Chiral Metasurfaces: A Review of the Fundamentals and Research Advances
Abstract
:1. Introduction
2. Fundamentals of Chiral Metasurfaces
2.1. Chirality and Chiroptical Response
2.2. The Optical Response of Chiral Media
2.3. Jones Matrix and Circular Dichroism
3. Types of Chiral Metasurfaces
3.1. Single-Layered Chiral Metasurfaces
3.2. Multi-Layered Chiral Metasurface
3.3. Tunable Chiral Metasurfaces
3.4. Deep-Learning-Enabled Design of Chiral Metasurface
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, X.; Pu, M.; Li, X.; Guo, Y.; Gao, P.; Luo, X. Meta-Chirality: Fundamentals, Construction and Applications. Nanomaterials 2017, 7, 116. [Google Scholar] [CrossRef] [PubMed]
- Papakostas, A.; Potts, A.; Bagnall, D.M.; Prosvirnin, S.L.; Coles, H.J.; Zheludev, N.I. Optical manifestations of planar chirality. Phys. Rev. Lett. 2003, 90, 107404. [Google Scholar] [CrossRef] [PubMed]
- Howland, R.H. Understanding Chirality and Stereochemistry: Three-Dimensional Psychopharmacology. J. Psychosoc. Nurs. Ment. Health Serv. 2009, 47, 15–18. [Google Scholar] [CrossRef]
- Valev, V.K.; Baumberg, J.J.; Sibilia, C.; Verbiest, T. Chirality and Chiroptical Effects in Plasmonic Nanostructures: Fundamentals, Recent Progress, and Outlook. Adv. Mater. 2013, 25, 2517–2534. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.; Yang, Y.; Badloe, T.; Jeon, N.; Rho, J. Three-dimensional artificial chirality towards low-cost and ultra-sensitive enantioselective sensing. Nanoscale 2022, 14, 3720–3730. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Liu, J.; Xiao, D.; Fang, X.; Yin, S.; Yin, Z.; Khoo, E.; Luo, D.; Jiang, S.; Dai, H.; et al. Microfluid-Enabled Fine Tuning of Circular Dichroism from Chiral Metasurfaces. J. Phys. D Appl. Phys. 2019, 52, 415102. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, Q.; Ji, C.-Y.; Liu, X.; Wang, R.; Li, J. A magnetic actuation scheme for nano-kirigami metasurfaces with reconfigurable circular dichroism. J. Appl. Phys. 2022, 131, 233102. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, K.; Yang, W.; Wu, L.; Qu, K.; Zhao, J.; Jiang, T.; Feng, Y. Kirigami Reconfigurable Gradient Metasurface. Adv. Funct. Mater. 2022, 32, 2107699. [Google Scholar] [CrossRef]
- Probst, P.; Mayer, M.; Gupta, V.; Steiner, A.; Zhou, Z.; Auernhammer, G.; König, T.; Fery, A. Mechano-tunable chiral metasurfaces via colloidal assembly. Nat. Mater. 2021, 20, 1024–1028. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, X.; Jiang, H.; Jiang, Y. High-efficiency and tunable circular dichroism in chiral graphene metasurface. J. Phys. D Appl. Phys. 2021, 55, 135102. [Google Scholar] [CrossRef]
- Shi, T.; Deng, Z.L.; Geng, G.; Zeng, X.; Zeng, Y.; Hu, G.; Overvig, A.; Li, J.; Qiu, C.W.; Alù, A.; et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nat. Commun. 2022, 13, 4111. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Qiu, K.; Moumni, Z.; Zhang, W.; Zhu, J.; Zhang, F. Chiral metasurface design with highly efficient and controllable asymmetric transmission and perfect polarization conversion of linearly polarized electromagnetic waves in the THz range. J. Phys. D Appl. Phys. 2022, 55, 295303. [Google Scholar] [CrossRef]
- Ma, X.; Pu, M.; Li, X.; Huang, C.; Wang, Y.; Pan, W.; Zhao, B.; Cui, J.; Wang, C.; Zhao, Z.; et al. A planar chiral meta-surface for optical vortex generation and focusing. Sci. Rep. 2015, 5, 10365. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhao, X.; Lin, Y.; Zhu, A.; Zhu, X.; Guo, P.; Cao, B.; Wang, C. All-dielectric metasurface circular dichroism waveplate. Sci. Rep. 2017, 7, 41893. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Arslan, D.; Fasold, S.; Steinert, M.; Sautter, J.; Falkner, M.; Pertsch, T.; Decker, M.; Staude, I. Chiral Bilayer All-Dielectric Metasurfaces. ACS Nano 2020, 14, 15926–15935. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Z.; Hu, S.; Jin, A.Z.; Yang, H.; Zhang, S.; Li, J.; Gu, C. Spin-Selective Transmission in Chiral Folded Metasurfaces. Nano Lett. 2019, 19, 3432–3439. [Google Scholar] [CrossRef]
- Qiu, C.-W.; Zhang, T.; Hu, G.; Kivshar, Y. Quo Vadis, Metasurfaces? Nano Lett. 2021, 21, 5461–5474. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef]
- Droulias, S.; Bougas, L. Chiral sensing with achiral anisotropic metasurfaces. Phys. Rev. B 2021, 104, 075412. [Google Scholar] [CrossRef]
- Hu, G.; Wang, M.; Mazor, Y.; Qiu, C.-W.; Alù, A. Tailoring Light with Layered and Moiré Metasurfaces. Trends Chem. 2021, 3, 342–358. [Google Scholar] [CrossRef]
- Naeem, T.; Rana, A.S.; Zubair, M.; Tauqeer, T.; Mehmood, M.Q. Breaking planar symmetries by a single layered metasurface for realizing unique on-chip chiroptical effects. Opt. Mater. Express 2020, 10, 3342–3352. [Google Scholar] [CrossRef]
