Recent Advances in Photodetectors Based on Two-Dimensional Material/Si Heterojunctions
Abstract
:1. Introduction
2. Figures of Merit for Photodetectors
2.1. Photoresponsivity
2.2. Quantum Efficiency and Gain
2.3. Noise Equivalent Power
2.4. Detectivity and Specific Detectivity
2.5. Response Time
2.6. Linear Dynamic Range
3. Photodetectors Based on 2D Material-Si Heterojunctions
3.1. Graphene/Si Heterojunctions
3.2. TMD/Si Heterojunctions
3.3. NMD-Si Heterojunctions
3.4. Other 2D/Si Heterojunctions
4. Summary and Outlook
- The gain mechanism in semiconducting 2D material/Si heterojunction remains unknown. Further experimental and theoretical investigations are necessary to elucidate the unique gain mechanism in these heterojunctions.
- Polarization-sensitive photodetectors offer more information compared to isotropic photodetectors. However, Si, being an isotropic material, lacks polarization that is sensitive to polarized light. Some 2D materials possess intrinsic anisotropy, making it possible to achieve a polarization-sensitive 2D material/Si heterojunction photodetector by employing anisotropic 2D materials. Nevertheless, the anisotropic property cannot be maintained in polycrystalline 2D material films, and synthesizing large-area single crystal 2D materials remains a significant challenge. Alternatively, utilizing optical structures to achieve polarization-sensitive photodetection is a viable approach.
- Most graphene/Si heterojunctions rely on transferring graphene onto Si, which unavoidably introduces residues and defects at the interface, leading to performance degradation. Exploring alternative methods, such as the direct growth of graphene on Si, can alleviate this issue.
- The crystal quality of directly grown 2D materials on Si substrates is poor. These 2D materials are polycrystalline with numerous defects. These defects can act as recombination centers, compromising the performance of the photodetectors. Therefore, it is crucial to exploring new techniques to enhance the quality of 2D materials. Additionally, for integration with COMS readout circuits, synthesis methods compatible with COMS technology are required.
- The controlled doping of 2D materials is necessary to regulate the built-in electrical field and depletion region, optimizing the performance of the heterojunction photodetectors. However, achieving stable and reliable doping in 2D materials remains a challenge due to their ultrathin thickness.
- Most reported 2D material/Si heterojunction photodetectors exhibit exceptional key parameters in one or two aspects, which may not be suitable for practical applications. Photodetectors with well-balanced key parameters are preferable. Therefore, it is essential to comprehensively evaluate the key parameters of photodetectors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Tan, Y.W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.V.; Novoselov, K.S.; Morozov, S.V.; Peres, N.M.R.; Santos, J.D.; Nilsson, J.; Guinea, F.; Geim, A.K.; Neto, A.H.C. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, X.D.; Shin, H.J.; Park, S.; Huang, Y.; Duan, X.F. Promises and prospects of two-dimensional transistors. Nature 2021, 591, 43–53. [Google Scholar] [CrossRef]
- Liu, C.S.; Chen, H.W.; Wang, S.Y.; Liu, Q.; Jiang, Y.G.; Zhang, D.W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557. [Google Scholar] [CrossRef]
- Akinwande, D.; Huyghebaert, C.; Wang, C.H.; Serna, M.I.; Goossens, S.; Li, L.J.; Wong, H.S.P.; Koppens, F.H.L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; Duan, X.F. Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.B.; Li, T.S.; Kim, J.; Chim, C.Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, M.; Palummo, M.; Grossman, J.C. Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. Nano Lett. 2013, 13, 3664–3670. [Google Scholar] [CrossRef] [PubMed]
- Britnell, L.; Ribeiro, R.M.; Eckmann, A.; Jalil, R.; Belle, B.D.; Mishchenko, A.; Kim, Y.J.; Gorbachev, R.V.; Georgiou, T.; Morozov, S.V.; et al. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 2013, 340, 1311–1314. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.L.; Dai, J.F.; Yao, W.; Xiao, D.; Cui, X.D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.F.; He, K.L.; Shan, J.; Heinz, T.F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498. [Google Scholar] [CrossRef]
- Rivera, P.; Yu, H.Y.; Seyler, K.L.; Wilson, N.P.; Yao, W.; Xu, X.D. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 2018, 13, 1004–1015. [Google Scholar] [CrossRef]
- Kaul, A.B. Two-dimensional layered materials: Structure, properties, and prospects for device applications. J. Mater. Res. 2014, 29, 348–361. [Google Scholar] [CrossRef]
- Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef]
