Enhancing Laser Damage Resistance of Co2+:MgAl2O4 Crystal by Plasma Etching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
3.1. Surface Topography and Roughness
3.2. Transmittance
3.3. TEM Analysis
3.4. Laser-Induced Damage Threshold
- It was assumed that low-LIDT defects were completely removed for the 250 nm etching case. Therefore, the LIDT of the other ensemble of 239 J/cm2 was obtained by fitting the 250 nm etched sample data (Figure 7d) and was used for the defect density extraction, where the “high-LIDT” defect ensemble was also already present (50 nm, 100 nm and 400 nm etched samples)
- Defect densities of the 50 nm etched sample (Figure 7b) were obtained by fitting data in two ranges separately. A low LIDT of 55 J/cm2 (marked as a red line) was used for the 0–300 J/cm2 range fitting (“Fit 1”), a high LIDT of 239 J/cm2 (marked as a blue line) was fixed for the 300–600 J/cm2 range fitting (“Fit 2”—also assuming, that damage probabilities were zero in the 0–300 J/cm2 range for this high-LIDT defect ensemble). It should be noted that here, the LIDTs of two different defect ensembles are shown, but not the LIDT of the 50 nm etched sample, which was 85 ± 11 J/cm2 (Figure 6);
- Defect densities for the 100 nm and 400 nm etched samples (Figure 7c,e) were calculated by using a LIDT value of 239 J/cm2, obtained for the 250 nm etched sample;
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mlynczak, J.; Belghachem, N. High peak power generation in thermally bonded Er3+, Yb3+: Glass/Co2+: MgAl2O3 microchip laser for telemetry application. Laser Phys. Lett. 2015, 12, 045803. [Google Scholar] [CrossRef]
- van As, G. Erbium lasers in dentistry. Dent. Clin. 2004, 48, 1017–1059. [Google Scholar] [CrossRef]
- Lutzmann, P.; Frank, R.; Hebel, M.; Ebert, R. Potential of Remote Laser Vibration Sensing for Military Applications; Forschungsinstitut Fuer Optronik und Mustererkennung Gutleuthausstrasse (DE): Ettlingen, Germany, 2005. [Google Scholar]
- Qi, Y.; Bai, Z.; Wang, Y.; Zhang, X.; Qi, Y.; Ding, J.; Bai, Z.; Lu, Z. Research progress of all-solid-state passively Q-switched Er:Yb:glass lasers. Infrared Phys. Technol. 2021, 116, 103727. [Google Scholar] [CrossRef]
- Siegman, A.E. Laser Q-Switching. In Lasers; University Science Books: Sausalito, CA, USA, 1986. [Google Scholar]
- Kozlowski, M.R.; Carr, J.; Hutcheon, I.D.; Torres, R.A.; Sheehan, L.M.; Camp, D.W.; Yan, M. Depth profiling of polishing-induced contamination on fused silica surfaces. In Proceedings of the Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 6–8 October 1997; Volume 3244, p. 11. [Google Scholar] [CrossRef] [Green Version]
- Suratwala, T.; Steele, W.; Wong, L.; Feit, M.D.; Miller, P.E.; Dylla-Spears, R.; Shen, N.; Desjardin, R. Chemistry and formation of the Beilby layer during polishing of fused silica glass. J. Am. Ceram. Soc. 2015, 98, 2395–2402. [Google Scholar] [CrossRef]
- Menapace, J.A.; Penetrante, B.; Golini, D.; Slomba, A.F.; Miller, P.E.; Parham, T.G.; Nichols, M.; Peterson, J. Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused-silica optics. In Proceedings of the Boulder Damage, 3–5 June 2002; p. 13. [Google Scholar] [CrossRef] [Green Version]
- Salo, V.; Atroschenko, L.; Garnov, S.; Khodeyeva, N. Structure, impurity composition, and laser damage threshold of the subsurface layers in KDP and KD*P single crystals. In Proceedings of the Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 30 October–1 November 1995; Volume 2714. [Google Scholar] [CrossRef]
- Vlasov, A.; Rez, J.; Fil’chenkov, M. Beilby layers on crystal surfaces. Cryst. Res. Technol. 1988, 23, 1093–1100. [Google Scholar] [CrossRef]
- Yao, C.; Shen, W.; Hu, X.; Hu, C. Evaluation of the surface and subsurface evolution of single-crystal yttrium aluminum garnet during polishing. Appl. Surf. Sci. 2023, 608, 155219. [Google Scholar] [CrossRef]
