A Multivariate Model of Drinking Water Quality Based on Regular Monitoring of Radioactivity and Chemical Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Water Sources, and Sample Collection
2.2. Monitoring of Water Radioactivity and Physical-Chemical Parameters
Parameter | Analytical Method | WHO Guideline Value | US-EPA Limit Value | EU Limit Value | National Limit Value | Ref. |
---|---|---|---|---|---|---|
Radon (Rn-222, 222Rn) | Alpha spectroscopy (pulse-counting ionization chamber) | 100 Bq/L | 11.1 Bq/L | 100 Bq/L | 100 Bq/L | [38] [39] [40] [32] |
Gross alpha activity | Alpha spectrometry | 0.5 Bq/L | ≤0.1 Bq/L | 0.1 Bq/L 0.5 Bq/L | 0.1 Bq/L | [33] [41] [42] [43] [40] [32] |
Gross beta activity | Beta spectrometry with scintillation detector | 1 Bq/L | 0.15 Bq/L | 1 Bq/L | 1 Bq/L | [34] [41] [43] [40] [32] |
Ammonia | UV-VIS spectrophotometry | 0.5 mg/L | 0.3 mg/L | 0.5 mg/L | 0.5 mg/L | [44] [45] [46] [47] |
Free chlorine residual | UV-VIS spectrophotometry | 0.6–1 mg/L | ≥0.1–≤0.5 mg/L | [48] [38] [32] | ||
Nitrates | UV-VIS spectrophotometry | 50 mg/L | 50 mg/L | 50 mg/L | 50 mg/L | [49] [38] [45] [47] [32] |
Al, Fe | UV-VIS spectrophotometry | 200 µg/L | 200 µg/L (Al), 300 µg/L (Fe) | 200 µg/L | 200 µg/L | [50] [51] [45] [47] [32] [31] |
Pb | atomic absorption spectrometry | 10 µg/L | 10 µg/L | 10 µg/L | 10 µg/L | [52] [38] [45] [47] [32] |
Cd | Atomic absorption spectrometry | 3 µg/L | 5 µg/L | 5 µg/L | 5 µg/L | [52] [38] [45] [47] [32] [31] |
Mn | Atomic absorption spectrometry | 100 µg/L | 50 µg/L | 50 µg/L | 50 µg/L | [52] [38] [45] [47] |
pH | Electrode method | ≥6.5–≤9.5 | ≥6.5–≤9.5 | ≥6.5–≤9.5 | ≥6.5–≤9.5 | [53] [9] [45] [47] [32] [31] |
Conductivity | Electrode method | 2500 µS/cm at 20 °C | 2500 µS/cm at 20 °C | 2500 µS/cm at 20 °C | 2500 µS/cm at 20 °C | [53] [9] [45] [47] [31] [31] |
Turbidity | Nephelometric method | Acceptable | Acceptable | Acceptable | ≤5 UNT Acceptable | [54] [9] [45] [47] |
Oxidizability | Volumetric method | 5 mgO2/L | 5 mg O2/L | 5 mg O2/L | 5 mg O2/L | [55] [9] [45] [47] |
2.3. Statistical Modeling
3. Results and Discussion
3.1. Radioactivity Parameters of Drinking Water in the Studied Area
3.2. Physical-Chemical Parameters of Investigated Drinking Water Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spellman, F.R. The Drinking Water Handbook, 3rd ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2017; p. 2. [Google Scholar]
- EC (European Commission). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. J. Eur. Commun. 2000, 327, 1–72. [Google Scholar]
- Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Prüss-Üstün, A.; Bartram, J.; Clasen, T.; Colford, J.M.; Cumming, O.; Curtis, V.; Bonjour, S.; Dangour, A.D.; De France, J.; Fewtrell, L.; et al. Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: A retrospective analysis of data from 145 countries. Trop. Med. Int. Health 2014, 19, 894–905. [Google Scholar] [CrossRef] [PubMed]
- DeFelice, N.B.; Leker, H.G.; MacDonald Gibson, J. Annual cancer risks from chemicals in North Carolina community water systems. HERA 2017, 23, 974–991. [Google Scholar] [CrossRef]