- Zhou, J.D.; Lin, J.H.; Huang, X.W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H.M.; Lei, J.C.; et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359. [Google Scholar] [CrossRef]
- Kang, X.L.; Lan, C.Y.; Li, F.Z.; Wang, W.; Yip, S.; Meng, Y.; Wang, F.; Lai, Z.X.; Liu, C.T.; Ho, J.C. Van der Waals PdSe2/WS2 Heterostructures for Robust High-Performance Broadband Photodetection from Visible to Infrared Optical Communication Band. Adv. Opt. Mater. 2021, 9, 2001991. [Google Scholar] [CrossRef]
- Jariwala, D.; Marks, T.J.; Hersam, M.C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.Y.; Li, D.P.; Zhou, Z.Y.; Yip, S.P.; Zhang, H.; Shu, L.; Wei, R.J.; Dong, R.T.; Ho, J.C. Direct Visualization of Grain Boundaries in 2D Monolayer WS2 via Induced Growth of CdS Nanoparticle Chains. Small Methods 2019, 3, 1800245. [Google Scholar] [CrossRef]
- Lan, C.Y.; Li, C.; Wang, S.; He, T.Y.; Zhou, Z.F.; Wei, D.P.; Guo, H.Y.; Yang, H.; Liu, Y. Highly responsive and broadband photodetectors based on WS2-graphene van der Waals epitaxial heterostructures. J. Mater. Chem. C 2017, 5, 1494–1500. [Google Scholar] [CrossRef]
- Lan, C.Y.; Li, C.; Wang, S.; Yin, Y.; Guo, H.Y.; Liu, N.S.; Liu, Y. ZnO-WS2 heterostructures for enhanced ultra-violet photodetectors. RSC Adv. 2016, 6, 67520–67524. [Google Scholar] [CrossRef]
- Jia, X.Y.; Lan, C.Y.; Li, C. Recent advances in two-dimensional materials in infrared photodetectors (invited). Infrared Laser Eng. 2022, 51, 20220065. [Google Scholar]
- Wu, D.; Xu, M.M.; Zeng, L.H.; Shi, Z.F.; Tian, Y.Z.; Li, X.J.; Shan, C.X.; Jie, J.S. In Situ Fabrication of PdSe2/GaN Schottky Junction for Polarization-Sensitive Ultraviolet Photodetection with High Dichroic Ratio. ACS Nano 2022, 16, 5545–5555. [Google Scholar] [CrossRef]
- Wu, D.; Guo, J.W.; Wang, C.Q.; Ren, X.Y.; Chen, Y.S.; Lin, P.; Zeng, L.H.; Shi, Z.F.; Li, X.J.; Shan, C.X.; et al. Ultrabroadband and High-Detectivity Photodetector Based on WS2/Ge Heterojunction through Defect Engineering and Interface Passivation. ACS Nano 2021, 15, 10119–10129. [Google Scholar] [CrossRef]
- Zeng, L.H.; Chen, Q.M.; Zhang, Z.X.; Wu, D.; Yuan, H.Y.; Li, Y.Y.; Qarony, W.; Lau, S.P.; Luo, L.B.; Tsang, Y.H. Multilayered PdSe2/Perovskite Schottky Junction for Fast, Self-Powered, Polarization-Sensitive, Broadband Photodetectors, and Image Sensor Application. Adv. Sci. 2019, 6, 1901134. [Google Scholar] [CrossRef]
- Zeng, L.; Han, W.; Ren, X.; Li, X.; Wu, D.; Liu, S.; Wang, H.; Lau, S.P.; Tsang, Y.H.; Shan, C.-X.; et al. Uncooled Mid-Infrared Sensing Enabled by Chip-Integrated Low-Temperature-Grown 2D PdTe2 Dirac Semimetal. Nano Lett. 2023, 23, 8241–8248. [Google Scholar] [CrossRef]
- Liang, S.J.; Cheng, B.; Cui, X.Y.; Miao, F. Van der Waals Heterostructures for High-Performance Device Applications: Challenges and Opportunities. Adv. Mater. 2020, 32, 1903800. [Google Scholar] [CrossRef]
- Tang, Q.Y.; Zhong, F.; Li, Q.; Weng, J.L.; Li, J.Z.; Lu, H.Y.; Wu, H.T.; Liu, S.N.; Wang, J.C.; Deng, K.; et al. Infrared Photodetection from 2D/3D van der Waals Heterostructures. Nanomaterials 2023, 13, 1169. [Google Scholar] [CrossRef] [PubMed]
- Behura, S.K.; Wang, C.; Wen, Y.; Berry, V. Graphene-semiconductor heterojunction sheds light on emerging photovoltaics. Nat. Photonics 2019, 13, 312–318. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, W.; Li, X.; Li, L.; Li, S.; Wei, X.; Zhou, W.; Lin, J.; Huang, Y.; Liu, H. Diameter-dependent photoelectric performances of semiconducting carbon nanotubes/perovskite heterojunctions. Nano Res. 2023, in press. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Huang, L.; Sun, W. Research Progress of High-Sensitivity Perovskite Photodetectors: A Review of Photodetectors: Noise, Structure, and Materials. ACS Appl. Electron. Mater. 2022, 4, 1485–1505. [Google Scholar] [CrossRef]
- Zhang, Z.; Ji, P.R.; Li, S.B.; Wang, F.; He, S.M.; Cheng, Y.W.; Zhao, S.H.; Li, K.L.; Wang, X.M.; Wang, Y.; et al. High-performance broadband flexible photodetector based on Gd3Fe5O12-assisted double van der Waals heterojunctions. Microsyst. Nanoeng. 2023, 9, 84. [Google Scholar] [CrossRef]
- Sun, J.; Ding, L. Linearly Polarization-Sensitive Perovskite Photodetectors. Nano-Micro Lett. 2023, 15, 90. [Google Scholar] [CrossRef]
- Wu, D.; Guo, J.W.; Du, J.; Xia, C.X.; Zeng, L.H.; Tian, Y.Z.; Shi, Z.F.; Tian, Y.T.; Li, X.J.; Tsang, Y.H.; et al. Polarization-Sensitive, Broadband, Self-Powered Photodetector Based on Graphene/PdSe2/Germanium Heterojunction. ACS Nano 2019, 13, 9907–9917. [Google Scholar] [CrossRef]
- Zeng, L.H.; Lin, S.H.; Li, Z.J.; Zhang, Z.X.; Zhang, T.F.; Xie, C.; Mak, C.H.; Chai, Y.; Lau, S.P.; Luo, L.B.; et al. Fast, Self-Driven, Air-Stable, and Broadband Photodetector Based on Vertically Aligned PtSe2/GaAs Heterojunction. Adv. Funct. Mater. 2018, 28, 1705970. [Google Scholar] [CrossRef]