- Luo, H.; Ajmal, K.M.; Liu, W.; Yamamura, K.; Deng, H. Atomic-scale and damage-free polishing of single crystal diamond enhanced by atmospheric pressure inductively coupled plasma. Carbon 2021, 182, 175–184. [Google Scholar] [CrossRef]
- Kamimura, T.; Akamatsu, S.; Yamamoto, M.; Yamato, I.; Shiba, H.; Motokoshi, S.; Sakamoto, T.; Jitsuno, T.; Okamoto, T.; Yoshida, K. Enhancement of surface-damage resistance by removing subsurface damage in fused silica. In Proceedings of the XXXV Annual Symposium on Optical Materials for High Power Lasers: Boulder Damage Symposium, Boulder, CO, USA, 22–24 September 2004; Volume 5273, p. 6. [Google Scholar] [CrossRef]
- Pfiffer, M.; Cormont, P.; Fargin, E.; Bousquet, B.; Dussauze, M.; Lambert, S.; Neauport, J. Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm. Opt. Express 2017, 25, 4607–4620. [Google Scholar] [CrossRef] [Green Version]
- Brusasco, R.M.; Penetrante, B.M.; Peterson, J.E.; Maricle, S.M.; Menapace, J.A. UV-laser conditioning for reduction of 351-nm damage initiation in fused silica. In Proceedings of the Boulder Damage, Boulder, CO, USA, 1–3 October 2002; Volume 4679, p. 8. [Google Scholar] [CrossRef] [Green Version]
- Juškevičius, K.; Buzelis, R.; Abromavičius, G.; Samuilovas, R.; Abbas, S.; Belosludtsev, A.; Drazdys, R.; Kičas, S. Argon plasma etching of fused silica substrates for manufacturing high laser damage resistance optical interference coatings. Opt. Mater. Express 2017, 7, 3598–3607. [Google Scholar] [CrossRef]
- Abromavičius, G.; Juodagalvis, T.; Buzelis, R.; Juškevičius, K.; Drazdys, R.; Kičas, S. Oxygen plasma etching of fused silica substrates for high power laser optics. Appl. Surf. Sci. 2018, 453, 477–481. [Google Scholar] [CrossRef]
- Shao, T.; Sun, L.; Li, W.; Zhou, X.; Wang, F.; Huang, J.; Ye, X.; Yang, L.; Zheng, W. Understanding the role of fluorine-containing plasma on optical properties of fused silica optics during the combined process of RIE and DCE. Opt. Express 2019, 27, 23307–23320. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, T.; Nakai, K.; Mori, Y.; Sasaki, T.; Yoshida, H.; Nakatuka, M.; Tanaka, M.; Toda, S.; Tanaka, M.; Yoshida, K. Improvement of laser-induced surface damage in UV optics by ion beam etching (CsLiB6O10 and fused silica). In Proceedings of the Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 28 September–1 October 1998; Volume 3578, pp. 695–701. [Google Scholar] [CrossRef]
- Kamimura, T.; Yoshimura, M.; Mori, Y.; Sasaki, T.; Yoshida, K. Effect of RF Plasma Etching on Surface Damage in CsLiB6O10 Crystal. Jpn. J. Appl. Phys. 1999, 38, L181–L183. [Google Scholar] [CrossRef]
- Kubart, T.; Nyberg, T.; Berg, S. Modelling of low energy ion sputtering from oxide surfaces. J. Phys. D Appl. Phys. 2010, 43, 205204. [Google Scholar] [CrossRef] [Green Version]
- Yumashev, K.; Denisov, I.; Posnov, N.; Prokoshin, P.; Mikhailov, V. Nonlinear absorption properties of Co2+:MgAl2O4 crystal. Appl. Phys. B 2000, 70, 179–184. [Google Scholar] [CrossRef]
- Papernov, S.; Brunsman, M.D.; Oliver, J.B.; Hoffman, B.N.; Kozlov, A.A.; Demos, S.G.; Shvydky, A.; Cavalcante, F.H.M.; Yang, L.; Menoni, C.S.; et al. Optical properties of oxygen vacancies in HfO2 thin films studied by absorption and luminescence spectroscopy. Opt. Express 2018, 26, 17608–17623. [Google Scholar] [CrossRef]
- Xu, C.; Yi, P.; Fan, H.; Qi, J.; Qiang, Y.; Liu, J.; Tao, C.; Li, D. Correlations between the oxygen deficiency and the laser damage resistance of different oxide films. Appl. Surf. Sci. 2014, 289, 141–144. [Google Scholar] [CrossRef]
- Panahibakhsh, S.; Jelvani, S.; Maleki, M.H.; Mollabashi, M.; Jaberi, M. Increasing the laser damage threshold of the Nd:YAG crystal by ArF laser irradiation. Eur. Phys. J. Plus 2014, 129, 37. [Google Scholar] [CrossRef]
- Liao, D.; Chen, X.; Tang, C.; Xie, R.; Zhang, Z. Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing. Ceram. Int. 2014, 40, 4479–4483. [Google Scholar] [CrossRef]
- Available online: https://www.meta-laser.com/q-switch-crystals/co-spinel-q-switch-crystals.html (accessed on 22 December 2022).
