Evaluation of Green Synthesis (Withania somnifera) of Selenium Nanoparticles to Reduce Sperm DNA Fragmentation Diabetic Mice Induced with Streptozotocin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Selenium Nanoparticles
2.2. Parameters Used to Study the Characterization of Nanoparticles
2.2.1. XRD Analysis
2.2.2. FESEM-Imaging
2.2.3. TEM Analysis
2.2.4. UV-Visible Spectroscopy
2.3. Animals of Study
2.4. Sample Preparation for Comet Assay
2.5. Superoxide Dismutase Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. XRD-Analysis
3.2. FESEM Analysis
3.3. TEM Analysis
3.4. Optical Properties
3.5. Alkaline Comet Assay
3.6. Super Oxide Dismutase Level on Control and Treated Groups (SOD)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiani, B.H.; Haq, I.-u.; Alhodaib, A.; Basheer, S.; Fatima, H.; Naz, I.; Ur-Rehman, T. Comparative Evaluation of Biomedical Applications of Zinc Nanoparticles Synthesized by Using Withania somnifera Plant Extracts. Plants 2022, 11, 1525. [Google Scholar] [CrossRef] [PubMed]
- Pyrzynska, K.; Sentkowska, A. Biosynthesis of selenium nanoparticles using plant extracts. J. Nanostruct. Chem. 2022, 12, 467–480. [Google Scholar] [CrossRef]
- Đorđević, S.; Gonzalez, M.M.; Conejos-Sánchez, I.; Carreira, B.; Pozzi, S.; Acúrcio, R.C.; Satchi-Fainaro, R.; Florindo, H.F.; Vicent, M.J. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res. 2022, 12, 500–525. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Liu, H.; Yang, Z.; Bao, M.; Lin, X.; Han, J.; Qu, C. Progress of selenium deficiency in the pathogenesis of arthropathies and selenium supplement for their treatment. Biol. Trace Elem. Res. 2022, 200, 4238–4249. [Google Scholar] [CrossRef] [PubMed]
- Mojadadi, A.; Au, A.; Salah, W.; Witting, P.; Ahmad, G. Role for selenium in metabolic homeostasis and human reproduction. Nutrients 2021, 13, 3256. [Google Scholar] [CrossRef]
- Garza-García, J.J.; Hernández-Díaz, J.A.; Zamudio-Ojeda, A.; León-Morales, J.M.; Guerrero-Guzmán, A.; Sánchez-Chiprés, D.R.; López-Velázquez, J.C.; García-Morales, S. The role of selenium nanoparticles in agriculture and food technology. Biol. Trace Elem. Res. 2022, 200, 2528–2548. [Google Scholar] [CrossRef]
- Ikram, M.; Javed, B.; Raja, N.I. Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects. Int. J. Nanomed. 2021, 16, 249–268. [Google Scholar] [CrossRef]
- Ferro, C.; Florindo, H.F.; Santos, H.A. Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics. Adv. Healthc. Mater. 2021, 10, 2100598. [Google Scholar] [CrossRef]
- Wilson, T.; Temple, N.J.; Bray, G.A. Nutrition Guide for Physicians and Related Healthcare Professions (Essential Minerals: Nutritional Requirements, Dietary Sources, and Deficiencies), 3rd ed.; Nutrition Guide for Physicians and Related Healthcare Professions (Nutrition and Health): 9783030825140: Medicine & Health Science Books @ Amazon.com; Springer: Berlin/Heidelberg, Germany, 2022; pp. 365–376. [Google Scholar]
- Hashem, A.H.; Abdelaziz, A.M.; Attia, M.S.; Salem, S.S. Chapter 11, Selenium and Nano-Selenium-Mediated Biotic Stress Tolerance in Plants. In Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement; Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement (springer.com); Springer: Berlin/Heidelberg, Germany, 2022; pp. 209–226. [Google Scholar]
- Laltlanmawia, C.; Saha, R.K.; Saha, H.; Biswas, P. Ameliorating effects of dietary mixture of Withania somnifera root extract and vitamin C in Labeo rohita against low pH and waterborne iron stresses. Fish Shellfish. Immunol. 2019, 88, 170–178. [Google Scholar] [CrossRef]