- Muralikrishna, I.M.; Manickam, V. Chapter I: Water Pollution. In Environmental Management: Science and Engineering for Industry; BS Publications: Delhi, India, 2017; pp. 1–4. [Google Scholar]
- Liew, Z.; Meng, Q.; Yan, Q.; Schullehner, J.; Hansen, B.; Kristiansen, S.M.; Voutchkova, D.D.; Olsen, J.; Ersbøll, A.K.; Ketzel, M.; et al. Association between Estimated Geocoded Residential Maternal Exposure to Lithium in Drinking Water and Risk for Autism Spectrum Disorder in Offspring in Denmark. JAMA Pediatr. 2023, 3, e230346. [Google Scholar] [CrossRef]
- Araya, P.; Martínez, C.; Barros, J. Lithium in Drinking Water as a Public Policy for Suicide Prevention: Relevance and Considerations. Front. Public Health 2022, 10, 805774. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Chapter 8: Chemical aspects. In Guidelines for Drinking-Water Quality: First Addendum to the Fourth Edition; WHO: Geneva, Switzerland, 2017; pp. 176–191. [Google Scholar]
- Cothern, C.R. Radon, Radium, and Uranium in Drinking Water; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- World Health Organization (WHO). Chapter 9: Radiological aspects. In Guidelines for Drinking-Water Quality: First Addendum to the Fourth Edition; WHO: Geneva, Switzerland, 2017; pp. 209–211. [Google Scholar]
- Shahbazi-Gahrouei, D.; Gholami, M.; Setayandeh, S. A review on natural background radiation. Adv. Biomed. Res. 2013, 2, 65. [Google Scholar] [CrossRef]
- Haghiabi, A.H.; Nasrolahi, A.H.; Parsaie, A. Water quality prediction using machine learning methods. Water Qual. Res. 2018, 53, 3–13. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, J.; Yang, X.; Zhang, Y.; Zhang, L.; Ren, H.; Wu, B.; Ye, L. A review of the application of machine learning in water quality evaluation. Eco-Environ. Health 2022, 2, 107–116. [Google Scholar] [CrossRef]
- Wu, D.; Wang, H.; Mohammed, H.; Seidu, R. Quality Risk Analysis for Sustainable Smart Water Supply Using Data Perception. IEEE Trans. Sustain. Comput. 2020, 3, 377–388. [Google Scholar] [CrossRef]
- Sokolova, E.; Ivarsson, O.; Lilliestrom, A.A.; Speicher, N.K.; Rydberg, H.; Bondelind, M. Data-driven models for predicting microbial water quality in the drinking water source using E. coli monitoring and hydrometeorological data. Sci. Total Environ. 2022, 802, 149798. [Google Scholar] [CrossRef]
- Hangan, A.; Chiru, C.-G.; Arsene, D.; Czako, Z.; Lisman, D.F.; Mocanu, M.; Pahontu, B.; Predescu, A.; Sebestyen, G. Advanced Techniques for Monitoring and Management of Urban Water Infrastructures—An Overview. Water 2022, 14, 2174. [Google Scholar] [CrossRef]
- Maiolo, M.; Pantusa, D. Multivariate Analysis of Water Quality Data for Drinking Water Supply Systems. Water 2021, 13, 1766. [Google Scholar] [CrossRef]
- Shrestha, S.; Kazama, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji River basin, Japan. Environ. Model. Softw. 2007, 22, 464–475. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, X.; Zhao, B.; Qin, J.; Peng, T. Combined multivariate statistical techniques, water pollution index (WPI) and daniel trend test methods to evaluate temporal and spatial variations and trends of water quality at Shanchong River in the Northwest Basin of Lake Fuxian, China. PLoS ONE 2015, 10, e011859. [Google Scholar] [CrossRef] [PubMed]