- Yang, X.L.; Lin, J.; Huang, S.Y.; Lin, X.Y.; Xie, Y.Y.; Yan, F.P.; Zheng, W.; Kong, X.Z.; Hu, Q.C. Semiconductor applications of Yb2O3: Constructing heterojunction solar-blind UV photodetectors with graphene. Appl. Phys. Lett. 2023, 123, 081103. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Y.; Liu, C.; Sun, Z.; Wang, Z.; Lin, Z.; Qiu, M.; Fu, D.; Wang, K. Recent Progress of Narrowband Perovskite Photodetectors: Fundamental Physics and Strategies. Adv. Devices Instrum. 2023, 4, 0006. [Google Scholar] [CrossRef]
- Zeng, L.H.; Han, W.; Wu, S.E.; Wu, D.; Lau, S.P.; Tsang, Y.H. Graphene/PtSe2/Pyramid Si Van Der Waals Schottky Junction for Room-Temperature Broadband Infrared Light Detection. IEEE Trans. Electron Devices 2022, 69, 6212–6216. [Google Scholar] [CrossRef]
- Huang, G.Y.; Hao, Y.B.; Li, S.Q.; Jia, Y.D.; Guo, J.C.; Zhang, H.; Wang, B. Recent progress in waveguide-integrated photodetectors based on 2D materials for infrared detection. J. Phys. D Appl. Phys. 2023, 56, 113001. [Google Scholar] [CrossRef]
- Zeng, G.; Zhang, M.R.; Chen, Y.C.; Li, X.X.; Chen, D.B.; Shi, C.Y.; Zhao, X.F.; Chen, N.; Wang, T.Y.; Zhang, D.W.; et al. A solar-blind photodetector with ultrahigh rectification ratio and photoresponsivity based on the MoTe2/Ta:β-Ga2O3 pn junction. Mater. Today Phys. 2023, 33, 101042. [Google Scholar] [CrossRef]
- Chang, C.; Xie, X.P.; Li, T.T.; Cui, J.S. Configuration of the active region for the Ge-on-Si photodetector based on carrier mobility. Front. Phys. 2023, 11, 1150684. [Google Scholar] [CrossRef]
- Guo, Y.N.; Liu, D.; Miao, C.C.; Sun, J.M.; Pang, Z.Y.; Wang, P.; Xu, M.S.; Han, N.; Yang, Z.X. Ambipolar transport in Ni-catalyzed InGaAs nanowire field-effect transistors for near-infrared photodetection. Nanotechnology 2021, 32, 145203. [Google Scholar] [CrossRef] [PubMed]
- Barve, A.V.; Lee, S.J.; Noh, S.K.; Krishna, S. Review of current progress in quantum dot infrared photodetectors. Laser Photonics Rev. 2010, 4, 738–750. [Google Scholar] [CrossRef]
- An, X.H.; Liu, F.Z.; Jung, Y.J.; Kar, S. Tunable Graphene-Silicon Heterojunctions for Ultrasensitive Photodetection. Nano Lett. 2013, 13, 909–916. [Google Scholar] [CrossRef]
- Peng, L.; Liu, L.X.; Du, S.C.; Bodepudi, S.C.; Li, L.F.; Liu, W.; Lai, R.C.; Cao, X.X.; Fang, W.Z.; Liu, Y.J.; et al. Macroscopic assembled graphene nanofilms based room temperature ultrafast mid-infrared photodetectors. InfoMat 2022, 4, e12309. [Google Scholar] [CrossRef]
- Wu, D.; Guo, C.G.; Zeng, L.H.; Ren, X.Y.; Shi, Z.F.; Wen, L.; Chen, Q.; Zhang, M.; Li, X.J.; Shan, C.X.; et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light-Sci. Appl. 2023, 12, 5. [Google Scholar] [CrossRef]
- Cai, X.; Wang, S.; Peng, L.-M. Recent progress of photodetector based on carbon nanotube film and application in optoelectronic integration. Nano Res. Energy 2023, 2, e9120058. [Google Scholar] [CrossRef]
- Saleh, B.E.A.; Teich, M.C. Fundamentals of Photonics; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 876–888. [Google Scholar]
- Kasap, S.O. Optoelectronics and Photonics: Principles and Practices, 2nd ed.; Pearson Education: Upper Saddle River, NJ, USA, 2013; pp. 381–427. [Google Scholar]
- Bube, R.H. Photoelectronic Properties of Semiconductors; Cambridge University Press: Cambridge, UK, 1992; pp. 20–21. [Google Scholar]
- Yang, M.; Chang, H.L.; Chen, J.H.; Zhu, X.Y. Multiplier Effects of Photodetectors-Source of Gain. Coatings 2023, 13, 1088. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.M.; Mackin, C.; Zhang, X.; Fang, W.J.; Palacios, T.; Zhu, H.W.; Kong, J. Role of Interfacial Oxide in High-Efficiency Graphene-Silicon Schottky Barrier Solar Cells. Nano Lett. 2015, 15, 2104–2110. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Bin, S.; Zhou, C.; Qin, B. High-Performance Normal-Incidence Ge/Si Meta-Structure Avalanche Photodetector. Photonics 2023, 10, 780. [Google Scholar] [CrossRef]
- Garin, M.; Heinonen, J.; Werner, L.; Pasanen, T.P.; Vahanissi, V.; Haarahiltunen, A.; Juntunen, M.A.; Savin, H. Black-Silicon Ultraviolet Photodiodes Achieve External Quantum Efficiency above 130%. Phys. Rev. Lett. 2020, 125, 117702. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Mao, J.; Ding, K.; Luo, W.J.; Hu, W.D.; Zhang, X.J.; Zhang, X.H.; Jie, J.S. Solution-Processed 3D RGO-MoS2/Pyramid Si Heterojunction for Ultrahigh Detectivity and Ultra-Broadband Photodetection. Adv. Mater. 2018, 30, 1801729. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Lou, Z.H.; Wang, Y.G.; Yao, Z.Q.; Xu, T.T.; Shi, Z.F.; Xu, J.M.; Tian, Y.T.; Li, X.J.; Tsang, Y.H. Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction. Sol. Energy Mater. Sol. Cells 2018, 182, 272–280. [Google Scholar] [CrossRef]
