Effect of Different Warm-Up Durations on the Plasma Oxidative Stress Biomarkers Following Anaerobic Exercise in Amateur Handball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Anthropometric Measurements and Body Composition
2.4. Dietary Program
2.5. Blood Sampling and Biochemistry
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garrett, W.E. Muscle strain injuries: Clinical and basics aspects. Med. Sci. Sports. Exerc. 1990, 22, 436–443. [Google Scholar] [CrossRef]
- Kirkendall, D.T.; Garrett, W.E. Clinical perspectives regarding eccentric muscle injury. Clin. Orthop. Relat. Res. 2002, 403, S81–S89. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; McFarland, J.E.; Kelly, N.A.; Ratamess, N.A.; Kang, J.; Hoffman, J.R. Influence of recovery time on warm-up effects in male adolescent athletes. Pediatr. Exerc. Sci. 2010, 22, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.H.; Cowan, D.N.; Tomlinson, J.P.; Robinson, J.R.; Polly, D.W.; Frykman, P.N. Epidemiology of injuries associated with physical training among young men in the army. Med. Sci. Sports Exerc. 1993, 25, 197–203. [Google Scholar] [CrossRef]
- Herbert, R.D.; Gabriel, M. Effects of stretching before and after exercising on muscle soreness and risk of injury: Systematic review. BMJ 2002, 325, 468. [Google Scholar] [CrossRef]
- Woods, K.; Bishop, P.; Jones, E. Warm Up and stretching in the prevention of muscular injury. Sport. Med. 2007, 37, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.J. Free Radical Mechanisms in Exercise Related Muscle Damage in Oxidative Stress in Skeletal Muscle; Birkhaeuser Verlag: Basel, Switzerland, 1998; pp. 75–86. [Google Scholar]
- Bloomer, R.J.; Goldfarb, A.H. Anaerobic exercise and oxidative stress: A Review. Can. J. Appl. Physiol. 2004, 29, 245–263. [Google Scholar] [CrossRef]
- Groussard, C.; Rannou-Bekono, F.; Machefer, G.; Chevanne, M.; Vincent, S.; Sergeant, O.; Cillard, J.; Gratas-Delamarche, A. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur. J. Appl. Physiol. 2003, 89, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Finaud, J.; Lac, G.; Filaire, G. Oxidative stress. Sports Med. 2006, 36, 327–358. [Google Scholar] [CrossRef]
- El-abed, K.; Trabelsi, K. Kinetics of oxidative stress markers at rest and in response to aerobic and acute exercise in judokas men. Int. J. Sci. Res. 2014, 3, 756–761. [Google Scholar]
- Bessa, A.L.; Oliveira, V.N.; Agostini, G.G.; Oliveira, R.J.S.; Oliveira, A.C.S.; White, G.E.; Wells, G.D.; Teixeira, D.N.; Espindola, F.S. Exercise intensity and recovery: Biomarkers of injury, inflammation, and oxidative stress. J. Strength Cond. Res. 2016, 30, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Souissi, W.; Bouzid, M.A.; Farjallah, M.A.; Ben Mahmoud, L.; Boudaya, M.; Engel, F.A.; Sahnoun, Z. Effect of different running exercise modalities on post-exercise oxidative stress markers in trained athletes. Int. J. Environ. Res. Public Health 2020, 17, 3729. [Google Scholar] [CrossRef] [PubMed]
- El-abed, K.; Megdich, M.; Trabelsi, K.; Masmoudi, L.; Hakim, A. Evaluation des effets à court terme de deux techniques d’étirements actifs réalisés lors de l’échauffement, sur Les antioxydants enzymatiques suite à un effort anaérobie: Etude pilote. Sci. Sport. 2018, 33, 237–244. [Google Scholar] [CrossRef]
- Billat, V. Physiologie et Méthodologie de l’Entraînement: De la Théorie à la Pratique; De Boeck Supérieur: Louvain-la-Neuve, Belgium, 2003; p. 226. [Google Scholar]