- Geng, R.; Geng, R.Z.; Yin, P.H.; Sharpley, A.N. A coupled model system to optimize the best management practices for nonpoint source pollution control. J. Clean. Prod. 2019, 220, 581–592. [Google Scholar] [CrossRef]
- Schreiber, S.G.; Schreiber, S.; Tanna, R.N.; Roberts, D.R.; Arciszewski, T.J. Statistical tools for water quality assessment and monitoring in river ecosystems—A scoping review and recommendations for data analysis. Water Qual. Res. 2022, 57, 40. [Google Scholar] [CrossRef]
- Dou, J.; Xia, R.; Chen, Y.; Chen, X.; Cheng, B.; Zhang, K.; Yang, C. Mixed spatial scale effects of landscape structure on water quality in the Yellow River. J. Clean. Prod. 2022, 368, 133008. [Google Scholar] [CrossRef]
- Hu, Y.; Yin, S.; Xiao, W.; Hou, B.; Zhang, X. Spatial scale effects of landscape patterns on water quality changes in drinking water source protection areas: A case study in the Guishui River Basin, China. Arab. J. Geosci. 2022, 15, 685. [Google Scholar] [CrossRef]
- Ding, H.; Niu, X.; Zhang, D.; Lv, M.; Zhang, Y.; Lin, Z.; Fu, M. Spatiotemporal analysis and prediction of water quality in Pearl River, China, using multi-variate statistical techniques and data-driven model. Environ. Sci. Pollut. Res. 2023, 30, 63036–63051. [Google Scholar] [CrossRef]
- Wang, D.; Huang, G.; Ding, H.; Zhang, X.; Wang, H.; Zhang, Z.; Li, D.; Zhao, J. Effects of Hydrological Season on the Relationship between Land Use and Surface Water Quality. Water 2023, 15, 2351. [Google Scholar] [CrossRef]
- Havlíková, P.; Mrkva, L.; Chuman, T.; Janský, B. Surface water quality in the rural catchment of the Šlapanka River, Czechia: Change over time. Environ. Earth Sci. 2023, 82, 379. [Google Scholar] [CrossRef]
- Drăgulescu, C. Cormoflora Judetului Sibiu, 2nd ed.; Editura Universității Lucian Blaga Sibiu: Sibiu, Romania, 2010; pp. 9–22. [Google Scholar]
- Badea, L.; Caloianu, N.; Dragu, G. Județul Sibiu; Editura Academiei Republicii Socialiste România: București, Romania, 1971; pp. 7–36. [Google Scholar]
- Parliament of Romania. Law No. 301/2015 on Establishing the Requirements for Protection of Human Health as Regards Radioactive Substances in Drinking Water. Official Gazette No. 904. 2015. Available online: http://www.legex.ro/Legea-301-2015-143944.aspx (accessed on 11 August 2023).
- The Government of Romania. Ordinance No. 7/2023 on the Quality of Water Intended for Human Consumption. Official Gazette No. 63. 2023. Available online: https://legislatie.just.ro/Public/DetaliiDocument/264337 (accessed on 11 August 2023).
- Parliament of Romania. Law No. 458/2002 (**Republished**) on Drinking Water Quality. Official Gazette No. 875. 2011. Available online: https://legislatie.just.ro/Public/DetaliiDocument/37723 (accessed on 11 August 2023).
- SR ISO 9696/2013; Calitatea Apei. Măsurarea Activităţii alfa Globale la Apa Nesalină. Metoda Prin Reziduu (Water Quality. Global Alpha Activity. Residue Test Method). ASRO: Bucharest, Romania, 2013.
- SR ISO 9697:2013; Calitatea Apei. Măsurarea Activităţii Beta Globale la Apa Nesalină. Metoda Prin Reziduu. ASRO: Bucharest, Romania, 2013.