- Ye, P.; Xiao, H.; Zhu, Q.H.; Kong, Y.H.; Tang, Y.M.; Xu, M.S. Si-CMOS-compatible 2D PtSe2-based self-driven photodetector with ultrahigh responsivity and specific detectivity. Sci. China Mater. 2023, 66, 193–201. [Google Scholar] [CrossRef]
- Li, L.; Xu, H.; Li, Z.; Liu, L.; Lou, Z.; Wang, L. CMOS-Compatible Tellurium/Silicon Ultra-Fast Near-Infrared Photodetector. Small 2023, 2303114. [Google Scholar] [CrossRef]
- Li, Y.; Xu, C.Y.; Wang, J.Y.; Zhen, L. Photodiode-Like Behavior and Excellent Photoresponse of Vertical Si/Monolayer MoS2 Heterostructures. Sci. Rep. 2014, 4, 7186. [Google Scholar] [CrossRef]
- Shin, G.H.; Park, J.; Lee, K.J.; Lee, G.B.; Jeon, H.B.; Choi, Y.K.; Yu, K.; Choi, S.Y. Si-MoS2 Vertical Heterojunction for a Photodetector with High Responsivity and Low Noise Equivalent Power. ACS Appl. Mater. Interfaces 2019, 11, 7626–7634. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zhang, X.W.; Wu, D.; Guo, J.W.; Zhao, Z.H.; Shi, Z.F.; Tian, Y.T.; Huang, X.W.; Li, X.J. Construction of mixed-dimensional WS2/Si heterojunctions for high-performance infrared photodetection and imaging applications. J. Mater. Chem. C 2020, 8, 6877–6882. [Google Scholar] [CrossRef]
- Pal, S.; Mukherjee, S.; Jangir, R.; Nand, M.; Jana, D.; Mandal, S.K.; Bhunia, S.; Mukherjee, C.; Jha, S.N.; Ray, S.K. WS2 Nanosheet/Si p-n Heterojunction Diodes for UV-Visible Broadband Photodetection. ACS Appl. Nano Mater. 2021, 4, 3241–3251. [Google Scholar] [CrossRef]
- Lu, J.T.; Zhang, L.J.; Ma, C.R.; Huang, W.J.; Ye, Q.J.; Yi, H.X.; Zheng, Z.Q.; Yang, G.W.; Liu, C.A.; Yao, J.D. In situ integration of Te/Si 2D/3D heterojunction photodetectors toward UV-vis-IR ultra-broadband photoelectric technologies. Nanoscale 2022, 14, 6228–6238. [Google Scholar] [CrossRef] [PubMed]
- Rogalski, A. Infrared and Terahertz Detectors, 3rd ed.; CRC Press: New York, NY, USA, 2019; p. 252. [Google Scholar]
- Liu, J.-M. Principles of Photonics; Cambridge University Press: Cambridge, UK, 2016; p. 388. [Google Scholar]
- Du, X.; Skachko, I.; Barker, A.; Andrei, E.Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491–495. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef]
- Li, X.L.; Zhang, G.Y.; Bai, X.D.; Sun, X.M.; Wang, X.R.; Wang, E.; Dai, H.J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542. [Google Scholar] [CrossRef]
- Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef]
- Xu, Y.H.; Liu, J.Q. Graphene as Transparent Electrodes: Fabrication and New Emerging Applications. Small 2016, 12, 1400–1419. [Google Scholar] [CrossRef]
- Pang, S.P.; Hernandez, Y.; Feng, X.L.; Mullen, K. Graphene as Transparent Electrode Material for Organic Electronics. Adv. Mater. 2011, 23, 2779–2795. [Google Scholar] [CrossRef]
- Berciaud, S.; Ryu, S.; Brus, L.E.; Heinz, T.F. Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers. Nano Lett. 2009, 9, 346–352. [Google Scholar] [CrossRef]
- Ni, Z.H.; Yu, T.; Luo, Z.Q.; Wang, Y.Y.; Liu, L.; Wong, C.P.; Miao, J.M.; Huang, W.; Shen, Z.X. Probing Charged Impurities in Suspended Graphene Using Raman Spectroscopy. ACS Nano 2009, 3, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Zhu, M.; Du, M.D.; Lv, Z.; Zhang, L.; Li, Y.C.; Yang, Y.; Yang, T.T.; Li, X.; Wang, K.L.; et al. High Detectivity Graphene-Silicon Heterojunction Photodetector. Small 2016, 12, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.C.; Tongay, S.; Petterson, M.K.; Berke, K.; Rinzler, A.G.; Appleton, B.R.; Hebard, A.F. High Efficiency Graphene Solar Cells by Chemical Doping. Nano Lett. 2012, 12, 2745–2750. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, X.W.; Yin, Z.G.; Meng, J.H.; Gao, H.L.; Zhang, L.Q.; Zhao, Y.J.; Wang, H.L. Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles. Appl. Phys. Lett. 2014, 105, 183901. [Google Scholar] [CrossRef]
- Yu, T.; Wang, F.; Xu, Y.; Ma, L.L.; Pi, X.D.; Yang, D.R. Graphene Coupled with Silicon Quantum Dots for High-Performance Bulk-Silicon-Based Schottky-Junction Photodetectors. Adv. Mater. 2016, 28, 4912–4919. [Google Scholar] [CrossRef]
- Shi, E.Z.; Li, H.B.; Yang, L.; Zhang, L.H.; Li, Z.; Li, P.X.; Shang, Y.Y.; Wu, S.T.; Li, X.M.; Wei, J.Q.; et al. Colloidal Antireflection Coating Improves Graphene-Silicon Solar Cells. Nano Lett. 2013, 13, 1776–1781. [Google Scholar] [CrossRef]
- Yavuz, S.; Kuru, C.; Choi, D.; Kargar, A.; Jin, S.; Bandaru, P.R. Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells. Nanoscale 2016, 8, 6473–6478. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Xie, C.; Jie, J.S.; Zhang, X.W.; Wu, Y.M.; Zhang, W.J. High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification and graphene doping. J. Mater. Chem. A 2013, 1, 6593–6601. [Google Scholar] [CrossRef]
- Zhao, J.J.; Liu, H.; Deng, L.E.; Bai, M.Y.; Xie, F.; Wen, S.; Liu, W.G. High Quantum Efficiency and Broadband Photodetector Based on Graphene/Silicon Nanometer Truncated Cone Arrays. Sensors 2021, 21, 6146. [Google Scholar] [CrossRef]