- Esposito, M.; Tasco, V.; Todisco, F.; Cuscuna, M.; Benedetti, A.; Sanvitto, D.; Passaseo, A. Triple-helical nanowires by tomographic rotatory growth for chiral photonics. Nat. Commun. 2015, 6, 6484. [Google Scholar] [CrossRef] [PubMed]
- Kindness, S.; Almond, N.; Michailow, W.; Wei, B.; Delfanazari, K.; Braeuninger, P.; Hofmann, S.; Beere, H.; Ritchie, D.; Degl’Innocenti, R. A Terahertz Chiral Metamaterial Modulator. Adv. Opt. Mater. 2020, 8, 2000581. [Google Scholar] [CrossRef]
- Kim, T.T.; Oh, S.S.; Kim, H.D.; Park, H.S.; Hess, O.; Min, B.; Zhang, S. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci. Adv. 2017, 3, e1701377. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Lu, X.; Shen, C.; Ke, Y.; Ni, W.; Wang, Q. Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc. 2015, 137, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Duan, T.; Ai, J.; Duan, Y.; Han, L.; Che, S. Self-assembly of chiral nematic-like films with chiral nanorods directed by chiral molecules. Chem. Mater. 2021, 33, 6227–6232. [Google Scholar] [CrossRef]
- Ma, W.; Kuang, H.; Wang, L.; Xu, L.; Chang, W.S.; Zhang, H.; Sun, M.; Zhu, Y.; Zhao, Y.; Liu, L.; et al. Chiral plasmonics of self-assembled nanorod dimers. Sci. Rep. 2013, 3, 1934. [Google Scholar] [CrossRef]
- Xu, L.; Gao, Y.; Kuang, H.; Liz-Marzán, L.M.; Xu, C. MicroRNA-directed intracellular self-assembly of chiral nanorod dimers. Angew. Chem. Int. Ed. 2018, 57, 10544–10548. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Kuang, H.; Xu, L.; Ding, L.; Xu, C.H.; Wang, L.; Kotov, N. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 2013, 4, 2689. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, L.; Zhou, J.; Koschny, T.; Soukoulis, C.M. Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index. Phys. Rev. B 2011, 83, 035105. [Google Scholar] [CrossRef]
- Plum, E.; Fedotov, V.A.; Schwanecke, A.S.; Zheludev, N.I.; Chen, Y. Giant optical gyrotropy due to electromagnetic coupling. Appl. Phys. Lett. 2007, 90, 223113. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.; Tang, X.; Cai, L.; Zhao, J.; Zhou, L.; Wang, Q.; Huang, C.; Zhu, Y. Optical properties of a planar metamaterial with chiral symmetry breaking. Opt. Lett. 2011, 36, 3359–3361. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Aieta, F.; Genevet, P.; Kats, M.A.; Gaburro, Z.; Capasso, F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 2012, 12, 6328–6333. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Wang, X.; Feng, S.; Ye, J.; Sun, W.; Kan, Q.; Klar, P.J.; Zhang, Y. Ultrathin terahertz planar elements. Adv. Opt. Mater. 2013, 1, 186–191. [Google Scholar] [CrossRef]
- Ni, X.; Kildishev, A.V.; Shalaev, V.M. Metasurface holograms for visible light. Nat. Commun. 2013, 4, 2807. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Jin, J.; Luo, J.; Zhang, X.; Gao, H.; Li, X.; Pu, M.; Gao, P.; Zhao, Z.; Luo, X. Generation and detection of orbital angular momentum via metasurface. Sci. Rep. 2016, 6, 24286. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, C.; Wang, Y.; Shen, Y.; Deng, X.; Luo, X. The influence of incident modes for polarization conversion in a terahertz metasurface. Opt. Commun. 2019, 435, 341–344. [Google Scholar] [CrossRef]
- Fang, F.; Cheng, Y.; Liao, H. Giant optical activity and circular dichroism in the terahertz region based on bi-layer Y-shaped chiral metamaterial. Optik 2014, 125, 6067–6070. [Google Scholar] [CrossRef]
- Ma, X.; Huang, C.; Pu, M.; Pan, W.; Wang, Y.; Luo, X. Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial. Appl. Phys. Express 2013, 6, 022001. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Yang, Y.L.; Zhou, Y.J.; Zhang, Z.; Mao, X.S.; Gong, R.Z. Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves. J. Mod. Opt. 2016, 63, 1675–1680. [Google Scholar] [CrossRef]
- Mutlu, M.; Akosman, A.E.; Serebryannikov, A.E.; Ozbay, E. Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators. Opt. Lett. 2011, 36, 1653–1655. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Sun, W.-H.; Bao, Y.-J.; Peng, R.-W.; Wang, M.; Sun, C.; Lü, X.; Shao, J.; Li, Z.; Ming, N.-B. Construction of Chiral Metamaterial with U-Shaped Resonator Assembly. Phys. Rev. B 2010, 81, 075119. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, R.; Koschny, T.; Kafesaki, M.; Alici, K.B.; Colak, E.; Caglayan, H.; Ozbay, E.; Soukoulis, C.M. Chiral metamaterials with negative refractive index based on four “U” split ring resonators. Appl. Phys. Lett. 2010, 97, 081901. [Google Scholar] [CrossRef]
- Decker, M.; Zhao, R.; Soukoulis, C.M.; Linden, S.; Wegener, M. Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt. Lett. 2010, 35, 1593–1595. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, J.; Koschny, T.; Soukoulis, C.M. Nonplanar chiral metamaterials with negative index. Appl. Phys. Lett. 2009, 94, 151112. [Google Scholar] [CrossRef]