- Khan Mohammad, K.R.; Khalili, M.B.; Sadeh, M.; Talebi, A.R.; Astani, A.; Shams, A. The effect of lipopolysaccharide from uropathogenic Escherichia coli on the immune system, testis tissue, and spermatozoa of BALB/c mice. Clin. Exp. Reprod. Med. 2021, 48, 105–110. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Hammad, A.A.; Orabi, S.H.; Elbaz, H.T.; Elweza, A.E.; Tahoun, E.A. Reproductive Injury in Male Rats from Acrylamide Toxicity and Potential Protection by Earthworm Methanolic Extract. Animals 2022, 12, 1723. [Google Scholar] [CrossRef] [PubMed]
- Shahabadi, N.; Zendehcheshm, S.; Khademi, F. Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. Biotechnol. Rep. 2021, 30, e00615. [Google Scholar] [CrossRef] [PubMed]
- Shar, A.; Lakhan, M.; Wang, J.; Ahmed, M.; Alali, K.; Ahmed, R.; Ali, I.; Dayo, A. Facile synthesis and characterization of selenium nanoparticles by the hydrothermal approach. Dig. J. Nanomater. Biostructures 2019, 14, 867–872. [Google Scholar]
- Ramamurthy, C.H.; Sampath, K.S.; Arunkumar, P.; Kumar, M.S.; Sujatha, V.; Premkumar, K.; Thirunavukkarasu, C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst. Eng. 2013, 36, 1131–1139. [Google Scholar] [CrossRef]
- Anderson, R.; Moses, R.; Lenherr, S.; Hotaling, J.M.; Myers, J. Spinal cord injury and male infertility-a review of current literature, knowledge gaps, and future research. Transl. Androl. Urol. 2018, 7, S373–S382. [Google Scholar] [CrossRef]
- Kim, C.R.; Noda, T.; Okada, Y.; Ikawa, M.; Baek, S.H. Protocol for isolation of spermatids from mouse testes. STAR Protoc. 2020, 2, 100254. [Google Scholar] [CrossRef] [PubMed]
- Barrett, S.; De Franco, M.; Kellett, A.; Dempsey, E.; Marzano, C.; Erxleben, A. Anticancer activity, DNA binding and cell mechanistic studies of estrogen-functionalised Cu (II) complexes. J. Biol. Inorg. Chem. 2020, 25, 49–60. [Google Scholar] [CrossRef]
- Prasad, K.S.; Patel, H.; Patel, T.; Patel, K.; Selvaraj, K. Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids Surf. B Biointerfaces 2013, 103, 261–266. [Google Scholar] [CrossRef]
- Abd El-Moneim, O.M.; Abd El-Rahim, A.H.; Hafiz, N.A. Evaluation of selenium nanoparticles and doxorubicin effect against hepatocellular carcinoma rat model cytogenetic toxicity and DNA damage. Toxicol. Rep. 2018, 5, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Kumaravel, T.S.; Vilhar, B.; Faux, S.P.; Jha, A.N. Comet assay measurements: A perspective. Cell Biol. Toxicol. 2009, 25, 53–64. [Google Scholar] [CrossRef]
- Tice, R.R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J.C.; Sasaki, Y. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 2000, 35, 206–221. [Google Scholar] [CrossRef]
- Burlinson, B. The in vitro and in vivo comet assays. In Genetic Toxicology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 143–163. [Google Scholar] [CrossRef]
- Rashid, T.M.; Nayef, U.M.; Jabir, M.S. Nano-ZnO decorated on gold nanoparticles as a core-shell via pulse laser ablation in liquid. Optik 2021, 248, 168164. [Google Scholar] [CrossRef]
- Cittrarasu, V.; Kaliannan, D.; Dharman, K.; Maluventhen, V.; Easwaran, M.; Liu, W.C. Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci. Rep. 2021, 11, 1032. [Google Scholar] [CrossRef] [PubMed]
- Rahmah, M.I.; Sabry, R.S.; Aziz, W.J. Preparation of superhydrophobic Ag/Fe2O3/ZnO surfaces with photocatalytic activity. Surf. Eng. 2021, 37, 1320–1327. [Google Scholar] [CrossRef]