- Brongersma, M.L.; Halas, N.J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34. [Google Scholar] [CrossRef]
- Casalino, M.; Sassi, U.; Goykhman, I.; Eiden, A.; Lidorikis, E.; Milana, S.; de Fazio, D.; Tomarchio, F.; Iodice, M.; Coppola, G.; et al. Vertically Illuminated, Resonant Cavity Enhanced, Graphene-Silicon Schottky Photodetectors. ACS Nano 2017, 11, 10955–10963. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, Q.; Zhang, Y.N.; Wei, X.Z.; Shi, H.F. Graphene nanowalls in photodetectors. RSC Adv. 2023, 13, 22838–22862. [Google Scholar] [CrossRef] [PubMed]
- Riazimehr, S.; Kataria, S.; Bornemann, R.; Bolivar, P.H.; Ruiz, F.J.G.; Engstrom, O.; Godoy, A.; Lemme, M.C. High Photocurrent in Gated Graphene-Silicon Hybrid Photodiodes. ACS Photonics 2017, 4, 1506–1514. [Google Scholar] [CrossRef] [PubMed]
- Srisonphan, S. Hybrid Graphene-Si-Based Nanoscale Vacuum Field Effect Phototransistors. ACS Photonics 2016, 3, 1799–1808. [Google Scholar] [CrossRef]
- Di Bartolomeo, A.; Giubileo, F.; Luongo, G.; Iemmo, L.; Martucciello, N.; Niu, G.; Fraschke, M.; Skibitzki, O.; Schroeder, T.; Lupina, G. Tunable Schottky barrier and high responsivity in graphene/Sinanotip optoelectronic device. 2D Mater. 2017, 4, 015024. [Google Scholar] [CrossRef]
- Yin, J.; Liu, L.; Zang, Y.S.; Ying, A.N.; Hui, W.J.; Jiang, S.S.; Zhang, C.Q.; Yang, T.Y.; Chueh, Y.L.; Li, J.; et al. Engineered tunneling layer with enhanced impact ionization for detection improvement in graphene/silicon heterojunction photodetectors. Light-Sci. Appl. 2021, 10, 113. [Google Scholar] [CrossRef]
- Sinha, D.; Lee, J.U. Ideal Graphene/Silicon Schottky Junction Diodes. Nano Lett. 2014, 14, 4660–4664. [Google Scholar] [CrossRef]
- Xiao, R.B.; Lan, C.Y.; Li, Y.J.; Zeng, C.; He, T.Y.; Wang, S.; Li, C.; Yin, Y.; Liu, Y. High Performance Van der Waals Graphene-WS2-Si Heterostructure Photodetector. Adv. Mater. Interfaces 2019, 6, 1901304. [Google Scholar] [CrossRef]
- He, T.Y.; Lan, C.Y.; Zhou, S.H.; Li, Y.J.; Yin, Y.; Li, C.; Liu, Y. Enhanced responsivity of a graphene/Si-based heterostructure broadband photodetector by introducing a WS2 interfacial layer. J. Mater. Chem. C 2021, 9, 3846–3853. [Google Scholar] [CrossRef]
- Chang, K.E.; Yoo, T.J.; Kim, C.; Kim, Y.J.; Lee, S.K.; Kim, S.Y.; Heo, S.; Kwon, M.G.; Lee, B.H. Gate-Controlled Graphene-Silicon Schottky Junction Photodetector. Small 2018, 14, 1801182. [Google Scholar] [CrossRef]
- Ye, X.L.; Du, Y.N.; Wang, M.Y.; Liu, B.Q.; Liu, J.W.; Jafri, S.H.M.; Liu, W.C.; Papadakis, R.; Zheng, X.X.; Li, H. Advances in the Field of Two-Dimensional Crystal-Based Photodetectors. Nanomaterials 2023, 13, 1379. [Google Scholar] [CrossRef] [PubMed]
- Pieri, F.; Fiori, G. Paper-based WS2 photodetectors fabricated by all-dry techniques. Opto-Electron. Adv. 2023, 6, 230077. [Google Scholar] [CrossRef]
- Aftab, S.; Hegazy, H.H. Emerging Trends in 2D TMDs Photodetectors and Piezo-Phototronic Devices. Small 2023, 19, 2205778. [Google Scholar] [CrossRef]
- Wu, J.B.; Wang, N.; Yan, X.D.; Wang, H. Emerging low-dimensional materials for mid-infrared detection. Nano Res. 2021, 14, 1863–1877. [Google Scholar] [CrossRef]
- Wu, M.; Xiao, Y.H.; Zeng, Y.; Zhou, Y.L.; Zeng, X.B.; Zhang, L.N.; Liao, W.G. Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat 2021, 3, 362–396. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Yim, C.; O’Brien, M.; McEvoy, N.; Riazimehr, S.; Schafer-Eberwein, H.; Bablich, A.; Pawar, R.; Iannaccone, G.; Downing, C.; Fiori, G.; et al. Heterojunction Hybrid Devices from Vapor Phase Grown MoS2. Sci. Rep. 2014, 4, 5458. [Google Scholar] [CrossRef]
- Li, B.; Shi, G.; Lei, S.D.; He, Y.M.; Gao, W.L.; Gong, Y.J.; Ye, G.L.; Zhou, W.; Keyshar, K.; Hao, J.; et al. 3D Band Diagram and Photoexcitation of 2D-3D Semiconductor Heterojunctions. Nano Lett. 2015, 15, 5919–5925. [Google Scholar] [CrossRef]
- Lan, C.Y.; Li, C.; Wang, S.; He, T.Y.; Jiao, T.P.; Wei, D.P.; Jing, W.K.; Li, L.Y.; Liu, Y. Zener Tunneling and Photoresponse of a WS2/Si van der Waals Heterojunction. ACS Appl. Mater. Interfaces 2016, 8, 18375–18382. [Google Scholar] [CrossRef]
- Aftab, S.; Khan, M.F.; Min, K.A.; Nazir, G.; Afzal, A.M.; Dastgeer, G.; Akhtar, I.; Seo, Y.; Hong, S.; Eom, J. Van der Waals heterojunction diode composed of WS2 flake placed on p-type Si substrate. Nanotechnology 2018, 29, 045201. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Y.Q.; Mi, L.F.; Wang, H.; Zhu, Z.F.; Wu, Q.Y.; Zhang, Y.G.; Jiang, Y. In Situ Fabrication of Vertical Multilayered MoS2/Si Homotype Heterojunction for High-Speed Visible-Near-Infrared Photodetectors. Small 2016, 12, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.J.; Xu, Y.; Yu, Y.Q.; Xu, K.W.; Mao, J.; Xu, G.B.; Ma, Y.M.; Wu, D.; Jie, J.S. Ultrahigh Speed and Broadband Few-Layer MoTe2/Si 2D-3D Heterojunction-Based Photodiodes Fabricated by Pulsed Laser Deposition. Adv. Funct. Mater. 2020, 30, 1907951. [Google Scholar] [CrossRef]