- ISO 11929-4:2022; Determination of the Characteristic Limits (Decision Threshold, Detection Limit and Limits of the Coverage Interval) for Measurements of Ionizing Radiation—Fundamentals and Application. ISO: Geneva, Switzerland, 2020.
- SR EN ISO 13164-3:2020; Calitatea Apei. Radon-222. Partea 3: Metoda de Încercare Utilizând Emanometria. ASRO: Bucharest, Romania, 2020.
- SR EN ISO/IEC 17025:2018; Cerințe Generale Pentru Competența Laboratoarelor de Încercări și Etalonări. ASRO: Bucharest, Romania, 2018.
- World Health Organization. Guidelines for Drinking-Water Quality Third Edition Incorporating the First and Second Addenda Volume 1, Guidance on Radon in Drinking, 3rd ed.; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- United States Environmental Protection Agency (US EPA). Radon in Drinking Water Health Risk Reduction and Cost Analysis; Federal Register: Washington, DC, USA, 1999; Volume 64, pp. 9559–9599.
- Directive, C. Council Directive 2013/51/EURATOM of 22 October 2013: Laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption. J. Eur. Union 2013, 7, 56. [Google Scholar]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda. 2022. Available online: https://www.who.int/publications/i/item/9789240045064 (accessed on 11 August 2023).
- World Health Organization. Chapter 9: Radiological Aspects. In Guidelines for Drinking-Water Quality, 4th ed.; Library Cataloguing-in-Publication Data NLM Classification; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- United States Environmental Protection Agency (US EPA). EPA Drinking Water Advice Note Advice Note No. 16: Guidance on the Enforcement of the European Union (Radioactive Substances in Drinking Water) Regulations 2016; S.I. 160 of 2016 Version 1 Issued: 10 December 2016. National Primary Drinking Water Regulations; Radionuclides; Rinal Rule. Part II. 40 CFR Parts 9, 141, and 142; USEPA: Washington, DC, USA, 2000.
- SR ISO 7150-1:2001; Calitatea Apei. Determinarea Conţinutului de Amoniu. Partea 1: Metoda Spectrometrică Manuală (Water Quality. Determination of Ammonium Content). ASRO: Bucharest, Romania, 2001.
- United States Environmental Protection Agency (US EPA). 40 CFR Ch.1 Part 143—National Secondary Drinking Water Regulations; USEPA: Washington, DC, USA, 2003.
- World Health Organization (WHO). Drinking Water Parameter Cooperation Project: Support to the Revision of Annex I Council Directive 98/83/EC on the Quality of Water Intended for Human Consumption (Drinking Water Directive); WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. Available online: http://data.europa.eu/eli/dir/2020/2184/oj (accessed on 11 August 2023).
- SR EN ISO 7393-2:2002; Calitatea Apei. Determinarea Clorului Liber şi Clorului Total. Partea 2: Metoda Colorimetrică cu N,N-dietilfenilen-1,4-diamina, Destinată Controlului de Rutină (Water Quality. Determination of Free Chlorine and Total Chlorine. Part 2: Colorimetric Method with N,N-diethylphenylene-1,4-diamine for Routine Control). ASRO: Bucharest, Romania, 2002.
- SR ISO 7890-1:1998; Calitatea Apei. Determinarea Conţinutului de Azotaţi (Water Quality. Determination of Nitrogen Content. Part 1: Spectrometric Method with 2,6-dimethylphenol). ASRO: Bucharest, Romania, 1998.
- SR EN ISO 10566:2001; Calitatea Apei. Determinarea Conţinutului de Aluminiu. Metoda Spectrometrică cu Violet de Pyrocatechol (Determination of Aluminum Content. Pyrocatechol Violet Spectrophotometric Method). ASRO: Bucharest, Romania, 2001.