- Alagesan, V.; Venugopal, S. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. Bionanoscience 2019, 9, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Galić, E.; Radić, K.; Golub, N.; Vitali Čepo, D.; Kalčec, N.; Vrček, E. Utilization of Olive Pomace in Green Synthesis of Selenium Nanoparticles: Physico-Chemical Characterization, Bioaccessibility and Biocompatibility. Int. J. Mol. Sci. 2022, 23, 9128. [Google Scholar] [CrossRef]
- Ahmed, F.; Dwivedi, S.; Shaalan, N.M.; Kumar, S.; Arshi, N.; Alshoaibi, A.; Husain, F.M. Development of selenium nanoparticle-based agriculture sensor for heavy metal toxicity detection. Agriculture 2020, 10, 610. [Google Scholar] [CrossRef]
- Pouri, S.; Motamedi, H.; Honary, S.; Kazeminezhad, I. Biological synthesis of selenium nanoparticles and evaluation of their bioavailability. Braz. Arch. Biol. Technol. 2018, 60, e170452. [Google Scholar] [CrossRef]
- Habubi, N.; Bakr, N.; Salman, S. Optical parameters of amorphous selenium deposited by thermal evaporation technique. Phys. Chem. Indian J. 2013, 8, 54–58. [Google Scholar]
- Panchal, S.; Chauhan, R. Variation in structural, electrical and optical properties of selenium nanowires after irradiation with Ni6+ ions. Electron. Mater. Lett. 2019, 15, 216–226. [Google Scholar] [CrossRef]
- Jadhav, S.R.; Khairnar, U.P. Study of Optical Properties of Co-evaporated PbSe Thin Films. Arch. Appl. Sci. Res. 2012, 4, 169–177. [Google Scholar]
- Almudhaffer, M.F.; Nattiq, M.A.; Jaber, M.A. Linear optical properties and energy loss function of Novolac: Epoxy blend film. Arch. Appl. Sci. Res. 2012, 4, 1731–1740. [Google Scholar]
- Jiang, F.; Cai, W.; Tan, G. Facile synthesis and optical properties of small selenium nanocrystals and nanorods. Nanoscale Res. Lett. 2017, 12, 401. [Google Scholar] [CrossRef]
- Gates, B.; Mayers, B.; Cattle, B.; Xia, Y. Synthesis and Characterization of Uniform Nanowires of Trigonal Selenium. Adv. Funct. Mater. 2002, 12, 219–227. [Google Scholar] [CrossRef]
- Prasad, K.S.; Selvaraj, K. Biogenic synthesis of selenium nanoparticles and their effect on As (III)-induced toxicity on human lymphocytes. Biol. Trace Elem. Res. 2014, 157, 275–283. [Google Scholar] [CrossRef]
- El-Nekeety, A.A.; Hassan, M.E.; Hassan, R.R.; Elshafey, O.I.; Hamza, Z.K.; Abdel-Aziem, S.H.; Hassan, N.S.; Abdel-Wahhab, M.A. Nanoencapsulation of basil essential oil alleviates the oxidative stress, genotoxicity and DNA damage in rats exposed to biosynthesized iron nanoparticles. Heliyon 2021, 7, e07537. [Google Scholar] [CrossRef]
- Artimani, T.; Amiri, I.; Soleimani, S.; Saidijam, M.; Hasanvand, D.; Afshar, S. Amelioration of diabetes-induced testicular and sperm damage in rats by cerium oxide nanoparticle treatment. Andrologia 2018, 50, e13089. [Google Scholar] [CrossRef] [PubMed]
- Onyeka, C.A.; Nwakanma, A.A.; Bakare, A.A.; Okoko, I.I.; Ofoego, U.C.; Wali, C.C.; Abengowe, F.C. Hypoglycemic, Antioxidant and Hepatoprotective Activities of Ethanolic Root Bark Extract of Chrysophyllum albidum in Alloxan-Induced Diabetic Rats. Bangladesh J. Med. Sci. 2013, 12, 298–304. [Google Scholar] [CrossRef]
- Beji, R.S.; Rebey, I.B.; Jameleddine, S.; Ksouri, R. Assessment of the antidiabetic, antihyperlipidemic and antioxidant properties of Trigonella foenum-graecum Linnaeus, 1753 (Fenugreek) in alloxan-induced diabetic rats. J. New Sci. 2016, 28, 1602–1609. [Google Scholar]
Reagent (μL) | Sample | Standard | Blank |