- Mark, A.G.; Gibbs, J.G.; Lee, T.-C.; Fischer, P. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 2013, 12, 802–807. [Google Scholar] [CrossRef]
- Kaschke, J.; Blume, L.; Wu, L.; Thiel, M.; Bade, K.; Yang, Z.; Wegener, M. A Helical Metamaterial for Broadband Circular Polarization Conversion. Adv. Opt. Mater. 2015, 3, 1411–1417. [Google Scholar] [CrossRef]
- Gansel, J.K.; Wegener, M.; Burger, S.; Linden, S. Gold helix photonic metamaterials: A numerical parameter study. Opt. Express 2010, 18, 1059–1069. [Google Scholar] [CrossRef]
- Gansel, J.K.; Latzel, M.; Frölich, A.; Kaschke, J.; Thiel, M.; Wegener, M. Tapered gold-helix metamaterials as improved circular polarizers. Appl. Phys. Lett. 2012, 10, 100. [Google Scholar] [CrossRef]
- Esposito, M.; Tasco, V.; Cuscuna, M.; Todisco, F.; Benedetti, A.; Tarantini, I.; De Giorgi, M.; Sanvitto, D.; Passaseo, A. Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies. ACS Photon. 2015, 2, 105–114. [Google Scholar] [CrossRef]
- Kenanakis, G.; Zhao, R.; Stavrinidis, A.; Konstantinidis, G.; Katsarakis, N.; Kafesaki, M.; Soukoulis, C.; Economou, E. Flexible chiral metamaterials in the terahertz regime: A comparative study of various designs. Opt. Mater. Express 2012, 2, 1702–1712. [Google Scholar] [CrossRef]
- Decker, M.; Ruther, M.; Kriegler, C.; Zhou, J.; Soukoulis, C.; Linden, S.; Wegener, M. Strong optical activity from twisted-cross photonic metamaterials. Opt. Lett. 2009, 34, 2501–2503. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Huang, C.; Pu, M.; Hu, C.; Feng, Q.; Luo, X. Multi-band circular polarizer using planar spiral metamaterial structure. Opt. Express 2012, 20, 16050–16058. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Huang, C.; Pan, W.; Zhao, B.; Cui, J.; Luo, X. A dual circularly polarized horn antenna in Ku-band based on chiral metamaterial. IEEE Trans. Antennas Propag. 2014, 62, 2307–2311. [Google Scholar] [CrossRef]
- Ma, X.; Huang, C.; Pu, M.; Wang, Y.; Zhao, Z.; Wang, C.; Luo, X. Dual-band asymmetry chiral metamaterial based on planar spiral structure. Appl. Phys. Lett. 2012, 101, 161901. [Google Scholar] [CrossRef]
- Cui, Y.; Kang, L.; Lan, S.; Rodrigues, S.; Cai, W. Giant chiral optical response from a twisted-arc metamaterial. Nano Lett. 2014, 14, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, Y.; Luo, L.; Wang, L.; Zhang, Z. Tunable Circular Dichroism of Achiral Graphene Plasmonic Structures. Plasmonics 2017, 12, 829–833. [Google Scholar] [CrossRef]
- Shen, Z.; Fang, X.; Li, S.; Zhang, L.; Chen, X. Mechanically reconfigurable and electrically tunable active terahertz chiral metamaterials. Extreme Mech. Lett. 2022, 51, 101562. [Google Scholar] [CrossRef]
- Zhou, J.; Chowdhury, D.R.; Zhao, R.; Azad, A.K.; Chen, H.-T.; Soukoulis, C.M.; Taylor, A.J.; O’Hara, J.F. Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Phys. Rev. B 2012, 86, 035448. [Google Scholar] [CrossRef]
- Cao, T.; Li, Y.; Zhang, X.; Zou, Y. Theoretical study of tunable chirality from graphene integrated achiral metasurfaces. Photon. Res. 2017, 5, 441–449. [Google Scholar] [CrossRef]
- Masyukov, M.; Vozianova, A.; Grebenchukov, A.; Gubaidullina, K.; Zaitsev, A.; Khodzitsky, M. Optically tunable terahertz chiral metasurface based on multi-layered graphene. Sci. Rep. 2020, 10, 3157. [Google Scholar] [CrossRef] [PubMed]
- Phon, R.; Jeong, H.; Lim, S. Rotational Kirigami Tessellation Metasurface for Tunable Chirality. Adv. Mater. Technol. 2022, 7, 2101706. [Google Scholar] [CrossRef]
- Kwon, H.; Andrei, F. NEMS-tunable dielectric chiral metasurfaces. ACS Photon. 2021, 8, 2980–2986. [Google Scholar] [CrossRef]
- Rodrigues, S.P.; Cunha, P.A.; Kudtarkar, K.; Dede, E.M.; Lan, S. Review of optically active and nonlinear chiral metamaterials. J. Nanophotonics 2022, 16, 020901. [Google Scholar] [CrossRef]
- Luong, H.M.; Pham, M.T.; Nguyen, T.D.; Zhao, Y. Active Ag/Co Composite Chiral Nanohole Arrays. J. Phys. Chem. C 2021, 125, 716–723. [Google Scholar] [CrossRef]
- Khaliq, H.S.; Kim, I.; Zahid, A.; Kim, J.; Lee, T.; Badloe, T.; Kim, Y.; Zubair, M.; Riaz, K.; Mehmood, M.Q.; et al. Giant chiro-optical responses in multipolar-resonances-based single-layer dielectric metasurfaces. Photon. Res. 2021, 9, 1667. [Google Scholar] [CrossRef]
- Akram, M.R.; Ding, G.; Chen, K.; Feng, Y.; Zhu, W. Ultrathin Single Layer Metasurfaces with Ultra-Wideband Operation for Both Transmission and Reflection. Adv. Mater. 2020, 32, 1907308. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Cheng, H.; Chen, S.; Tian, J. Spin-Selective Transmission and Devisable Chirality in Two-Layer Metasurfaces. Sci. Rep. 2017, 7, 8204. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, M.; Mun, J.; Rho, J. Ultra-Sharp Circular Dichroism Induced by Twisted Layered C4 Oligomers. Adv. Theory Simul. 2020, 3, 1900229. [Google Scholar] [CrossRef]