- Hadala, M.; Barrios, C. Different Strategies for Sports Injury Prevention in an America’s Cup Yachting Crew. Med. Sci. Sport Exerc. 2009, 41, 1587–1596. [Google Scholar] [CrossRef] [PubMed]
- Weerapong, P.; Hume, P.A.; Kolt, G.S. Stretching: Mechanisms and benefits for sport performance and injury prevention. Phys. Ther. Rev. 2004, 9, 189–206. [Google Scholar] [CrossRef]
- Fradkin, A.J.; Gabbe, B.J.; Cameron, P.A. Does warming up prevent injury in sport? The evidence from randomised controlled trials. J. Sci. Med. Sport 2006, 9, 214–220. [Google Scholar] [CrossRef]
- Caliskan, E.; Akkoc, O.; Bayramoglu, Z.; Gozubuyuk, O.B.; Kural, D.; Azamat, S.; Adaletli, I. Effects of static stretching duration on muscle stiffness and blood flow in the rectus femoris in adolescents. Med. Ultrason. 2019, 21, 136–143. [Google Scholar] [CrossRef]
- Proske, U.; Morgan, D.L. Do cross-bridges contribute to the tension during stretch of passive muscle? J. Muscle. Res. Cell M. 1999, 20, 433–442. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Jubeau, M.; Munzinger, U.; Bizzini, M.; Agosti, F.; De Col, A.; Lafortuna, C.L.; Sartorio, A. Differences in quadriceps muscle strength and fatigue between lean and obese subjects. Eur. J. Appl. Physiol. 2007, 101, 51–59. [Google Scholar] [CrossRef]
- Steib, S.; Zahn, P.; Zu Eulenburg, C.; Pferfer, K.; Zech, A. Time-dependent postural control adaptations following a neuromuscular warm-up in female handball players: A randomized controlled trial. BMC Sport Sci. Med. Rehabil. 2016, 8, 33. [Google Scholar] [CrossRef]
- Zois, J.; Bishop, D.; Aughey, R. High-intensity warm-ups: Effects during subsequent intermittent exercise. Int. J. Sport. Physiol. Perform. 2015, 10, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Pardeiro, M.; Yanci, J. Efectos del calentamiento en el rendimiento físico y en la percepción psicológica en jugadores semi profesionales de fútbol. RICYDE 2017, 48, 104–116. [Google Scholar]
- American College of Sports Medecine. ACSM’S Guidelines for Exercise Testing and Prescription, 8th ed.; Lippincott Williams & Wilkins: New York, NY, USA, 1975; p. 69. [Google Scholar]
- Janmahasatian, S.; Duffull, S.B.; Ash, S.; Ward, L.C.; Byrne, N.M.; Green, B. Quantification of lean bodyweight. Clin. Pharm. 2005, 44, 1051–1065. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Visvanathan, T.; Field, J.; Ward, L.C.; Chapman, I.; Adams, R.; Wittert, G.; Visvanathan, R. Lean body mass: The development and validation of prediction equations in healthy adults. BMC Pharm. Toxicol. 2013, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.G.; Ahn, B.W.; Shaltiel, S.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzym. 1990, 186, 464–478. [Google Scholar]
- Kunio, Y. Lipid Peroxides in Biology and Medicine; United Kingdom Edition; Academic Press INC: London, UK, 1982; LPTD. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. GPower 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Hopkins, W.G. A scale of magnitudes for effect statistics. Sport Sci. 2002, 502, 411. [Google Scholar]
- Elabed, K.; Ammar, A.; Boukhris, D.; Trabelsi, K.; Masmoudi, L.; Bailey, J.S.; Hakim, A.; Bragazzi, N.L. Independent and combined effects of all-out sprint and low-intensity continuous exercise on plasma oxidative stress biomarkers in trained judokas. Front. Physiol. 2019, 10, 842. [Google Scholar] [CrossRef]