- Lei, W.Y.; Cao, G.W.; Wen, X.K.; Yang, L.; Zhang, P.; Zhuge, F.; Chang, H.; Zhang, W. High performance MoTe2/Si het-erojunction photodiodes. Appl. Phys. Lett. 2021, 119, 131902. [Google Scholar] [CrossRef]
- Wu, Y.P.; Wu, S.E.; Hei, J.J.; Zeng, L.H.; Lin, P.; Shi, Z.F.; Chen, Q.M.; Li, X.J.; Yu, X.C.; Wu, D. Van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging. Nano Res. 2023, 16, 11422–11429. [Google Scholar] [CrossRef]
- Jang, H.Y.; Nam, J.H.; Yoon, J.; Kim, Y.; Park, W.; Cho, B.J. One-step H2S reactive sputtering for 2D MoS2/Si heterojunction photodetector. Nanotechnology 2020, 31, 225205. [Google Scholar] [CrossRef]
- Wang, L.; Jie, J.S.; Shao, Z.B.; Zhang, Q.; Zhang, X.H.; Wang, Y.M.; Sun, Z.; Lee, S.T. MoS2/Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, High-Detectivity, Self-Driven Visible-Near Infrared Photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919. [Google Scholar] [CrossRef]
- Kim, H.S.; Patel, M.; Kim, J.; Jeong, M.S. Growth of Wafer-Scale Standing Layers of WS2 for Self-Biased High-Speed UV-Visible-NIR Optoelectronic Devices. ACS Appl. Mater. Interfaces 2018, 10, 3964–3974. [Google Scholar] [CrossRef]
- Cong, R.D.; Qiao, S.; Liu, J.H.; Mi, J.S.; Yu, W.; Liang, B.L.; Fu, G.S.; Pan, C.F.; Wang, S.F. Ultrahigh, Ultrafast, and Self-Powered Visible-Near-Infrared Optical Position-Sensitive Detector Based on a CVD-Prepared Vertically Standing Few-Layer MoS2/Si Heterojunction. Adv. Sci. 2018, 5, 1700502. [Google Scholar] [CrossRef]
- Qiao, S.; Cong, R.D.; Liu, J.H.; Liang, B.L.; Fu, G.S.; Yu, W.; Ren, K.L.; Wang, S.F.; Pan, C.F. A vertically layered MoS2/Si heterojunction for an ultrahigh and ultrafast photoresponse photodetector. J. Mater. Chem. C 2018, 6, 3233–3239. [Google Scholar] [CrossRef]
- Dhyani, V.; Dwivedi, P.; Dhanekar, S.; Das, S. High performance broadband photodetector based on MoS2/porous silicon heterojunction. Appl. Phys. Lett. 2017, 111, 191107. [Google Scholar] [CrossRef]
- Wu, D.; Guo, C.G.; Wang, Z.Y.; Ren, X.Y.; Tian, Y.Z.; Shi, Z.F.; Lin, P.; Tian, Y.T.; Chen, Y.S.; Li, X.J. A defect-induced broadband photodetector based on WS2/pyramid Si 2D/3D mixed-dimensional heterojunction with a light confinement effect. Nanoscale 2021, 13, 13550–13557. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.H.; Yang, M.M.; Qiu, Z.C.; Luo, Z.T.; Chen, Y.; Du, C.; Yao, J.D.; Dong, H.F.; Zheng, Z.Q.; Li, J.B. Mixed-dimensional WS2/WSe2/Si unipolar barrier heterostructure for high-performance photodetection. Sci. China Mater. 2023, 66, 2354–2363. [Google Scholar] [CrossRef]
- Choi, J.M.; Jang, H.Y.; Kim, A.R.; Kwon, J.D.; Cho, B.; Park, M.H.; Kim, Y. Ultra-flexible and rollable 2D-MoS2/Si heterojunction-based near-infrared photodetector via direct synthesis. Nanoscale 2021, 13, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, W.K.; Chai, Y.; Li, H.Q.; Tian, M.L.; Zhai, T.Y. Few-Layered PtS2 Phototransistor on h-BN with High Gain. Adv. Funct. Mater. 2017, 27, 1701011. [Google Scholar] [CrossRef]
- Ciarrocchi, A.; Avsar, A.; Ovchinnikov, D.; Kis, A. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat. Commun. 2018, 9, 919. [Google Scholar] [CrossRef]
- Yu, X.C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q.S.; Lin, H.; Zhou, W.; Lin, J.H.; Suenaga, K.; Liu, Z.; et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545. [Google Scholar] [CrossRef]
- Zhao, Y.D.; Qiao, J.S.; Yu, Z.H.; Yu, P.; Xu, K.; Lau, S.P.; Zhou, W.; Liu, Z.; Wang, X.R.; Ji, W.; et al. High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs. Adv. Mater. 2017, 29, 1604230. [Google Scholar] [CrossRef]
- Aftab, S.; Samiya, M.; Liao, W.G.; Iqbal, M.W.; Ishfaq, M.; Ramachandraiah, K.; Ajmal, H.M.S.; Haque, H.M.U.; Yousuf, S.; Ahmed, Z.; et al. Switching photodiodes based on (2D/3D) PdSe2/Si heterojunctions with a broadband spectral response. J. Mater. Chem. C 2021, 9, 3998–4007. [Google Scholar] [CrossRef]
- Aftab, S.; Samiya, M.; Iqbal, M.W.; Kabir, F.; Iqbal, M.Z.; Shehzad, M.A. Platinum Disulfide (PtS2) and Silicon Pyramids: Efficient 2D/3D Heterojunction Tunneling and Breakdown Diodes. ACS Appl. Electron. Mater. 2022, 4, 917–924. [Google Scholar] [CrossRef]
- Yim, C.; McEvoy, N.; Riazimehr, S.; Schneider, D.S.; Gity, F.; Monaghan, S.; Hurley, P.K.; Lemme, M.C.; Duesberg, G.S. Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes. Nano Lett. 2018, 18, 1794–1800. [Google Scholar] [CrossRef]
- Zeng, L.H.; Lin, S.H.; Lou, Z.H.; Yuan, H.Y.; Long, H.; Li, Y.Y.; Lu, W.; Lau, S.P.; Wu, D.; Tsang, Y.H. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 2018, 10, 352–362. [Google Scholar] [CrossRef]
