Imaging Liquid Water in a Polymer Electrolyte Fuel Cell with High-Energy X-ray Compton Scattering
Abstract
:1. Introduction
2. Compton Scattering Imaging (CSI)
3. Experimental Details
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Diaz, D.F.R.; Chen, K.S.; Wang, Z.; Adroher, X.C. Materials, technological status, and fundamentals of PEM fuel cells—A review. Mater. Today 2020, 32, 178–203. [Google Scholar] [CrossRef]
- Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.-P. Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science 2009, 324, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Hartnig, C.; Manke, I.; Kuhn, R.; Kardjilov, N.; Banhart, J.; Lehnert, W. Cross-sectional insight in the water evolution and transport in polymer electrolyte fuel cells. Appl. Phys. Lett. 2008, 92, 134106. [Google Scholar] [CrossRef]
- Weber, A.Z.; Newman, J. Coupled Thermal and Water Management in Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 2006, 153, A2205–A2214. [Google Scholar] [CrossRef]
- Weber, A.Z.; Borup, R.L.; Darling, R.M.; Das, P.K.; Dursch, T.J.; Gu, W.; Harvey, D.B.; Kusoglu, A.; Litster, S.; Mench, M.M. A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells. J. Electrochem. Soc. 2014, 161, F1254–F1299. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.-Y. A Nonisothermal, Two-Phase Model for Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 2006, 153, A1193–A1200. [Google Scholar] [CrossRef]
- Wang, Y. Modeling of two-phase transport in the diffusion media of polymer electrolyte fuel cells. J. Power Sources 2008, 185, 261–271. [Google Scholar] [CrossRef]
- Krüger, P.; Markötter, H.; Haußmann, J.; Klages, M.; Arlt, T.; Banhart, J.; Hartnig, C.; Manke, I.; Scholta, J. Synchrotron X-ray tomography for investigations of water distribution in polymer electrolyte membrane fuel cells. J. Power Sources 2011, 196, 5250–5255. [Google Scholar] [CrossRef]
- Sasabe, T.; Deevanhxay, P.; Tsushima, S.; Hirai, S. Soft X-ray visualization of the liquid water transport within the cracks of micro porous layer in PEMFC. Electrochem. Commun. 2011, 13, 638–641. [Google Scholar] [CrossRef]
- Shum, A.D.; Parkinson, D.Y.; Xiao, X.; Weber, A.Z.; Burheim, O.S.; Zenyuk, I.V. Investigating Phase-Change-Induced Flow in Gas Diffusion Layers in Fuel Cells with X-ray Computed Tomography. Electrochim. Acta 2017, 256, 279–290. [Google Scholar] [CrossRef]
- Zenyuk, I.V.; Parkinson, D.Y.; Hwang, G.; Weber, A.Z. Probing water distribution in compressed fuel-cell gas-diffusion layers using X-ray computed tomography. Electrochem. Commun. 2015, 53, 24–28. [Google Scholar] [CrossRef]
- Kato, S.; Yamaguchi, S.; Yoshimune, W.; Matsuoka, Y.; Kato, A.; Nagai, Y.; Suzuki, T. Ex-situ visualization of the wet domain in the microporous layer in a polymer electrolyte fuel cell by X-ray computed tomography under water vapor supply. Electrochem. Commun. 2020, 111, 106644. [Google Scholar] [CrossRef]
- Ziesche, R.F.; Hack, J.; Rasha, L.; Maier, M.; Tan, C.; Heenan, T.M.M.; Markotter, H.; Kardjilov, N.; Manke, I.; Kockelmann, W.; et al. High-speed 4D neutron computed tomography for quantifying water dynamics in polymer electrolyte fuel cells. Nat. Commun. 2022, 13, 1616. [Google Scholar] [CrossRef]
- Trabold, T.; Owejan, J.; Jacobson, D.; Arif, M.; Huffman, P. In situ investigation of water transport in an operating PEM fuel cell using neutron radiography: Part 1—Experimental method and serpentine flow field results. Int. J. Heat Mass Transf. 2006, 49, 4712–4720. [Google Scholar] [CrossRef]
- Owejan, J.; Trabold, T.; Jacobson, D.; Baker, D.; Hussey, D.; Arif, M. In situ investigation of water transport in an operating PEM fuel cell using neutron radiography: Part 2—Transient water accumulation in an interdigitated cathode flow field. Int. J. Heat Mass Transf. 2006, 49, 4721–4731. [Google Scholar] [CrossRef]
- Mishler, J.; Wang, Y.; Mukherjee, P.P.; Mukundan, R.; Borup, R.L. Subfreezing operation of polymer electrolyte fuel cells: Ice formation and cell performance loss. Electrochim. Acta 2012, 65, 127–133. [Google Scholar] [CrossRef]
- Hickner, M.A.; Siegel, N.P.; Chen, K.S.; McBrayer, D.N.; Hussey, D.S.; Jacobson, D.L.; Arif, M. Real-Time Imaging of Liquid Water in an Operating Proton Exchange Membrane Fuel Cell. J. Electrochem. Soc. 2006, 153, A902–A908. [Google Scholar] [CrossRef]
- Hickner, M.A.; Siegel, N.P.; Chen, K.S.; Hussey, D.S.; Jacobson, D.L.; Arif, M. Understanding Liquid Water Distribution and Removal Phenomena in an Operating PEMFC via Neutron Radiography. J. Electrochem. Soc. 2008, 155, B294–B302. [Google Scholar] [CrossRef]