- SR EN ISO 6332:1996/C91:2006; Calitatea Apei. Determinarea Conţinutului de Fier. Metoda Spectrometrică cu 1,10—Fenantrolină (Determination of Iron Content. Spectrophotometric Method with 1–10 Phenanthroline). ASRO: Bucharest, Romania, 2006.
- SR EN ISO 15586:2004; Calitatea Apei. Determinarea Elementelor în Urme Prin Spectrometrie de Absorbţie Atomică cu Cuptor de Grafit (Water Quality. Determination of Trace Elements by Atomic Absorption Spectrometry with a Graphite Furnace). ASRO: Bucharest, Romania, 2004.
- SR EN ISO 10523:2012; Calitatea Apei. Determinarea pH-Ului (Water Quality. Determination of pH, 2012). ASRO: Bucharest, Romania, 2012.
- SR EN 27888:1997; Calitatea Apei. Determinarea Conductivităţii Electrice (Water Quality. Determination of Electrical Conductivity). ASRO: Bucharest, Romania, 1997.
- SR EN ISO 8467:2001; Calitatea Apei. Determinarea Indicelui de Permanganate (Water Quality. Determination of the Permanganate Index (Oxidability). ASRO: Bucharest, Romania, 2001.
- Bakdash, J.Z.; Laura, R. Marusich. Repeated Measures Correlation. Front. Psychol. 2017, 8, 456. [Google Scholar] [CrossRef] [PubMed]
- R Core Development Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 18 May 2021).
- Ter Braak, C.J.F.; Šmilauer, P. Canoco for Windows Version 5.10; Biometris—Plant Research International: Wageningen, The Netherlands, 2018. [Google Scholar]
- Šmilauer, P.; Lepš, J. Multivariate Analysis of Ecological Data Using CANOCO 5; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Dordea, D. Resursele minerale ale României–o binefacere sau o povară? Collegium mediense. Comun. Ştiinţ. 2017, 7, 207–218. [Google Scholar]
- Otoo, F.; Darko, E.O.; Garavaglia, M.; Adukpo, O.K.; Amoako, J.K.; Tandoh, J.B.; Inkoom, S.; Nunoo, S.; Adu, S. Assessment of natural radioactivity and radon exhalation rate associated with rock properties used for construction in greater Accra region, Ghana. J. Radioanal. Nucl. Chem. 2021, 328, 911–923. [Google Scholar] [CrossRef]
- Nagaraju, K.M.; Chandrashekara, M.S.; Rani, K.P.; Rajesh, B.M.; Paramesh, L. Radioactivity measurements in the environment of Chamaraja Nagar area, India. Radiat. Prot. Environ. 2013, 36, 10. [Google Scholar] [CrossRef]
- Sarvajayakesavalu, S.; Lakshminarayanan, D.; George, J.; Magesh, S.B.; Anilkumar, K.M.; Brammanandhan, G.M.; Chandrasekara, A.; Ravikumar, M. Geographic Information System mapping of gross alpha/beta activity concentrations in ground water samples from Karnataka, India: A preliminary study. Groundw. Sustain. Dev. 2018, 6, 164–168. [Google Scholar] [CrossRef]
- Bourai, A.A.; Gusain, G.S.; Rautela, B.S.; Joshi, V.; Prasad, G.; Ramola, R.C. Variations in radon concentration in groundwater of Kumaon Himalaya, India. Radiat. Prot. Dosim. 2012, 152, 55–57. [Google Scholar] [CrossRef]
- Adithya, V.S.P.; Chidambaram, S.; Prasanna, M.V.; Venkatramanan, S.; Tirumalesh, K.; Thivya, C.; Thilagavathi, R. Health risk implication and spatial distribution of radon in groundwater along the lithological contact in south India. Arch. Environ. Contam. Toxicol. 2021, 80, 308–318. [Google Scholar] [CrossRef]
- Knutsson, G.; Olofsson, B. Radon content in groundwater from drilled wells in the Stockholm region of Sweden. Nor. Geol. Unders. 2002, 439, 79–85. [Google Scholar]