- Cai, T.; Wang, G.M.; Tang, S.; Xu, H.-X.; Duan, J.W.; Guo, H.; Guan, F.X.; Sun, S.; He, Q.; Zhou, L. High-Efficiency and Full-Space Manipulation of Electromagnetic Wave Fronts with Metasurfaces. Phys. Rev. Appl. 2017, 8, 034033. [Google Scholar] [CrossRef]
- Zhang, C.; Pfeiffer, C.; Jang, T.; Ray, V.; Junda, M.; Uprety, P.; Podraza, N.; Grbic, A.; Guo, L.J. Breaking Malus’ law: Highly efficient, broadband, and angular robust asymmetric light transmitting metasurface. Laser Photon. Rev. 2016, 10, 791–798. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, H.; Chen, S. Few-layer metasurfaces with engineered structural symmetry. Sci. China Phys. Mech. Astron. 2021, 64, 264231. [Google Scholar] [CrossRef]
- Yin, S.; Ji, W.; Xiao, D.; Li, Y.; Li, K.; Yin, Z.; Jiang, S.; Shao, L.-Y.; Luo, D.; Liu, Y. Intrinsically or extrinsically reconfigurable chirality in plasmonic chiral metasurfaces. Opt. Commun. 2019, 448, 10–14. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, Y.J.; Yin, S.; Liu, J.; Ji, W.; Wang, B.; Luo, D.; Li, G.; Sun, X.W. Liquid-crystal-loaded chiral metasurfaces for reconfigurable multiband spin-selective light absorption. Opt. Express 2018, 26, 25305–25314. [Google Scholar] [CrossRef]
- Cao, T.; Wei, C.-W.; Mao, L.-B.; Wang, S. Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene. Opt. Express 2015, 23, 18620. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Li, Y.; Tian, L.; Liang, H.; Qin, K. Fast Switching ‘On/Off’ Chiral Surface Plasmon Polaritons in Graphene-Coated Ge2Sb2Te5 Nanowire. ACS Appl. Nano. Mater. 2018, 1, 759–767. [Google Scholar] [CrossRef]
- Ma, W.; Cheng, F.; Liu, Y. Deep-Learning Enabled On-Demand Design of Chiral Metamaterials. ACS Nano 2018, 12, 6326–6334. [Google Scholar] [CrossRef]
- Li, Q.; Fan, H.; Bai, Y.; Li, Y.; Ikram, M.; Wang, Y.; Huo, Y.P.; Zhang, Z. Deep learning for circular dichroism of nanohole arrays. New J. Phys. 2022, 24, 063005. [Google Scholar] [CrossRef]
- An, S.; Zheng, B.; Shalaginov, M.; Tang, H.; Li, H.; Zhou, L.; Ding, J.; Agarwal, A.; Rivero-Baleine, C.; Kang, M.; et al. Deep learning modeling approach for metasurfaces with high degrees of freedom. Opt. Express 2020, 28, 31932–31942. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Li, H.; Dong, S.; Liu, C.; Jin, S.; Cui, T. Deep Learning Designs of Anisotropic Metasurfaces in Ultrawideband Based on Generative Adversarial Networks. Adv. Intell. 2020, 2, 2000068. [Google Scholar] [CrossRef]
- Schäferling, M.; Dregely, D.; Hentschel, M.; Giessen, H. Tailoring Enhanced Optical Chirality: Design Principles for Chiral Plasmonic Nanostructures. Phys. Rev. X 2012, 2, 31010. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Adamo, G.; Teh, B.; Wu, S.; Teng, J.; Sun, H. A Novel Chiral Metasurface with Controllable Circular Dichroism Induced by Coupling Localized and Propagating Modes. Adv. Opt. Mater. 2016, 4, 883–888. [Google Scholar] [CrossRef]
- Zhao, Y.; Belkin, M.A.; Alù, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 2012, 3, 870. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Bai, Y.; Zhao, Q.; Yang, Y.; Chen, H.; Zhou, J.; Qiao, L. Fully Controllable Pancharatnam-Berry Metasurface Array with High Conversion Efficiency and Broad Bandwidth. Sci. Rep. 2016, 6, 34819. [Google Scholar] [CrossRef]
- Lv, J.; Hou, K.; Ding, D.; Wang, D.; Han, B.; Gao, X.; Zhao, M.; Shi, L.; Guo, J.; Zheng, Y.; et al. Gold Nanowire Chiral Ultrathin Films with Ultrastrong and Broadband Optical Activity. Angew Chem. Int. Ed. Engl. 2017, 56, 5055–5060. [Google Scholar] [CrossRef]
- Goerlitzer, E.S.A.; Mohammadi, R.; Nechayev, S.; Volk, K.; Rey, M.; Banzer, P.; Karg, M.; Vogel, N. Chiral Surface Lattice Resonances. Adv. Mater. 2020, 32, 2001330. [Google Scholar] [CrossRef]
- Mandal, P. Large Circular Dichroism in MDM Plasmonic Metasurface with Subwavelength Crescent Aperture. Plasmonics 2018, 13, 2229–2237. [Google Scholar] [CrossRef]
- Lv, T.; Li, Y.; Ma, H.F.; Zhu, Z.; Li, Z.; Guan, C.; Shi, J.; Zhang, H.; Cui, T. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. Sci. Rep. 2016, 6, 23186. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.; Xu, W.; Zhang, J.; Zhu, Z.H.; Yuan, X.; Qin, S. Optical activity in monolayer black phosphorus due to extrinsic chirality. Opt. Lett. 2019, 44, 1774–1777. [Google Scholar] [CrossRef]
- Mandal, P.; Mohan, S.; Sharma, S.; Goyat, M.S. Broadband multi-resonant circular dichroism in metal-VO2 hybrid dagger-like plasmonic structure for switching application. Photon. Nanostruct. 2019, 37, 100735. [Google Scholar] [CrossRef]