- Wu, D.; Jia, C.; Shi, F.H.; Zeng, L.H.; Lin, P.; Dong, L.; Shi, Z.F.; Tian, Y.T.; Li, X.J.; Jie, J.S. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. J. Mater. Chem. A 2020, 8, 3632–3642. [Google Scholar] [CrossRef]
- Xie, C.; Zeng, L.H.; Zhang, Z.X.; Tsang, Y.H.; Luo, L.B.; Lee, J.H. High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate. Nanoscale 2018, 10, 15285–15293. [Google Scholar] [CrossRef]
- Liang, F.X.; Zhao, X.Y.; Jiang, J.J.; Hu, J.G.; Xie, W.Q.; Lv, J.; Zhang, Z.X.; Wu, D.; Luo, L.B. Light Confinement Effect Induced Highly Sensitive, Self-Driven Near-Infrared Photodetector and Image Sensor Based on Multilayer PdSe2/Pyramid Si Heterojunction. Small 2019, 15, 1903831. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.H.; Wu, D.; Jie, J.S.; Ren, X.Y.; Hu, X.; Lau, S.P.; Chai, Y.; Tsang, Y.H. Van der Waals Epitaxial Growth of Mosaic-Like 2D Platinum Ditelluride Layers for Room-Temperature Mid-Infrared Photodetection up to 10.6 um. Adv. Mater. 2020, 32, 2004412. [Google Scholar] [CrossRef]
- Zeng, L.H.; Wu, D.; Lin, S.H.; Xie, C.; Yuan, H.Y.; Lu, W.; Lau, S.P.; Chai, Y.; Luo, L.B.; Li, Z.J.; et al. Controlled Synthesis of 2D Palladium Diselenide for Sensitive Photodetector Applications. Adv. Funct. Mater. 2019, 29, 1806878. [Google Scholar] [CrossRef]
- Zhang, X.A.; Wang, J.; Zhang, S.C. Topological insulators for high-performance terahertz to infrared applications. Phys. Rev. B 2010, 82, 245107. [Google Scholar] [CrossRef]
- Yao, J.D.; Shao, J.M.; Wang, Y.X.; Zhao, Z.R.; Yang, G.W. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale 2015, 7, 12535–12541. [Google Scholar] [CrossRef]
- Zhang, H.B.; Zhang, X.J.; Liu, C.; Lee, S.T.; Jie, J.S. High-Responsivity, High-Detectivity, Ultrafast Topological Insulator Bi2Se3/Silicon Heterostructure Broadband Photodetectors. ACS Nano 2016, 10, 5113–5122. [Google Scholar] [CrossRef]
- Li, M.Z.; Wang, Z.H.; Gao, X.P.A.; Zhang, Z.D. Vertically Oriented Topological Insulator Bi2Se3 Nanoplates on Silicon for Broadband Photodetection. J. Phys. Chem. C 2020, 124, 10135–10142. [Google Scholar] [CrossRef]
- Hong, X.; Shen, J.; Tang, X.Y.; Xie, Y.; Su, M.; Tai, G.J.; Yao, J.; Fu, Y.C.; Ji, J.Y.; Liu, X.Q.; et al. High-performance broadband photodetector with in-situ-grown Bi2Se3 film on micropyramidal Si substrate. Opt. Mater. 2021, 117, 111118. [Google Scholar] [CrossRef]
- Ali, S.; Raza, A.; Afzal, A.M.; Iqbal, M.W.; Hussain, M.; Imran, M.; Assiri, M.A. Recent Advances in 2D-MXene Based Nanocomposites for Optoelectronics. Adv. Mater. Interfaces 2022, 9, 2200556. [Google Scholar] [CrossRef]
- Liu, Z.X.; Alshareef, H.N. MXenes for Optoelectronic Devices. Adv. Electron. Mater. 2021, 7, 2100295. [Google Scholar] [CrossRef]
- Kang, Z.; Ma, Y.A.; Tan, X.Y.; Zhu, M.; Zheng, Z.; Liu, N.S.; Li, L.Y.; Zou, Z.G.; Jiang, X.L.; Zhai, T.Y.; et al. MXene-Silicon Van Der Waals Heterostructures for High-Speed Self-Driven Photodetectors. Adv. Electron. Mater. 2017, 3, 1700165. [Google Scholar] [CrossRef]
- Song, W.D.; Liu, Q.; Chen, J.X.; Chen, Z.; He, X.; Zeng, Q.G.; Li, S.T.; He, L.F.; Chen, Z.T.; Fang, X.S. Interface Engineering Ti3C2 MXene/Silicon Self-Powered Photodetectors with High Responsivity and Detectivity for Weak Light Applications. Small 2021, 17, 2100439. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.F.; Li, M.J.; Liu, Z.Y.; Sun, Y.L.; Ding, Y.T.; Chen, Z.M. Heterostructured MXene/Si Photodiodes With Sub-1-nm h-BN Blocking Layers for Suppressing Dark Current. IEEE Electron Device Lett. 2023, 44, 476–479. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Wang, C.; Chai, Y. Emerging Group-VI Elemental 2D Materials: Preparations, Properties, and Device Applications. Small 2020, 16, 2003319. [Google Scholar] [CrossRef]
- Qiao, H.; Liu, H.T.; Huang, Z.Y.; Hu, R.; Ma, Q.; Zhong, J.X.; Qi, X. Tunable Electronic and Optical Properties of 2D Monoelemental Materials Beyond Graphene for Promising Applications. Energy Environ. Mater. 2021, 4, 522–543. [Google Scholar] [CrossRef]
- Ba, L.A.; Doring, M.; Jamier, V.; Jacob, C. Tellurium: An element with great biological potency and potential. Org. Biomol. Chem. 2010, 8, 4203–4216. [Google Scholar] [CrossRef]
- Shi, Z.; Cao, R.; Khan, K.; Tareen, A.K.; Liu, X.S.; Liang, W.Y.; Zhang, Y.; Ma, C.Y.; Guo, Z.N.; Luo, X.L.; et al. Two-Dimensional Tellurium: Progress, Challenges, and Prospects. Nano-Micro Lett. 2020, 12, 99. [Google Scholar] [CrossRef]
- Wang, Y.X.; Qiu, G.; Wang, R.X.; Huang, S.Y.; Wang, Q.X.; Liu, Y.Y.; Du, Y.C.; Goddard, W.A.; Kim, M.J.; Xu, X.F.; et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228–236. [Google Scholar] [CrossRef]