---|---|---|---|
Reaction Buffer | 30 | 30 | 30 |
Substrate | 100 | 100 | 100 |
Enzyme | 1 | 1 | 1 |
Sample | 19 | -- | -- |
Standard | -- | 19 | -- |
Distilled water | -- | -- | 19 |
Dye Reagent | 50 | 50 | 50 |
Mix, stand at room temperature for 30 min, record absorbance measured at 560 nm |
Sample | ||||||
---|---|---|---|---|---|---|
Se NPs | 23.4289 | (100) | 0.2362 | 0.204 | 0.004 | 34.336 |
29.6254 | (101) | 0.1968 | 0.259 | 0.003 | 41.739 | |
41.2558 | (110) | 0.3149 | 0.360 | 0.005 | 26.946 | |
43.5642 | (102) | 0.2362 | 0.380 | 0.004 | 36.206 | |
45.3221 | (111) | 0.3936 | 0.396 | 0.007 | 21.864 | |
51.6654 | (201) | 0.3149 | 0.451 | 0.005 | 28.018 | |
55.8639 | (003) | 0.9446 | 0.488 | 0.016 | 9.515 | |
61.5571 | (022) | 0.9446 | 0.537 | 0.016 | 9.785 | |
65.1915 | (210) | 0.576 | 0.569 | 0.010 | 16.364 | |
Average crystallite size (nm) | 24.97 |
Parameters Groups | No Damage % (Mean ± SD) | Low Damage % (Mean ± SD) | Medium Damage % (Mean ± SD) | High Damage % (Mean ± SD) |
---|---|---|---|---|
Neg. control | A42.478 ± 0.975 | A43.41 ± 0.553 | D7.066 ± 0.942 | D7.045 ± 0.599 |
STZ | D33.189 ± 1.565 | D33.698 ± 0.878 | A15.025 ± 0.554 | A18.088 ± 1.072 |
STZ + Met | C37.909 ± 0.856 | C38.37 ± 0.878 | B10.852 ± 0.557 | B12.869 ± 0.329 |
STZ + Se | BC38.681 ± 1.33 | C38.487 ± 0.939 | BC10.484 ± 0.613 | B12.347 ± 1.693 |
STZ + Se NPs | B39.705 ± 0.406 | B40.087 ± 0.724 | C9.487 ± 0.605 | C10.721 ± 0.712 |
LSD | 1.659583 | 1.215511 | 1.010036 | 1.505262 |
-value | 0.00075 | 0.00008 | 0.00006 | 0.00047 |
|
Parameters Groups | Comet Score Program (Mean ± SD) | ||
---|---|---|---|
Tail Length (px) | Tail DNA (%) | Tail Mean Moment | |
Neg. control | D65.044 + 8.035 | D0.0246 + 0.00089 | E0.000231 + 0.0000521 |
STZ | A303.775 + 24.336 | A12.114 + 2.007 | A7.3351 + 2.155 |
STZ + Met | C90.261 + 11.074 | B4.125 + 1.008 | B4.224 + 1.007 |
STZ + Se | B105.752 + 13.276 | B4.026 + 0.986 | C2.965 + 0.8112 |
STZ + Se NPs | D75.842 + 8.117 | C2.243 + 0.411 | D1.7775 + 0.477 |
p-Value | 0.000431 | 0.000512 | 0.000116 |
|
Parameters | SOD U/mg (Mean ± SD) |
---|---|
Neg. control | A4.763 + 0.480 |
STZ | D1.673 + 0.205 |
STZ + Met | C2.321 + 0.399 |
STZ + Se | CD2.128 + 0.166 |
STZ + Se NPs | B2.917 + 0.234 |
LSD | 0.482896 |
-value | 0.00040 |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed Ali, I.A.; AL-Ahmed, H.I.; Ben Ahmed, A. Evaluation of Green Synthesis (Withania somnifera) of Selenium Nanoparticles to Reduce Sperm DNA Fragmentation Diabetic Mice Induced with Streptozotocin. Appl. Sci. 2023, 13, 728. https://doi.org/10.3390/app13020728
Mohammed Ali IA, AL-Ahmed HI, Ben Ahmed A. Evaluation of Green Synthesis (Withania somnifera) of Selenium Nanoparticles to Reduce Sperm DNA Fragmentation Diabetic Mice Induced with Streptozotocin. Applied Sciences. 2023; 13(2):728. https://doi.org/10.3390/app13020728
Chicago/Turabian StyleMohammed Ali, Iman A., Hazim Ismail AL-Ahmed, and Ali Ben Ahmed. 2023. "Evaluation of Green Synthesis (Withania somnifera) of Selenium Nanoparticles to Reduce Sperm DNA Fragmentation Diabetic Mice Induced with Streptozotocin" Applied Sciences 13, no. 2: 728. https://doi.org/10.3390/app13020728
APA StyleMohammed Ali, I. A., AL-Ahmed, H. I., & Ben Ahmed, A. (2023). Evaluation of Green Synthesis (Withania somnifera) of Selenium Nanoparticles to Reduce Sperm DNA Fragmentation Diabetic Mice Induced with Streptozotocin. Applied Sciences, 13(2), 728. https://doi.org/10.3390/app13020728