- Wang, Q.; Plum, E.; Yang, Q.; Zhang, X.; Xu, Q.; Xu, Y.; Han, J.; Zhang, W. Reflective chiral meta-holography: Multiplexing holograms for circularly polarized waves. Light. Sci. Appl. 2018, 7, 25. [Google Scholar] [CrossRef]
- Narushima, T.; Hashiyada, S.; Okamoto, H. Nanoscopic study on developing optical activity with increasing chirality for two-dimensional metal nanostructures. ACS Photon. 2014, 1, 732–738. [Google Scholar] [CrossRef]
- Hentschel, M.; Schaferling, M.; Metzger, B.; Giessen, H. Plasmonic diastereomers: Adding up chiral centers. Nano Lett. 2013, 13, 600–606. [Google Scholar] [CrossRef]
- Halas, N.J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961. [Google Scholar] [CrossRef]
- Aydin, K.; Ferry, V.E.; Briggs, R.M.; Atwater, H.A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2011, 2, 517. [Google Scholar] [CrossRef]
- Rodger, A.; Nordén, B. Circular Dichroism and Linear Dichroism; Oxford University Press: Oxford, UK, 1997; Volume 1. [Google Scholar]
- Menzel, C.; Rockstuhl, C.; Lederer, F. Advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A 2010, 82, 053811. [Google Scholar] [CrossRef]
- Boraei, A.T.A.; Haukka, M.; Sarhan, A.A.M.; Soliman, S.M.; Al-Majid, A.M.; Barakat, A. Synthesis of C2-Symmetrical Bis-(β-Enamino-Pyran-2,4-dione) Derivative Linked via 1,6-Hexylene Spacer: X-ray Crystal Structures, Hishfeld Studies and DFT Calculations of Mono- and Bis-(Pyran-2,4-diones) Derivatives. Symmetry 2021, 13, 1646. [Google Scholar] [CrossRef]
- Levy, E.; Pereira-Leal, J.; Chothia, C.; Teichmann, S. 3D Complex: A Structural Classification of Protein Complexes. PLoS Comput. Biol. 2006, 2, e155. [Google Scholar] [CrossRef]
- Whitesell, J.K. C2 symmetry and asymmetric induction. Chem. Rev. 1989, 89, 1581–1590. [Google Scholar] [CrossRef]
- Ma, Z.; Li, Y.; Li, Y.; Gong, Y.; Maier, S.; Hong, M. All-dielectric planar chiral metasurface with gradient geometric phase. Opt. Express 2018, 26, 6067. [Google Scholar] [CrossRef]
- Ye, W.; Yuan, X.; Guo, C.; Zhang, J.; Yang, B.; Zhang, S. Large chiroptical effects in planar chiral metamaterials. Phys. Rev. Appl. 2017, 7, 054003. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, X.; Gao, J. Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces. Light. Sci. Appl. 2018, 7, 84. [Google Scholar] [CrossRef]
- Kaya, S. Circular dichroism from windmill-shaped planar structures operating in mid-infrared regime. Opt. Mater. Express 2014, 4, 2332–2339. [Google Scholar] [CrossRef]
- Yin, X.; Schäferling, M.; Metzger, B.; Giessen, H. Interpreting Chiral Nanophotonic Spectra: The Plasmonic Born–Kuhn Model. Nano Lett. 2013, 13, 6238–6243. [Google Scholar] [CrossRef]
- Zhu, A.Y.; Chen, W.T.; Zaidi, A.; Huang, Y.W.; Khorasaninejad, M.; Sanjeev, V.; Qiu, C.W.; Capasso, F. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light. Sci. Appl. 2018, 7, 17158. [Google Scholar] [CrossRef]
- Kim, D.; Yu, J.; Hwang, I.; Park, S.; Demmerle, F.; Boehm, G.; Amann, M.-C.; Belkin, M.; Lee, J. Giant Nonlinear Circular Dichroism from Intersubband Polaritonic Metasurfaces. Nano Lett. 2020, 20, 8032–8039. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, W.; Chia, E.; Shen, Z.; Cai, H.; Gu, Y.; Ser, W.; Liu, A. A pseudo-planar metasurface for a polarization rotator. Opt. Express 2014, 22, 10446–10454. [Google Scholar] [CrossRef]
- Jamshidi, M.B.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Roshani, S.; Matousek, V.; Roshani, S.; Mirmozafari, M.; Malek, Z.; La Spada, L.; et al. Deep learning techniques and COVID-19 drug discovery: Fundamentals, state-of-the-art and future directions. In Emerging Technologies During the Era of COVID-19 Pandemic; Springer: Cham, Switzerland, 2021; pp. 9–31. [Google Scholar]
- Tang, B.; Li, Z.; Palacios, E.; Liu, Z.; Butun, S.; Aydin, K. Chiral-selective plasmonic metasurface absorbers operating at visible frequencies. IEEE Photon. Technol. Lett. 2017, 29, 295–298. [Google Scholar] [CrossRef]
- Gorkunov, M.V.; Antonov, A.A.; Kivshar, Y.S. Metasurfaces with maximum chirality empowered by bound states in the continuum. Phys. Rev. Lett. 2020, 125, 093903. [Google Scholar] [CrossRef]
- Tang, Y.; Liang, Y.; Yao, J.; Chen, M.K.; Lin, S.; Wang, Z.; Zhang, J.; Huang, X.G.; Yu, C.; Tsai, D.P. Chiral bound states in the continuum in plasmonic metasurfaces. Laser Photon. Rev. 2023, 17, 2200597. [Google Scholar]
- Wu, B.; Wang, M.; Yu, P.; Wu, F.; Wu, X. Strong circular dichroism triggered by near-field perturbation. Opt. Mater. 2021, 118, 111255. [Google Scholar] [CrossRef]
- Dixon, J.; Lawrence, M.; Barton, D.R., III; Dionne, J. Self-isolated Raman lasing with a chiral dielectric metasurface. Phys. Rev. Lett. 2021, 126, 123201. [Google Scholar] [CrossRef] [PubMed]
