Design of a Dynamic Secondary Mirror Truss Adjustment Mechanism for Large Aperture Telescopes
Abstract
:1. Introduction
2. Kinematic Modeling of the Mechanism
2.1. Kinematical Modeling
2.2. Analysis of the Model Degrees of Freedom
2.3. Inverse Solution Model
2.4. Positive Solution Model
3. Design of Dynamic Secondary Mirror Truss Adjustment Mechanism
4. Finite Element Simulation Analysis
4.1. Statistical Analysis
4.2. Modal Analysis
5. Experimental Validations
5.1. Motion Resolution Tests
5.2. Motion Accuracy Tests
5.3. Practical Workspace Testing of the Mechanism
6. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, J.; Han, H.; Zhang, Y.; Xu, Z.; Mu, D.; Wu, Q. The working space of parallel adjustment mechanism with offset joints. Mod. Manuf. Eng. 2019, 10, 45–51. [Google Scholar]
- He, L. Design and Research on Adjustment Mechanism for Secondary Mirror of Large Aperture Telescope. Master’s Thesis, University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), Changchun, China, 2018. [Google Scholar]
- Lourie, N.P.; Ade, P.A.; Angile, F.E.; Ashton, P.C.; Austermann, J.E.; Devlin, M.J.; Dober, B.; Galitzki, N.; Gao, J.; Gordon, S.; et al. Preflight characterization of the BLAST-TNG receiver and detector arrays. SPIE Astron. Telesc. + Instrum. 2018, 107080, 52–66. [Google Scholar]
- Lourie, N.P.; Angilé, F.E.; Ashton, P.C.; Catanzaro, B.; Devlin, M.J.; Dicker, S.; Didier, J.; Dober, B.; Fissel, L.M.; Galitzki, N.; et al. Design and Characterization of a Balloon-Borne Diffraction-Limited Submillimeter Telescope Platform for BLAST-TNG. SPIE Astron. Telesc. + Instrum. 2018, 10700, 631–649. [Google Scholar]
- Abrams, D.C.; Dee, K.; Agócs, T.; Lhome, E.; Peñate, J.; Jaskó, A.; Bányai, E.; Burgal, J.A.; Dalton, G.; Middleton, K.; et al. The mechanical design for the WEAVE prime focus corrector system. Ground-Based Airborne Instrum. Astron. V. Int. Soc. Opt. Photon. 2014, 9147, 906–923. [Google Scholar]
- Canchado, M.; Martín-Nuño, C.; Romero, A.; Aguerri, J.A.L.; Herreros, J.M.; Hernández, J.M.D.; Burgal, J.A.; Abrams, C.C.; Dee, K.; Lhomé, É.; et al. The WEAVE prime focus Correction: From design to integration. Adv. Opt. Mech. Technol. Telesc. Instrum. III 2016, 9912, 1932–1946. [Google Scholar]
- Mancini, D.; Mancini, G.; Perrotta, F.; Ferragina, L.; Fierro, D.; Garelli, V.F.; Pellone, L.; Caputi, O.; Sciarretta, G.; Valentino, M. VST project: Mechanical design optimization. Astron. Tele-Scopes Instrument. Int. Soc. Opt. Photon. 2003, 4837, 379–388. [Google Scholar]
- Schipani, P.; Perrotta, F.; Molfese, C.; Caputi, O.; Ferragina, L.; Marty, L.; Capaccioli, M.; Gallieni, D.; Fumi, P.; Anaclerio, E.; et al. The VST secondary mirror support system. SPIE Astron. Telesc. + Instrument. Int. Soc. Opt. Photon. 2008, 7018, 1380–1389. [Google Scholar]
- Schipani, P.; D’Orsi, S.; Fierro, D.; Marty, L.; Perrotta, F.; Arcidiacono, C. Performance of the VST secondary mirror support system. Proc. SPIE—Int. Soc. Opt. Eng. 2010, 7739, 1102–1110. [Google Scholar]
- Neill, D.R.; Gressler, W.J.; Sebag, J. LSST Secondary Mirror Assembly Baseline Design. SPIE. Groun //SPIE. Ground-Based Airborne Telesc. IV 2012, 8444, 169–187. [Google Scholar]
- Neill, D.R.; Sneed, R.; Dawson, J.; Sebag, J.; Gressler, W. Baseline design and requirements for the LSST hexapod and rotator. SPIE. Adv. Opt. Mech. Technol. Telesc. Instrum. 2014, 9151, 772–787. [Google Scholar]
- Cao, Y.Y.; Wang, J.L.; Chen, T. Active compensation of aberration for large ground-based telescope based on Hexapod platform. Opt. Precis. Eng. 2020, 28, 2452–2465. [Google Scholar] [CrossRef]
- Zago, L.; Schwab, P.; Gallieni, D. Development and testing of a high-precision high-stiffness linear actuator for the focus-center mechanism of the SOFIA secondary mirror. Proc. SPIE Int. Soc. Opt. Eng. 2000, 4014, 392–398. [Google Scholar]
- Zago, L.; Genequand, P.M.; Moerschell, J. Extremely compact secondary mirror unit for the SOFIA Telescope capable of 6-degree-of-freedom alignment plus chopping. Proc. SPIE—Int. Soc. Opt. Eng. 2007, 3352, 666–674. [Google Scholar]
- Zhang, J.; Fei, Y. Secondary mirror supporting structure for 1.2 m telescope. Opt. Precis. Eng. 2017, 25, 2614–2619. [Google Scholar]
- Zhao, W.; Dong, J. Accuracy analysis and testing for secondary mirror adjusting mechanism in large space telescope. Opt. Precis. Eng. 2019, 27, 2374–2383. [Google Scholar] [CrossRef]
- Li, X.B. Research on Secondary Mirror’s Correction Technology for the Misaligned Wave Aberration of Large Aperture Space Remote Sensor. Ph.D. Thesis, University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), Changchun, China, 2020. [Google Scholar]
Modal | 1 | 2 | 3~4 | 5~8 | 9~10 |
---|---|---|---|---|---|
Frequency/Hz | 61.24 | 74.77 | 157.33 | 348.73 | 434.64 |
Vibration type | The vibration of the secondary mirror chambers up and down | Secondary mirror chamber rotation | Secondary mirror chamber translation mode | Blade twist vibration | Complex Modes |
Direction of Movement | Stroke Measurement Results | Design Requirements |
---|---|---|
z-directional translation | ±5.19 mm | ±5 mm |
x-directional deflection | ±0.577° | ±0.3° |
y-directional deflection | ±0.574° | ±0.3° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, B.; Wang, F.; Zhang, B. Design of a Dynamic Secondary Mirror Truss Adjustment Mechanism for Large Aperture Telescopes. Appl. Sci. 2023, 13, 1058. https://doi.org/10.3390/app13021058
Lu B, Wang F, Zhang B. Design of a Dynamic Secondary Mirror Truss Adjustment Mechanism for Large Aperture Telescopes. Applied Sciences. 2023; 13(2):1058. https://doi.org/10.3390/app13021058
Chicago/Turabian StyleLu, Baowei, Fuguo Wang, and Benlei Zhang. 2023. "Design of a Dynamic Secondary Mirror Truss Adjustment Mechanism for Large Aperture Telescopes" Applied Sciences 13, no. 2: 1058. https://doi.org/10.3390/app13021058
APA StyleLu, B., Wang, F., & Zhang, B. (2023). Design of a Dynamic Secondary Mirror Truss Adjustment Mechanism for Large Aperture Telescopes. Applied Sciences, 13(2), 1058. https://doi.org/10.3390/app13021058