- Ion, S. Intramoesian fault in the Făgăraş mountains area. Olten.-Stud. Comun. Ştiinţ. Nat. 2017, 33, 12. [Google Scholar]
- Gorsevski, P.V.; Gessler, P.E.; Foltz, R.B.; Elliot, W.J. Spatial prediction of landslide hazard using logistic regression and ROC analysis. Trans. GIS 2006, 10, 395–415. [Google Scholar] [CrossRef]
- Ramola, R.C.; Choubey, V.M.; Negi, M.S.; Prasad, Y.; Prasad, G. Radon occurrence in soil–gas and groundwater around an active landslide. Radiat. Meas. 2008, 43, 98–101. [Google Scholar] [CrossRef]
- Li, F.; Torgoev, I.; Zaredinov, D.; Li, M.; Talipov, B.; Belousova, A.; Kunze, C.; Schneider, P. Landslide-induced mass transport of radionuclides along transboundary Mailuu-Suu river networks in Central Asia. Remote Sens. 2021, 13, 698. [Google Scholar] [CrossRef]
- Duong, H.V.; Le, H.L.; Nguyen, D.T.; Vu, N.M.; Duong, T.H.; Hegedűs, M.; Peka, A.; Kovács, T. Gross alpha/beta activity concentrations in spa and mineral waters in North Vietnam. J. Radioanal. Nucl. Chem. 2020, 326, 1511–1517. [Google Scholar] [CrossRef]
- Kumar, E.; Subramani, T.; Li, P.; Karunanidhi, D. Quantification of health and environmental risks due to radionuclides in limestone mining regions of Ariyalur, South India. Hum. Ecol. Risk Assess. Int. J. 2022, 28, 243–264. [Google Scholar] [CrossRef]
- The National Institute of Public Health (INSP). The Report for Health and Environment 2021. Available online: https://insp.gov.ro/rapoarte-si-studii/ (accessed on 11 August 2023).
- Pintilie, V.; Ene, A.; Georgescu, L.P.; Moraru, L.; Iticescu, C. Measurements of Gross Alpha and Beta Activity in Drinking Water from Galati Region, Romania. Rom. Rep. Phys. 2016, 68, 1208–1220. [Google Scholar]
- Begy, R.-C.; Savin, C.-F.; Süle, D.-K.; Nuhanovic, M.; Giagias, E.; Kovács, T. Radiological investigation of natural carbonated spring waters from Eastern Carpathians, Romania. J. Radioanal. Nucl. Chem. 2022, 331, 1439–1450. [Google Scholar] [CrossRef]
- Cucoș, A.L.; Moldovan, M.C.; Burghele, B.D.; Dicu, T.; Moldovan, O.T. Radiological Risk Assessment for Karstic Springs Used as Drinking Water in Rural Romania. Atmosphere 2021, 12, 1207. [Google Scholar] [CrossRef]
- Moldovan, M.; Benea, V.; Niţă, D.C.; Papp, B.; Burghele, B.D.; Bican-Brişan, N.; Cosma, C. Radon and radium concentration in water from North-West of Romania and the estimated doses. Radiat. Prot. Dosim. 2014, 162, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Crider, Y.; Sultana, S.; Unicomb, L.; Davis, J.; Luby, S.P.; Pickering, A.J. Can you taste it? Taste detection and acceptability thresholds for chlorine residual in drinking water in Dhaka, Bangladesh. Sci. Total Environ. 2018, 613, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Sasakova, N.; Gregova, G.; Takacova, D.; Mojzisova, J.; Papajova, I.; Venglovsky, J.; Szaboova, T.; Kovacova, S. Pollution of surface and ground water by sources related to agricultural activities. Front. Sustain. Food Syst. 2018, 2, 42. [Google Scholar] [CrossRef]
- Raju, N.J. Iron contamination in groundwater: A case from Tirumala-Tirupati environs, India. Researcher 2006, 1, 28–31. [Google Scholar]