- Gorkunov, M.V.; Antonov, A.A.; Tuz, V.R.; Kupriianov, A.S.; Kivshar, Y.S. Bound states in the continuum underpin near-lossless maximum chirality in dielectric metasurfaces. Adv. Opt. Mater. 2021, 9, 2100797. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J. High-Q chiroptical resonances by quasi-bound states in the continuum in dielectric metasurfaces with simultaneously broken in-plane inversion and mirror symmetries. Adv. Opt. Mater. 2021, 9, 2101162. [Google Scholar] [CrossRef]
- Overvig, A.C.; Malek, S.C.; Yu, N. Multifunctional nonlocal metasurfaces. Phys. Rev. Lett. 2020, 125, 017402. [Google Scholar] [CrossRef]
- Overvig, A.; Alù, A. Wavefront-selective Fano resonant metasurfaces. Adv. Photon. 2021, 3, 26002. [Google Scholar] [CrossRef]
- Overvig, A.; Yu, N.; Alù, A. Chiral quasi-bound states in the continuum. Phys. Rev. Lett. 2021, 126, 073001. [Google Scholar] [CrossRef]
- Gandolfi, M.; Tognazzi, A.; Rocco, D.; de Angelis, C.; Carletti, L. Near-unity third-harmonic circular dichroism driven by a quasibound state in the continuum in asymmetric silicon metasurfaces. Phys. Rev. A 2021, 104, 023524. [Google Scholar] [CrossRef]
- Fang, C.; Yang, Q.; Yuan, Q.; Gan, X.; Zhao, J.; Shao, Y.; Liu, Y.; Han, G.; Hao, Y. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces. Opto-Electron. Adv. 2021, 4, 200030–200031. [Google Scholar] [CrossRef]
- Carletti, L.; Koshelev, K.; de Angelis, C.; Kivshar, Y. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys. Rev. Lett. 2018, 121, 033903. [Google Scholar] [CrossRef] [PubMed]
- Kodigala, A.; Lepetit, T.; Gu, Q.; Bahari, B.; Fainman, Y.; Kanté, B. Lasing action from photonic bound states in continuum. Nature 2017, 541, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.W.; Zhen, B.; Stone, A.D.; Joannopoulos, J.D.; Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 2016, 1, 16048. [Google Scholar] [CrossRef]
- Greybush, N.J.; Pacheco-Peña, V.; Engheta, N.; Murray, C.B.; Kagan, C.R. Plasmonic optical and chiroptical response of self-assembled Au nanorod equilateral trimers. ACS Nano 2019, 13, 1617–1624. [Google Scholar] [CrossRef]
- Tang, D.F.; Wang, C.; Pan, W.K.; Li, M.H.; Dong, J.F. Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band. Opt. Express 2017, 25, 11329–11339. [Google Scholar] [CrossRef]
- Ding, X.; Monticone, F.; Zhang, K.; Zhang, L.; Gao, D.; Burokur, S.N.; de Lustrac, A.; Wu, Q.; Qiu, C.-W.; Alù, A. Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency. Adv. Mater. 2015, 27, 1195–1200. [Google Scholar] [CrossRef]
- Monticone, F.; Estakhri, N.M.; Alu, A. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett. 2013, 110, 203903. [Google Scholar] [CrossRef]
- Wang, Y.; Pu, M.; Zhang, Z.; Li, X.; Ma, X.; Zhao, Z.; Luo, X. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection. Sci. Rep. 2015, 5, 17733. [Google Scholar] [CrossRef]
- Ni, X.; Emani, N.K.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Broadband light bending with plasmonic nanoantennas. Science 2012, 335, 427. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.; Mühlenbernd, H.; Li, G.; Bai, B.; Tan, Q.; Jin, G.; Zentgraf, T.; Zhang, S. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 2012, 12, 5750–5755. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.; Bai, B.; Tan, Q.; Jin, G.; Zentgraf, T.; Zhang, S. Helicity Dependent Directional Surface Plasmon Polariton Excitation Using a Metasurface with Interfacial Phase Discontinuity. Light. Sci. Appl. 2013, 2, e70. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, Z.; Chen, S.; Tian, J. Emergent functionality and controllability in few-layer metasurfaces. Adv. Mater. 2015, 27, 5410–5421. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Jiang, C.; Tang, B. Asymmetric transmission in bilayer chiral metasurfaces for both linearly and circularly polarized waves. J. Opt. Soc. Am. B 2020, 37, 3379–3385. [Google Scholar] [CrossRef]
- Zhao, Y.; Engheta, N.; Alù, A. Homogenization of plasmonic metasurfaces modeled as transmission-line loads. Metamaterials 2011, 5, 90–96. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Y.; Li, Z.; Cheng, H.; Tian, J. Empowered layer effects and prominent properties in few-layer metasurfaces. Adv. Opt. Mater. 2019, 7, 1801477. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, Z.; Huang, Y.; Ma, X.; Pu, M.; Guo, Y.; Li, X.; Luo, X. Asymmetric transmission and wavefront manipulation toward dual-frequency meta-holograms. ACS Photon. 2019, 6, 1541–1546. [Google Scholar] [CrossRef]
- Liu, W.; Wu, W.; Huang, L.; Ling, Y.; Ba, C.; Li, S.; Chun, Z.; Li, H. Dual-band asymmetric optical transmission of both linearly and circularly polarized waves using bilayer coupled complementary chiral metasurface. Opt. Express 2019, 27, 33399–33411. [Google Scholar] [CrossRef]