- Antoncic-Svetina, M.; Sentija, D.; Cipak, A.; Millicic, D.; Meinitzer, A.; Tatzber, F.; Andrisic, L.; Zelzer, S.; Zarkovic, N. Ergometry induces systemic oxidative stress in healthy human subjects. Tohoku. J. Exp. Med. 2010, 221, 43–48. [Google Scholar] [CrossRef]
- Hammouda, O.; Chtourou, H.; Chahed, H.; Ferchichi, S.; Chaouachi, A.; Kallel, C.; Miled, A.; Chamari, K.; Souissi, N. High intensity exercise affects diurnal variation of some biological markers in trained subjects. Int. J. Sports Med. 2012, 33, 886–891. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Im, J.; Kang, J.; Maresh, C.M.; Kraemer, W.J.; French, D.; Nioka, S.; Kime, R.; Rundell, K.W.; Ratamess, N.A.; et al. Comparison of low- and high-intensity resistance exercise on lipid peroxidation: Role of muscle oxygenation. J. Strength Cond. Res. 2007, 21, 118–122. [Google Scholar] [CrossRef]
- Ammar, A.; Trabelsi, K.; Boukhris, O.; Glen, J.M.; Bott, N.; Masmoudi, L.; Hakim, A.; Chtourou, H.; Driss, T.; Hoekelmann, A.; et al. Effects of aerobic, anaerobic and combined-based exercises on plasma oxidative stress biomarkers in healthy untrained young adults. Int. J. Environ. Res. Public Health 2020, 17, 2601. [Google Scholar] [CrossRef]
- Frank, G.S.; William, E.P. Warming-up and stretching for improved physical performance and prevention of sports-related injuries. Sport. Med. 1985, 2, 267–278. [Google Scholar]
- Gray, S.; Nimmo, M. Effects of active, passive or no warm-up on metabolism and performance during high-intensity exercise. J. Sport Sci. 2001, 19, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Chtourou, H.; Hammouda, O.; Trabelsi, K.; Chiboub, J.; Turki, M.; AbdelKarim, O.; El Abed, K.; Ben Ali, M.; Hoekelmann, A.; et al. Acute and delayed responses of C-reactive protein, malondialdehyde and antioxidant markers after resistance training session in elite weightlifters: Effect of time of day. Chronobiol. Int. 2015, 32, 1211–1222. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Donnelly, A.E.; Gleeson, M.; Whiting, P.H.; Walker, K.A.; Clough, P.J. Delayed-onset muscle damage and lipid peroxidation in man after a downhill run. Muscle Nerve 2005, 12, 332–336. [Google Scholar] [CrossRef]
- Sakurai, T.; Hollander, J.; Brickson, S.L.; Ohno, H.; Ji, L.; Izawa, T.; Best, T.M. Best: Changes in nitric oxide and inducible nitric oxide synthase following stretch-induced injury to the tibialis anterior muscle of rabbit. Jpn. J. Physiol. 2005, 55, 101–107. [Google Scholar] [CrossRef]
- Tillin, M.N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef]
- Rassier, D.; Macintosh, B. Coexistence of potentiation and fatigue in skeletal muscle. Braz. J. Med. Biol. Res. 2000, 33, 499–508. [Google Scholar] [CrossRef]
Parameters | Means ± SD |
---|---|
Age (yrs) | 22.6 ± 0.3 |
Weight (kg) | 74.2 ± 0.5 |
Height (cm) | 183 ± 6.4 |
BMI (kg.m−2) | 24.6 ± 1.4 |
FFM kg) | 59.4 ± 1.3 |
LBM (kg) | 63.8 ± 3 |
Variables | Mean (±SD) | ||
---|---|---|---|
Session 1 | Session 2 | Session 3 | |
Calorie intake (kcal/day) | 3153 ± 277 | 3271 ± 485 | 3244 ± 410 |
Carbohydrate (%) | 53.4 ± 5.1 | 51.7 ± 5.4 | 52.3 ± 5.2 |
Lipids (%) | 33.7 ± 5.6 | 35.1 ± 2.3 | 34.5 ± 4.5 |
Protein (%) | 12.5 ± 1.2 | 11.9 ± 2.1 | 12.3 ± 1.7 |
Variables | Means ± Standard Deviations | Warm-Up | Recovery | Warm-Up × Recovery | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rest | PWU | P0 | P10 | P20 | F(2, 26) | p | η2p | F(4, 52) | p | η2p | F(8, 104) | p | η2p | ||
SAT (mmol/L) | Ech15 | 1.51 ± 0.05 | 1.53 ± 0.05 | 1.75 ± 0.05 ab | 1.79 ± 0.04 ab | 1.8 ± 0.04 ab | 10.17 | <0.001 | 0.44 | 246.96 | <0.001 | 0.95 | 0.87 | 0.544 | 0.06 |