- Kumar, V.; Bharti, P.K.; Talwar, M.; Tyagi, A.K.; Kumar, P. Studies on high iron content in water resources of Moradabad district (UP), India. Water Sci. 2017, 31, 44–51. [Google Scholar] [CrossRef]
- Norrman, J.; Sparrenbom, C.J.; Berg, M.; Dang, D.N.; Jacks, G.; Harms-Ringdahl, P.; Nhan, P.Q.; Rosqvist, H. Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope (δ15N) values. Appl. Geochem. 2015, 61, 248–258. [Google Scholar] [CrossRef]
- Du, Y.; Ma, T.; Deng, Y.; Shen, S.; Lu, Z. Sources and fate of high levels of ammonium in surface water and shallow groundwater of the Jianghan Plain, Central China. Environ. Sci. Process. Impacts 2017, 19, 161–172. [Google Scholar] [CrossRef]
- Kurosawa, K.; Egashira, K.; Tani, M.; Jahiruddin, M.; Moslehuddin, A.Z.M.; Zulfikar Rahman, M. Variation in arsenic concentration relative to ammonium nitrogen and oxidation reduction potential in surface and groundwater. Commun. Soil Sci. Plant Anal. 2008, 39, 1467–1475. [Google Scholar] [CrossRef]
- Ravanipour, M.; Hadi, M.; Rastkari, N.; Borji, S.H.; Nasseri, S. Presence of heavy metals in drinking water resources of Iran: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. Int. 2021, 28, 26223–26251. [Google Scholar] [CrossRef]
- European Union. 5AD European Union Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption (Council Directive). Off. J. Eur. Communities 1998, 330, 32–54. [Google Scholar]
- Resz, M.-A.; Roman, C.; Senila, M.; Török, A.I.; Kovacs, E. A Comprehensive Approach to the Chemistry, Pollution Impact and Risk Assessment of Drinking Water Sources in a Former Industrialized Area of Romania. Water 2023, 15, 1180. [Google Scholar] [CrossRef]
- Khalil, M.A.; Salem, Z.E.-S.; Gheda, S.F.; El-Sheekh, M.M. Quality Assessment of Drinking Water in Tanta City, Egypt. J. Environ. Eng. Sci. B 2013, 2, 257–275. [Google Scholar]
- Parvizishad, M.; Dalvand, A.; Mahvi, A.H.; Goodarzi, F. A review of adverse effects and benefits of nitrate and nitrite in drinking water and food on human health. Health Scope 2017, 6, e14164. [Google Scholar] [CrossRef]
- Martiny, A.; Albrechtsen, H.; Arvin, E.; Molin, S. Identification of bacteria in biofilm and bulk water samples from a non-chlorinated model drinking water distribution system: Detection of a large nitrite-oxidizing population associated with Nitrospira spp. Appl. Environ. Microbiol. 2005, 71, 8611–8617. [Google Scholar] [CrossRef]
- Maguvu, T.E.; Bezuidenhout, C.C.; Kritzinger, R.; Tsholo, K.; Plaatjie, M.; Molale-Tom, L.G.; Mienie, C.M.; Coertze, R.D. Combining physicochemical properties and microbiome data to evaluate the water quality of South African drinking water production plants. PLoS ONE 2020, 15, e0237335. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, C.; Fernandez, M.C.; Liger, E.; Cañete, S.; Fernandez, A.; Perez, R. Radioactivity levels and physical-chemical properties of public water supplies in Malaga. J. Radioanal. Nucl. Chem. 2007, 274, 15–25. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, D.; Tang, Q.; Xu, H.; Huang, S.; Shang, D.; Liu, R. Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods. PLoS ONE 2021, 16, e0245525. [Google Scholar] [CrossRef]