- Ren, Y.; Zhou, T.; Jiang, C.; Tang, B. Thermally switching between perfect absorber and asymmetric transmission in vanadium dioxide-assisted metamaterials. Opt. Express 2021, 29, 7666–7679. [Google Scholar] [CrossRef]
- Ren, Y.; Tang, B. Switchable multi-functional VO2-integrated metamaterial devices in the terahertz region. J. Light. Technol. 2021, 39, 5864–5868. [Google Scholar] [CrossRef]
- Tang, B.; Ren, Y. Tunable and switchable multi-functional terahertz metamaterials based on a hybrid vanadium dioxide–graphene integrated configuration. Phys. Chem. Chem. Phys. 2022, 24, 8408–8414. [Google Scholar] [CrossRef]
- Kanda, N.; Konishi, K.; Kuwata-Gonokami, M. Light-induced terahertz optical activity. Opt. Lett. 2009, 34, 3000–3002. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi Estakhri, N.; Edwards, B.; Engheta, N. Inverse-designed metastructures that solve equations. Science 2019, 363, 1333–1338. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, M.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Hadjilooei, F.; Lalbakhsh, P.; Jamshidi, M.; La Spada, L.; Mirmozafari, M.; Dehghani, M.; et al. Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access 2020, 8, 109581–109595. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Liu, Z.; Yang, H.; Jin, A.; Zhang, S.; Li, J.; Gu, C. Intrinsic Chirality and Multispectral Spin-Selective Transmission in Folded Eta-Shaped Metamaterials. Adv. Opt. Mater. 2020, 8, 1901448. [Google Scholar] [CrossRef]
- Qiu, M.; Zhang, L.; Tang, Z.; Jin, W.; Qiu, C.-W.; Lei, D.Y. 3D Metaphotonic Nanostructures with Intrinsic Chirality. Adv. Funct. Mater. 2018, 28, 1803147. [Google Scholar] [CrossRef]
- Plum, E.; Fedotov, V.A.; Zheludev, N.I. Extrinsic electromagnetic chirality in metamaterials. J. Opt. A Pure Appl. Opt. 2009, 11, 074009. [Google Scholar] [CrossRef]
- Mao, L.; Liu, K.; Zhang, S.; Cao, T. Extrinsically 2D-Chiral Metamirror in Near-Infrared Region. ACS Photon. 2019, 7, 375–383. [Google Scholar] [CrossRef]
- Cao, T.; Wei, C.; Li, Y. Dual-band strong extrinsic 2D chirality in a highly symmetric metal-dielectric-metal achiral metasurface. Opt. Mater. Express 2016, 6, 303–311. [Google Scholar] [CrossRef]
- Petronijevic, E.; Dereshgi, S.A.; Larciprete, M.C.; Centini, M.; Sibilia, C.; Aydin, K. Extrinsic Chirality and Circular Dichroism at Visible Frequencies Enabled by Birefringent α-MoO3 Nanoscale-Thick Films: Implications for Chiro-Optical Control. ACS Appl. Nano Mater. 2022, 5, 5609–5616. [Google Scholar] [CrossRef]
- De Leon, I.; Horton, M.J.; Schulz, S.A.; Upham, J.; Banzer, P.; Boyd, R.W. Strong, spectrally-tunable chirality in diffractive metasurfaces. Sci. Rep. 2015, 5, 3034. [Google Scholar] [CrossRef]
- Fan, Z.; Govorov, A.O. Chiral Nanocrystals: Plasmonic Spectra and Circular Dichroism. Nano Lett. 2012, 12, 3283–3289. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Song, C.; Wang, J.; Shi, D.; Wang, Z.; Liu, N.; Ding, B. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc. 2012, 134, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Kuzyk, A.; Schreiber, R.; Fan, Z.; Pardatscher, G.; Roller, E.M.; Högele, A.; Simmel, F.C.; Govorov, A.O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Chhabra, R.; Cheng, A.; Brownell, J.; Liu, Y.; Yan, H. Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles. Science 2009, 323, 112–116. [Google Scholar] [CrossRef]
- Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R.V.; Lapthorn, A.J.; Kelly, S.M.; Barron, L.D.; Gadegaard, N.; Kadodwala, M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 2010, 5, 783–787. [Google Scholar] [CrossRef]
- Abdulrahman, N.A.; Fan, Z.; Tonooka, T.; Kelly, S.M.; Gadegaard, N.; Hendry, E.; Govorov, A.O.; Kadodwala, M. Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures. Nano Lett. 2012, 12, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Slocik, J.M.; Govorov, A.O.; Naik, R.R. Plasmonic Circular Dichroism of Peptide-Functionalized Gold Nanoparticles. Nano Lett. 2011, 11, 701–705. [Google Scholar] [CrossRef]
- Graf, P.; Mantion, A.; Haase, A.; Thünemann, A.F.; Masić, A.; Meier, W.; Luch, A.; Taubert, A. Silicification of peptide-coated silver nanoparticles—A Biomimetic soft chemistry approach toward chiral hybrid core-shell materials. ACS Nano 2011, 5, 820–833. [Google Scholar] [CrossRef]
- Schaaff, A.; Robert, L.W. Giant Gold−Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions. J. Phys. Chem. B 2000, 104, 2630–2641. [Google Scholar] [CrossRef]
- Zhang, B.-Q.; Shao, Z.-G. Optimal view angle of chiral particles on the two-dimensional Vicsek model. Phys. A Stat. Mech. 2023, 613, 128512. [Google Scholar] [CrossRef]