Ech10 | 1.53 ± 0.04 | 1.57 ± 0.03 | 1.77 ± 0.05 ab | 1.8 ± 0.05 ab | 1.82 ± 0.04 ab | ||||||||||
Ech05 | 1.54 ± 0.09 | 1.58 ± 0.05 | 1.79 ± 0.07 ab | 1.83 ± 0.07 ab | 1.87 ± 0.07 abc* | ||||||||||
SOD (U/g Hg) | Ech15 | 1316 ± 49 | 1363 ± 41 | 1528 ± 70 a | 1491 ± 70 | 1386 ± 60 | 27.75 | <0.001 | 0.68 | 18.49 | <0.001 | 0.59 | 2.16 | 0.037 | 0.14 |
Ech10 | 1375 ± 131 | 1468 ± 177 | 1593 ± 177 a | 1672 ± 198 ab | 1687 ± 210 ab* | ||||||||||
Ech05 | 1409 ± 151 | 1456 ± 181 | 1557 ± 192 | 1601 ± 155 | 1662 ± 173 ab* | ||||||||||
GPx (U/g Hg) | Ech15 | 35.2 ± 1.5 | 37.01 ± 1.71 | 40.32 ± 2.32 a | 39.22 ± 1.67 a | 36.97 ± 1.62 | 1.28 | 0.295 | 0.09 | 59.52 | <0.001 | 0.82 | 3.61 | <0.001 | 0.22 |
Ech10 | 34.81 ± 3.84 | 35.55 ± 3.95 | 41.19 ± 4.49 ab | 42.4 ± 4.3 ab | 41.55 ± 2.59 ab* | ||||||||||
Ech05 | 34 ± 3.88 | 35.24 ± 3.78 | 39.73 ± 5.24 ab | 40.6 ± 5.36 ab | 40.87 ± 3.75 ab* | ||||||||||
GR (U/g Hg) | Ech15 | 9.64 ± 0.57 | 10.08 ± 0.52 | 12.17 ± 0.59 | 10.78 ± 0.45 | 9.76 ± 0.5 | 5.65 | 0.009 | 0.30 | 13.13 | <0.001 | 0.50 | 1.88 | 0.071 | 0.13 |
Ech10 | 9.43 ± 0.59 | 9.94 ± 0.56 | 12.73 ± 0.52 | 12.6 ± 0.82 | 12.21 ± 0.94 | ||||||||||
Ech05 | 9.56 ± 0.49 | 9.99 ± 0.48 | 13.38 ± 0.29 ab | 13.61 ± 0.31 ab | 13.67 ± 9.76 ab* | ||||||||||
MDA (µmol/L) | Ech15 | 1.56 ± 0.05 | 1.59 ± 0.06 | 1.8 ± 0.07 ab | 1.85 ± 0.03 ab | 1.85 ± 0.04 ab | 0.31 | 0.737 | 0.02 | 83.95 | <0.001 | 0.87 | 1.01 | 0.435 | 0.07 |
Ech10 | 1.57 ± 0.08 | 1.62 ± 0.06 | 1.8 ± 0.07 ab | 1.82 ± 0.05 ab | 1.8 ± 0.05 ab | ||||||||||
Ech05 | 1.61 ± 0.23 | 1.65 ± 0.22 | 1.81 ± 0.09 ab | 1.83 ± 0.08 ab | 1.82 ± 0.05 ab | ||||||||||
TBARS (mmol/L) | Ech15 | 0.29 ± 0.05 | 0.32 ± 0.06 | 0.37 ± 0.05 ab | 0.35 ± 0.05 a | 0.31 ± 0.05 cd | 3.59 | 0.042 | 0.22 | 161.52 | <0.001 | 0.93 | 12.24 | <0.001 | 0.48 |
Ech10 | 0.28 ± 0.06 | 0.31 ± 0.05 | 0.4 ± 0.07 ab | 0.4 ± 0.05 ab* | 0.4 ± 0.03 ab* | ||||||||||
Ech05 | 0.28 ± 0.05 | 0.32 ± 0.05 | 0.39 ± 0.04 ab | 0.43 ± 0.02 ab* | 0.42 ± 0.02 ab* | ||||||||||
PC (nmol/mg protein) | Ech15 | 0.48 ± 0.07 | 0.52 ± 0.07 | 0.64 ± 0.07 ab | 0.6 ± 0.07 ab | 0.5 ± 0.06 cd | 13.28 | <0.001 | 0.51 | 306.36 | <0.001 | 0.96 | 19.97 | <0.001 | 0.61 |
Ech10 | 0.49 ± 0.06 | 0.53 ± 0.06 | 0.71 ± 0.04 ab* | 0.69 ± 0.03 ab* | 0.67 ± 0.05 ab* | ||||||||||
Ech05 | 0.49 ± 0.07 | 0.54 ± 0.07 | 0.72 ± 0.04 ab* | 0.74 ± 0.03 ab* | 0.73 ± 0.03 ab*# |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koubaa, A.; Koubaa, S.; Elloumi, M. Effect of Different Warm-Up Durations on the Plasma Oxidative Stress Biomarkers Following Anaerobic Exercise in Amateur Handball Players. Appl. Sci. 2023, 13, 10576. https://doi.org/10.3390/app131910576
Koubaa A, Koubaa S, Elloumi M. Effect of Different Warm-Up Durations on the Plasma Oxidative Stress Biomarkers Following Anaerobic Exercise in Amateur Handball Players. Applied Sciences. 2023; 13(19):10576. https://doi.org/10.3390/app131910576
Chicago/Turabian StyleKoubaa, Abdessalem, Sirine Koubaa, and Mohamed Elloumi. 2023. "Effect of Different Warm-Up Durations on the Plasma Oxidative Stress Biomarkers Following Anaerobic Exercise in Amateur Handball Players" Applied Sciences 13, no. 19: 10576. https://doi.org/10.3390/app131910576
APA StyleKoubaa, A., Koubaa, S., & Elloumi, M. (2023). Effect of Different Warm-Up Durations on the Plasma Oxidative Stress Biomarkers Following Anaerobic Exercise in Amateur Handball Players. Applied Sciences, 13(19), 10576. https://doi.org/10.3390/app131910576