- Ma, X.; Wang, L.; Yang, H.; Li, N.; Gong, C. Spatiotemporal Analysis of Water Quality Using Multivariate Statistical Techniques and the Water Quality Identification Index for the Qinhuai River Basin, East China. Water 2020, 12, 2764. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Sinha, S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—A case study. Anal. Chim. Acta 2005, 538, 355–374. [Google Scholar] [CrossRef]
- Kormoker, T.; Idris, A.M.; Khan, M.M.; Tusher, R.T.; Proshad, R.; Islam, M.S.; Khadka, S.; Rahman, S.; Kabir, M.H.; Kundu, S. Spatial distribution, multivariate statistical analysis, and health risk assessment of some parameters controlling drinking water quality at selected primary schools located in the southwestern coastal region of Bangladesh. Toxin Rev. 2022, 41, 247–260. [Google Scholar] [CrossRef]
Area | Water Source | Gross Alpha Activity (Bq/L) | Gross Beta Activity (Bq/L) | Rn-222 (Bq/L) | Ref. |
---|---|---|---|---|---|
Sibiu (Southern Transylvania) | mixed | 0.01 | 0.09 | 4.1 | Present study |
Galati (S-E region) | mixed | 0.02 | 0.07 | Not measured | [74] |
Eastern Carpathians | springs | 1.03 | 1.14 | [75] | |
Western Carpathians | springs | Not measured | 7 | [76] | |
N-W region of Transylvania | mixed | 15.9 | [77] |
Location | Source of Water | Chemical Parameter | Sampling Year | ||
---|---|---|---|---|---|
Ammonia | Residual Free Chlorine | Fe | |||
Sadu | surface | x | x | 2017, 2018, 2019 | |
Tilișca | x | 2018, 2021 | |||
Agnita | x | 2020 | |||
Mediaș | x | 2021 | |||
Sibiu | x | 2018, 2019, 2021 | |||
Săcel | deep | x | x | 2018 | |
Șeica-Mare | subsurface | x | x | 2017, 2021 | |
Aciliu | x | 2021 |
Gross Alpha Activity | Gross Beta Activity | Fe | Cl | Cd | Mn | pH | Ammonia | |
---|---|---|---|---|---|---|---|---|
Gross beta activity | 0.709 (0.327) | |||||||
Nitrates | (0.344) | |||||||
Fe | −0.34 | |||||||
Mn | (0.285) | |||||||
pH | −0.276 | |||||||
Ammonia | 0.303 | |||||||
Al | 0.269 | 0.237 | ||||||
Oxidizability | 0.238 | −0.259 | 0.234 | |||||
Conductivity | 0.497 | 0.527 | −0.263 | |||||
Turbidity | (0.257) | 0.338 | 0.236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tăban, C.I.; Benedek, A.M.; Stoia, M.; Cocîrlea, M.D.; Oancea, S. A Multivariate Model of Drinking Water Quality Based on Regular Monitoring of Radioactivity and Chemical Composition. Appl. Sci. 2023, 13, 10544. https://doi.org/10.3390/app131810544
Tăban CI, Benedek AM, Stoia M, Cocîrlea MD, Oancea S. A Multivariate Model of Drinking Water Quality Based on Regular Monitoring of Radioactivity and Chemical Composition. Applied Sciences. 2023; 13(18):10544. https://doi.org/10.3390/app131810544
Chicago/Turabian StyleTăban, Cecilia Ionela, Ana Maria Benedek, Mihaela Stoia, Maria Denisa Cocîrlea, and Simona Oancea. 2023. "A Multivariate Model of Drinking Water Quality Based on Regular Monitoring of Radioactivity and Chemical Composition" Applied Sciences 13, no. 18: 10544. https://doi.org/10.3390/app131810544
APA StyleTăban, C. I., Benedek, A. M., Stoia, M., Cocîrlea, M. D., & Oancea, S. (2023). A Multivariate Model of Drinking Water Quality Based on Regular Monitoring of Radioactivity and Chemical Composition. Applied Sciences, 13(18), 10544. https://doi.org/10.3390/app131810544