- Cho, N.H.; Kim, Y.B.; Lee, Y.Y.; Im, S.W.; Kim, R.M.; Kim, J.W.; Namgung, S.D.; Lee, H.E.; Kim, H.; Han, J.H.; et al. Adenine oligomer directed synthesis of chiral gold nanoparticles. Nat. Commun. 2022, 13, 3831. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.E.; Ahn, H.Y.; Mun, J.; Lee, Y.Y.; Kim, M.; Cho, N.H.; Chang, K.; Kim, W.S.; Rho, J.; Nam, K.T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-E.; Kim, R.; Ahn, H.-Y.; Lee, Y.; Byun, G.; Im, S.; Mun, J.; Rho, J.; Nam, K.T. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat. Commun. 2020, 11, 263. [Google Scholar] [CrossRef]
- Kumar, J.; Thomas, K.G.; Liz-Marzán, L.M. Nanoscale chirality in metal and semiconductor nanoparticles. Chem. Commun. 2016, 52, 12555–12569. [Google Scholar] [CrossRef] [PubMed]
- Yeom, J.; Santos, U.S.; Chekini, M.; Cha, M.; de Moura, A.F.; Kotov, N.A. Chiromagnetic nanoparticles and gels. Science 2018, 359, 309–314. [Google Scholar] [CrossRef]
- Jiang, W.; Pacella, M.S.; Athanasiadou, D.; Nelea, V.; Vali, H.; Hazen, R.M.; Gray, J.J.; McKee, M.D. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate. Nat. Commun. 2017, 8, 15066. [Google Scholar] [CrossRef] [PubMed]
- Maoz, B.M.; van der Weegen, R.; Fan, Z.; Govorov, A.O.; Ellestad, G.; Berova, N.; Meijer, E.W.; Markovich, G. Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies. J. Am. Chem. Soc. 2012, 134, 17807–17813. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Zhu, A.Y.; Oh, J.; Devlin, R.C.; Rousso, D.; Capasso, F. Multispectral Chiral Imaging with a Metalens. Nano Lett. 2016, 16, 4595–4600. [Google Scholar] [CrossRef]
- Rana, A.S.; Kim, I.; Ansari, M.A.; Anwar, M.S.; Saleem, M.; Tauqeer, T.; Danner, A.; Zubair, M.; Mehmood, M.Q.; Rho, J. Planar achiral metasurfaces-induced anomalous chiroptical effect of optical spin isolation. ACS Appl. Mater. Interfaces. 2020, 12, 48899–48909. [Google Scholar] [CrossRef]
- Khaliq, H.S.; Kim, I.; Kim, J.; Oh, D.K.; Zubair, M.; Riaz, K.; Mehmood, M.Q.; Rho, J. Manifesting simultaneous optical spin conservation and spin isolation in diatomic metasurfaces. Adv. Opt. Mater. 2021, 9, 2002002. [Google Scholar] [CrossRef]
- Zhao, Y.; Askarpour, A.N.; Sun, L.; Shi, J.; Li, X.; Alù, A. Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun. 2017, 8, 14180. [Google Scholar] [CrossRef] [PubMed]
- Solomon, M.L.; Saleh, A.A.E.; Poulikakos, L.V.; Abendroth, J.M.; Tadesse, L.F.; Dionne, J.A. Nanophotonic platforms for chiral sensing and separation. ACS. Chem. Res. 2020, 53, 588–598. [Google Scholar] [CrossRef]
- Groever, B.; Rubin, N.A.; Mueller, J.P.; Devlin, R.C.; Capasso, F. High-efficiency chiral meta-lens. Sci. Rep. 2018, 8, 7240. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Guirado, J.; Svedendahl, M.; Puigdollers, J.; Quidant, R. Enhanced chiral sensing with dielectric nanoresonators. Nano Lett. 2019, 20, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lawrence, M.; Dionne, J.A. High quality factor dielectric metasurfaces for ultraviolet circular dichroism spectroscopy. ACS Photon. 2019, 7, 36–42. [Google Scholar] [CrossRef]
- Zhang, S.; Wong, C.; Zeng, S.; Bi, R.; Tai, K.; Dholakia, K.; Olivo, M. Metasurfaces for biomedical applications: Imaging and sensing from a nanophotonics perspective. Nanophotonics 2020, 10, 259–293. [Google Scholar] [CrossRef]
- Ranjbar, B.; Gill, P. Circular dichroism techniques: Biomolecular and nanostructural analyses—A review. Chem. Biol. Drug Des. 2009, 74, 101–120. [Google Scholar] [CrossRef]
- García-Guirado, J.; Svedendahl, M.; Puigdollers, J.; Quidant, R. Enantiomer-selective molecular sensing using racemic nanoplasmonic arrays. Nano Lett. 2018, 18, 6279–6285. [Google Scholar] [CrossRef]
- Kulkarni, C.; Mondal, A.; Das, T.; Grinbom, G.; Tassinari, F.; Mabesoone, M.; Meijer, E. Highly Efficient and Tunable Filtering of Electrons’ Spin by Supramolecular Chirality of Nanofiber-Based Materials. Adv. Mater. 2020, 32, 1904965. [Google Scholar] [CrossRef]
- Im, S.W.; Ahn, H.Y.; Kim, R.M.; Cho, N.H.; Kim, H.; Lim, Y.C.; Lee, H.E.; Nam, K.T. Chiral Surface and Geometry of Metal Nanocrystals. Adv. Mater. 2020, 32, 1905758. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asefa, S.A.; Shim, S.; Seong, M.; Lee, D. Chiral Metasurfaces: A Review of the Fundamentals and Research Advances. Appl. Sci. 2023, 13, 10590. https://doi.org/10.3390/app131910590
Asefa SA, Shim S, Seong M, Lee D. Chiral Metasurfaces: A Review of the Fundamentals and Research Advances. Applied Sciences. 2023; 13(19):10590. https://doi.org/10.3390/app131910590
Chicago/Turabian StyleAsefa, Semere Araya, Sangmin Shim, Myeongsu Seong, and Dasol Lee. 2023. "Chiral Metasurfaces: A Review of the Fundamentals and Research Advances" Applied Sciences 13, no. 19: 10590. https://doi.org/10.3390/app131910590
APA StyleAsefa, S. A., Shim, S., Seong, M., & Lee, D. (2023). Chiral Metasurfaces: A Review of the Fundamentals and Research Advances. Applied Sciences, 13(19), 10590. https://doi.org/10.3390/app131910590