- Abromavičius, G.; Kyžas, N.; Belosludtsev, A. Oxygen plasma etching of YAG crystals. In Proceedings of the SPIE Optical Systems Design, Frankfurt, Germany, 14–17 May 2018; Volume 10691. [Google Scholar] [CrossRef]
- Bennett, H.E.; Porteus, J.O. Relation Between Surface Roughness and Specular Reflectance at Normal Incidence. J. Opt. Soc. Am. 1961, 51, 123–129. [Google Scholar] [CrossRef]
- Denker, B.; Galagan, B.; Osiko, V.; Sverchkov, S.; Karlsson, G.; Laurell, F. Comparison of cobalt-activated spinel crystals grown by various methods as saturable absorbers for 1.3–1.6 μm lasers. In Proceedings of the Advanced Solid-State Photonics, San Antonio, TX, USA, 2–5 February 2003; Volume 83, p. 216. [Google Scholar] [CrossRef]
- Namba, Y.; Ohnishi, N.; Yoshida, S.; Harada, K.; Yoshida, K.; Matsuo, T. Ultra-precision float polishing of calcium fluoride single crystals for deep ultra violet applications. CIRP Ann. 2004, 53, 459–462. [Google Scholar] [CrossRef]
- Matsuda, A.; Nakakubo, Y.; Takao, Y.; Eriguchi, K.; Ono, K. Advanced Contactless Analysis of Plasma-Induced Damage on Si by Temperature-Controlled Photoreflectance Spectroscopy. Jpn. J. Appl. Phys. 2011, 50, 08KD03. [Google Scholar] [CrossRef]
- Moore, M.C.; Kalyanasundaram, N.; Freund, J.B.; Johnson, H.T. Structural and sputtering effects of medium energy ion bombardment of silicon. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2004, 225, 241–255. [Google Scholar] [CrossRef]
- Batavičiutė, G.; Grigas, P.; Smalakys, L.; Melninkaitis, A. Revision of laser-induced damage threshold evaluation from damage probability data. Rev. Sci. Instrum. 2013, 84, 045108. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abromavičius, G.; Skapas, M.; Juškėnas, R. Enhancing Laser Damage Resistance of Co2+:MgAl2O4 Crystal by Plasma Etching. Appl. Sci. 2023, 13, 1150. https://doi.org/10.3390/app13021150
Abromavičius G, Skapas M, Juškėnas R. Enhancing Laser Damage Resistance of Co2+:MgAl2O4 Crystal by Plasma Etching. Applied Sciences. 2023; 13(2):1150. https://doi.org/10.3390/app13021150
Chicago/Turabian StyleAbromavičius, Giedrius, Martynas Skapas, and Remigijus Juškėnas. 2023. "Enhancing Laser Damage Resistance of Co2+:MgAl2O4 Crystal by Plasma Etching" Applied Sciences 13, no. 2: 1150. https://doi.org/10.3390/app13021150
APA StyleAbromavičius, G., Skapas, M., & Juškėnas, R. (2023). Enhancing Laser Damage Resistance of Co2+:MgAl2O4 Crystal by Plasma Etching. Applied Sciences, 13(2), 1150. https://doi.org/10.3390/app13021150