerra-Rico, J.; Aceves-Fernández, M.; Esquivel-Escalante, K.; Pedraza-Ortega, J. Airborne particle pollution predictive model using Gated Recurrent Unit (GRU) deep neural networks. Earth Sci. Inform. 2020, 13, 821–832. [Google Scholar] [CrossRef]
- Dutta, A.; Kumar, S.; Basu, M. A Gated Recurrent Unit Approach to Bitcoin Price Prediction. J. Risk Financ. Manag 2020, 13, 23. [Google Scholar] [CrossRef]
- Zulqarnain, M.; Ghazali, R.; Hassim, Y.; Admir, M. An enhanced gated recurrent unit with auto-encoder for solving text classification problems. Arab. J. Sci. Eng. 2021, 46, 8953–8967. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Tang, L.; Gu, X.; Wang, L.; Wang, L. Displacement prediction of Jiuxianping landslide using gated recurrent unit (GRU) networks. Acta Geotech. 2022, 17, 1367–1382. [Google Scholar] [CrossRef]
- Mirzaei, S.; Kang, J.; Chu, K. A comparative study on long short-term memory and gated recurrent unit neural networks in fault diagnosis for chemical processes using visualization. J. Taiwan Inst. Chem. Eng. 2022, 130, 104028. [Google Scholar] [CrossRef]
- Koudjonou, K.M.; Rout, M. A Stateless Deep Learning Framework to Predict Net Asset Value. Neural Comput. Appl. 2020, 32, 1–19. [Google Scholar] [CrossRef]
- Fanta, H.; Shao, Z.; Ma, L. SiTGRU: Single-tunnelled gated recurrent unit for abnormality detection. Inf. Sci. 2020, 524, 15–32. [Google Scholar] [CrossRef]
- Li, Y.; Pan, Y. A Novel Ensemble Deep Learning Model for Stock Prediction Based on Stock Prices and News. Int. J. Data Sci. Anal. 2022, 13, 139–149. [Google Scholar] [CrossRef]
- Ribeiro, M.H.D.M.; Coelho, L.S. Ensemble Approach Based on Bagging, Boosting, and Stacking for Short-Term Prediction in Agribusiness Time Series. Appl. Soft Comput. 2020, 86, 105837. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Bui, D.T.; Merghadi, A.; Sahana, M.; Zhu, Z.; Pham, B.T. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 2020, 17, 641–658. [Google Scholar] [CrossRef]
- Gupta, A.; Jain, V.; Singh, A. Stacking Ensemble-Based Intelligent Machine Learning Model for Predicting Post-COVID-19 Complications. New Gener. Comput. Vol. 2022, 40, 987–1007. [Google Scholar] [CrossRef]
- Soleymanzadeh, R.; Aljasim, M.; Qadeer, M.W.; Kashef, R. Cyberattack and Fraud Detection Using Ensemble Stacking. AI 2022, 3, 22–36. [Google Scholar] [CrossRef]
- Chen, C.; Chou, F.; Chou, J. Temperature prediction for reheating furnace by gated recurrent unit approach. IEEE Access 2022, 10, 33362–33369. [Google Scholar] [CrossRef]
- Kamalov, F. Kernel density estimation based sampling for imbalanced class distribution. Inf. Sci. 2020, 512, 1192–1201. [Google Scholar] [CrossRef]
- Wahbah, M.; Mohandes, B.; EL-Fouly, T.; Moursi, M. Unbiased cross-validation kernel density estimation for wind and PV probabilistic modelling. Energy Convers. Manag. 2022, 266, 115811. [Google Scholar] [CrossRef]
- Zhou, B.; Ma, X.; Luo, Y.; Yang, D. Wind power prediction based on LSTM networks and nonparametric kernel density es-timation. IEEE Access 2019, 7, 165279–165292. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, S.; Ding, Y.; Duan, D.; Wang, Y.; Wang, P.; Yang, L.; Fan, H.; Cheng, Y. Probability Prediction of Short-Term User-Level Load Based on Random Forest and Kernel Density Estimation. Energy Rep. 2022, 8, 1130–1138. [Google Scholar] [CrossRef]
- Jebli, I.; Belouadha, F.Z.; Kabbaj, M.I.; Tilioua, A. Prediction of Solar Energy Guided by Pearson Correlation Using Machine Learning. Energy 2021, 224, 120109. [Google Scholar] [CrossRef]
- Baak, M.; Koopman, R.; Snoek, H.; Klous, S. A new correlation coefficient between categorical, ordinal and interval variables with Pearson characteristics. Comput. Stat. Data Anal. 2020, 152, 107043. [Google Scholar] [CrossRef]
- Chicco, D.; Giuseppe, J. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef]
- Fu, T.; Tang, X.; Cai, Z.; Zuo, Y.; Tang, Y.; Zhao, X. Correlation Research of Phase Angle Variation and Coating Performance by Means of Pearson’s Correlation Coefficient. Prog. Org. Coat. 2020, 139, 105459. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Chicco, D.; Warrens, M.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, F.; Takyi-Aninakwa, P.; Fernandez, C.; Stroe, D.I.; Huang, Q. Improved Singular Filtering-Gaussian Process Regression-Long Short-Term Memory Model for Whole-Life-Cycle Remaining Capacity Estimation of Lithium-Ion Batteries Adaptive to Fast Aging and Multi-Current Variations. Energy 2023, 284, 128677. [Google Scholar] [CrossRef]
Value (Absolute Value) | Equipment and Device |
---|---|
0.9~1.0 | Very strong positive(negative) correlation |
0.7~0.9 | Strong positive(negative) correlation |
0.5~0.7 | Moderate positive(negative) correlation |
0.3~0.5 | Weak positive(negative) correlation |
0.1~0.3 | Very Weak positive(negative) correlation |
0.0~0.1 | Almost no positive(negative) correlation |
Model | MSE | MAE | |
---|---|---|---|
GRU | 0.720 | 0.639 | 0.950 |
LSTM | 0.668 | 0.623 | 0.953 |
BI-LSTM | 0.772 | 0.670 | 0.946 |
Ensemble | 0.594 | 0.601 | 0.958 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.-H.; Mutahira, H.; Jang, H.-S. Prediction of Sensor Data in a Greenhouse for Cultivation of Paprika Plants Using a Stacking Ensemble for Smart Farms. Appl. Sci. 2023, 13, 10464. https://doi.org/10.3390/app131810464
Han S-H, Mutahira H, Jang H-S. Prediction of Sensor Data in a Greenhouse for Cultivation of Paprika Plants Using a Stacking Ensemble for Smart Farms. Applied Sciences. 2023; 13(18):10464. https://doi.org/10.3390/app131810464
Chicago/Turabian StyleHan, Seok-Ho, Husna Mutahira, and Hoon-Seok Jang. 2023. "Prediction of Sensor Data in a Greenhouse for Cultivation of Paprika Plants Using a Stacking Ensemble for Smart Farms" Applied Sciences 13, no. 18: 10464. https://doi.org/10.3390/app131810464
APA StyleHan, S.-H., Mutahira, H., & Jang, H.-S. (2023). Prediction of Sensor Data in a Greenhouse for Cultivation of Paprika Plants Using a Stacking Ensemble for Smart Farms. Applied Sciences, 13(18), 10464. https://doi.org/10.3390/app131810464