- Hickner, M.A.; Siegel, N.P.; Chen, K.S.; Hussey, D.S.; Jacobson, D.L.; Arif, M. In Situ High-Resolution Neutron Radiography of Cross-Sectional Liquid Water Profiles in Proton Exchange Membrane Fuel Cells. J. Electrochem. Soc. 2008, 155, B427–B434. [Google Scholar] [CrossRef]
- Martinez, N.; Porcar, L.; Escribano, S.; Micoud, F.; Rosini, S.; Tengattini, A.; Atkins, D.; Gebel, G.; Lyonnard, S.; Morin, A. Combined Operando High Resolution SANS and Neutron Imaging Reveals in-Situ Local Water Distribution in an Operating Fuel Cell. ACS Appl. Energy Matter 2019, 2, 8425–8433. [Google Scholar] [CrossRef]
- Itou, M.; Orikasa, Y.; Gogyo, Y.; Suzuki, K.; Sakurai, H.; Uchimoto, Y.; Sakurai, Y. Compton scattering imaging of a working battery using synchrotron high-energy X-rays. J. Synchrotron Radiat. 2015, 22, 161–164. [Google Scholar] [CrossRef]
- Suzuki, K.; Otsuka, Y.; Tsuji, N.; Hoshi, K.; Sakurai, Y.; Sakurai, H. Identifying the Degradation Mechanism in Commercial Lithium Rechargeable Batteries via High-Energy X-ray Compton Scattering Imaging. Appl. Sci. 2020, 10, 5855. [Google Scholar] [CrossRef]
- Tsuji, N.; Kajiwara, K.; Itou, M.; Sakurai, Y. Direct Cross-Sectional Imaging using X-ray Compton Scattering: Application to Commercial Batteries. J. Synchrotron Rad. 2021, 28, 1174–1177. [Google Scholar] [CrossRef]
- Tsuji, N.; Tsuji, Y.; Uchimoto, Y.; Imai, H.; Sakurai, Y. Compton scattering imaging of liquid water in porous carbon-based materials. Appl. Sci. 2021, 11, 3851. [Google Scholar] [CrossRef]
- McMaster, W.H.; Del Grande, N.K.; Mallett, J.H.; Hubbell, J.H. Compilation of X-ray Cross Section; Report UCRL-50174, Sec.II Rev.1; Lawrence Radiation Laboratory, University of California: Livermore, CA, USA, 1969. [Google Scholar]
- Sharaf, J.M. Practical aspects of Compton scatterer densitometry. Appl. Radiat. Isotop. 2001, 54, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Holt, R.S.; Cooper, M.J.; Jackson, D.F. Gamma-ray Scattering Techniques for Non-destructive Testing and Imaging. Nucl. Instrum. Methods 1984, 221, 98–104. [Google Scholar] [CrossRef]
- Guzzardi, R.; Licitra, G. A Critical Review of Compton Imaging. CRC Criti. Rev. Bioeng. 1988, 15, 237–268. [Google Scholar]
- Harding, G.; Harding, E. Compton scatter imaging: A tool for historical exploration. Appl. Radiat. Isotope. 2010, 68, 993–1005. [Google Scholar] [CrossRef] [PubMed]
- Haboub, A.; MacDowell, A.A.; Marchesini, S.; Parkinson, D.Y. Coded aperture imaging for fluorescent x-rays. Rev. Sci. Instrum. 2014, 85, 063704. [Google Scholar] [CrossRef]
- Andrejczuk, A.; Nagamine, M.; Sakurai, Y.; Itou, M. A planar parabolic refractive nickel lens for high-energy X-rays. J. Synchrotron Rad. 2014, 21, 57–60. [Google Scholar] [CrossRef]
- Yamaoka, H.; Mochizuki, T.; Sakurai, Y.; Kawata, H. Bent-crystal monochromators for high-energy synchrotron radiation. J. Synchrotron Rad. 1998, 5, 699–701. [Google Scholar] [CrossRef] [PubMed]
- Tanaka Precious Metals. Available online: https://tanaka-preciousmetals.com/en/products/detail/PEFCs/ (accessed on 23 September 2023).
- Asuero, A.G.; Sayago, A.; González, A.G. The correlation coefficient: An overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyazawa, T.; Tsuji, N.; Fujioka, D.; Kaneko, T.; Mizuno, Y.; Uchimoto, Y.; Imai, H.; Sakurai, Y. Imaging Liquid Water in a Polymer Electrolyte Fuel Cell with High-Energy X-ray Compton Scattering. Appl. Sci. 2023, 13, 10753. https://doi.org/10.3390/app131910753
Miyazawa T, Tsuji N, Fujioka D, Kaneko T, Mizuno Y, Uchimoto Y, Imai H, Sakurai Y. Imaging Liquid Water in a Polymer Electrolyte Fuel Cell with High-Energy X-ray Compton Scattering. Applied Sciences. 2023; 13(19):10753. https://doi.org/10.3390/app131910753
Chicago/Turabian StyleMiyazawa, Tetsuya, Naruki Tsuji, Daiki Fujioka, Takuma Kaneko, Yuki Mizuno, Yoshiharu Uchimoto, Hideto Imai, and Yoshiharu Sakurai. 2023. "Imaging Liquid Water in a Polymer Electrolyte Fuel Cell with High-Energy X-ray Compton Scattering" Applied Sciences 13, no. 19: 10753. https://doi.org/10.3390/app131910753
APA StyleMiyazawa, T., Tsuji, N., Fujioka, D., Kaneko, T., Mizuno, Y., Uchimoto, Y., Imai, H., & Sakurai, Y. (2023). Imaging Liquid Water in a Polymer Electrolyte Fuel Cell with High-Energy X-ray Compton Scattering. Applied Sciences, 13(19), 10753. https://doi.org/10.3390/app131910753