- Wang, D.W.; Yang, A.J.; Lan, T.S.; Fan, C.Y.; Pan, J.B.; Liu, Z.; Chu, J.F.; Yuan, H.; Wang, X.H.; Rong, M.Z.; et al. Tellurene based chemical sensor. J. Mater. Chem. A 2019, 7, 26326–26333. [Google Scholar] [CrossRef]
- Zheng, T.; Yang, M.M.; Sun, Y.M.; Han, L.X.; Pan, Y.; Zhao, Q.X.; Zheng, Z.Q.; Huo, N.J.; Gao, W.; Li, J.B. A solution-fabricated tellurium/silicon mixed-dimensional van der Waals heterojunction for self-powered photodetectors. J. Mater. Chem. C 2022, 10, 7283–7293. [Google Scholar] [CrossRef]
Materials | Measurement Conditions | R/A·W−1 | D*/Jones | EQE | Time (Rise/Down) | Ref. |
---|---|---|---|---|---|---|
3L Gr/Si+PCA | 885 nm/−2 V | 0.435 | 65% | [47] | ||
Gr/n-Si | 890 nm/0 V | 0.73 | 4.08 × 1013 (in air) | 0.32 ms/0.75 ms | [77] | |
5.77 × 1013 (in vacuum) | ||||||
Si QDs/Gr/Si | 877 nm/−1 V | 0.495 | 7.4 × 109 | 25 ns | [80] | |
Gr/Si NTCAs | 780 nm/0 V | 0.45 | 97% | 60 μs/105 μs | [84] | |
Gr/Si | 1550 nm/10 V | 0.02 | [86] | |||
nMag/Si | 1300 nm/−1 V | 1.6 × 1011 | 20 ns/200 ns | [48] | ||
Gr/SiO2/p-Si | 633 nm/−5 V | 1.2 | 235% | 40 ns/100 ns | [89] | |
Gr/SiO2/n-Si | 633 nm/−5 V | 0.45 | 40 ns/100 ns | [89] | ||
Gr/Si-tip | 880 nm/−0.5 V | 3 | 88% | [90] | ||
Gr/AlN/n-Si | 850 nm/−10 V | 3.96 | 1.13 × 108 | [91] | ||
Gr/WS2/Si | 800 nm/−0.3 V | 54.5 | 4.1 × 1012 | 45 μs/210 μs | [93] | |
Gr/WS2/Si | 690 nm/−5 V | 8.96 × 104 | 8.86 × 1011 | 0.84 ms/2.1 ms | [94] | |
ZnO/Gr/Si | 850 nm/ Vg = −15, Vd = 0.1 V | 70 | 2 × 1013 | [95] |
Materials | Measurement Conditions | R/A·W−1 | D*/Jones | EQE | Time (Rise/Down) | Ref. |
---|---|---|---|---|---|---|
MoS2/Si | 808 nm/−2 V | 0.07 | [62] | |||
WS2/Si | 660 nm/−5 V | 5.7 | 670 μs/998 μs | [104] | ||
MoS2/Si | 650 nm/−2 V | 11.9 | 2.1 × 1010 | 30.5 μs/71.6 μs | [106] | |
MoTe2/Si | 980 nm/0 V | 0.19 | 6.8 × 1013 | 24% | 150 ns/350 ns | [107] |
MoTe2/Si | 700 nm/0 V | 0.26 | 2 × 1013 | 5 ns/8 ns | [108] | |
MoSe2/Si | 980 nm/0 V | 0.7205 | 1013 | 91% | 13 μs/35 μs | [109] |
MoS2/Si | 808 nm/0 V | 0.3 | 1013 | 3 μs/40 μs | [111] | |
WS2/Si | 365 nm/0 V | 0.004 | 1.5 × 1010 | 1.1 μs | [112] | |
MoS2/Si | 808 nm/−2 V | 0.908 | 1.889 × 1013 | 56 ns/825 ns | [114] | |
MoS2/Si | 550 nm/5 V | 9 | 1014 | 9 μs/7 μs | [115] | |
RGO-MoS2/Pyramid Si | 808 nm/0 V | 21.8 | 3.8 × 1015 | 2.8 μs/46.6 μs | [58] | |
WS2/Pyramid Si | 980 nm/0 V | 0.29 | 2.6 × 1014 | 5.2 μs/22.3 μs | [116] | |
1T’-MoTe2/Si | 980 nm/0 V | 0.526 | 2.17 × 1012 | 1.9 μs/41.5 μs | [49] | |
WS2/WSe2/Si | 405 nm/1.5 V | 3.72 | 2.39 × 1012 | 1140% | 8.47ms/7.98ms | [117] |
MoS2/Si | 850 nm/6 V | 0.01007 | 4.53 × 1010 | 78 μs/76 μs | [118] |
Materials | Measurement Conditions | R/A·W−1 | D*/Jones | EQE | Time (Rise/Down) | Ref. |
---|---|---|---|---|---|---|
PtS2/Si | 500 nm/1 V | 11.88 | 2.6 s/2.7 s | [124] | ||
PtSe2/Si | 970 nm/−2 V | 0.49 | [125] | |||
PtSe2/SiNWA | 780 nm/−5 V | 12.65 | 2.5 × 1013 | 10.1 μs/19.5 μs | [126] | |
PdSe2/SiNWA | 980 nm/0 V | 0.726 | 3.19 × 1014 | 25.1 μs/34 μs | [127] | |
PtSe2/Si | 880 nm/0 V | 0.52 | 3.26 × 1013 | 55.3 μs/170.5 μs | [128] | |
PdSe2/Pyramid Si | 980 nm/0 V | 0.456 | 9.97 × 1013 | 58% | [129] | |
PdSe2/Si | 780 nm/0 V | 0.3002 | 1013 | 38 μs/44 μs (BPQDs@PdSe2/Si) | [131] | |
PtSe2/Si | 808 nm/0 V | 8.06 | 4.78 × 1013 | [60] |
Materials | Measurement Conditions | R/A·W−1 | D*/Jones | EQE | Time (Rise/Down) | Ref. |
---|---|---|---|---|---|---|
Bi2Te3/Si | 635 nm/0 V | 0.017 | 2.5 × 1011 | [133] | ||
635 nm/−5 V | 1 | |||||
Bi2Se3/Si | 808 nm/0 V | 2.6 | 4.39 × 1012 | 2.5 μs/5.5 μs | [134] | |
808 nm/−1 V | 24.28 | 1.21 × 1012 | ||||
Bi2Se3/Pyramid Si | 1550 nm/0 V | 3.06 × 10−8 | 1.37 × 105 | 0.52 ms/0.44 ms | [136] | |
2700 nm/0 V | 1.8 × 10−8 | 1.53 × 106 | 0.585 ms/0.535 ms | |||
Ti3C2/Si | 910 nm/0 V | 0.402 | 2.3 × 1013 | 60.3% | 0.14 ms/1.6 ms | [140] |
Te/Si | 808 nm/0 V | 6.49 | 7.79 × 1012 | 998% | 26 ms/30 ms | [148] |
Te/Si | 405 nm/−2 V | 249 | 1.15 × 1011 | 76,350% | 3.7 ms/4.4 ms | [66] |
Te/Si | 1064 nm/0 V | 437.24 | 4.86 × 1011 | 920 ns/200 μs | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Lan, C.; Zhou, S.; Li, C. Recent Advances in Photodetectors Based on Two-Dimensional Material/Si Heterojunctions. Appl. Sci. 2023, 13, 11037. https://doi.org/10.3390/app131911037
Wei Y, Lan C, Zhou S, Li C. Recent Advances in Photodetectors Based on Two-Dimensional Material/Si Heterojunctions. Applied Sciences. 2023; 13(19):11037. https://doi.org/10.3390/app131911037
Chicago/Turabian StyleWei, Yiyang, Changyong Lan, Shuren Zhou, and Chun Li. 2023. "Recent Advances in Photodetectors Based on Two-Dimensional Material/Si Heterojunctions" Applied Sciences 13, no. 19: 11037. https://doi.org/10.3390/app131911037
APA StyleWei, Y., Lan, C., Zhou, S., & Li, C. (2023). Recent Advances in Photodetectors Based on Two-Dimensional Material/Si Heterojunctions. Applied Sciences, 13(19), 11037. https://doi.org/10.3390/app131911037