Oscillating Laser-Arc Hybrid Additive Manufacturing of AZ31 Magnesium Alloy
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials and Equipment
2.2. Microstructural Analysis and Mechanical Tests
3. Results
3.1. Macroscopic Analysis
3.2. X-ray NDT
3.3. Microstructural Analysis
3.4. Mechanical Properties
4. Discussion
4.1. Mechanism of Hump Inhibition Using Beam Oscillation
4.2. Mechanism of Pore Elimination Using Beam Oscillation
4.3. Mechanisms of Microstructure Evolution Using Beam Oscillation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahoo, K.; Poddar, P. Studies on Magnesium Alloys–Properties and Potential for Automotive and Aerospace Applications. In Proceedings of the Transaction of 65th Indian foundry Congress, Kolkata, India, 3–5 February 2017; Volume 2017, pp. 151–156. [Google Scholar]
- Mordike, B.; Ebert, T. Magnesium: Properties—Applications—Potential. Mater. Sci. Eng. A 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Blawert, C.; Hort, N.; Kainer, K. Automotive applications of magnesium and its alloys. Trans. Indian Inst. Met. 2004, 57, 397–408. [Google Scholar]
- Mughal, M.; Fawad, H.; Mufti, R. Three-dimensional finite-element modelling of deformation in weld-based rapid prototyping. Proc. Inst. Mech. Eng. Part C 2006, 220, 875–885. [Google Scholar] [CrossRef]
- Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. Wire-feed additive manufacturing of metal components: Technologies, developments and future interests. Int. J. Adv. Manuf. Technol. 2015, 81, 465–481. [Google Scholar] [CrossRef]
- Luo, A.A. Materials comparison and potential applications of magnesium in automobiles. In Essential Readings in Magnesium Technology; Springer: Berlin/Heidelberg, Germany, 2016; pp. 25–34. [Google Scholar]
- Clow, B.B. Magnesium industry overview. Adv. Mater. Process. 1996, 150, 33–35. [Google Scholar]
- Easton, M.; Beer, A.; Barnett, M.; Davies, C.; Dunlop, G.; Durandet, Y.; Blacket, S.; Hilditch, T.; Beggs, P. Magnesium alloy applications in automotive structures. Jom 2008, 60, 57. [Google Scholar] [CrossRef]
- Hu, D.; Wang, Y.; Zhang, D.; Hao, L.; Jiang, J.; Li, Z.; Chen, Y. Experimental investigation on selective laser melting of bulk net-shape pure magnesium. Mater. Manuf. Process. 2015, 30, 1298–1304. [Google Scholar] [CrossRef]
- Wei, K.; Gao, M.; Wang, Z.; Zeng, X. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy. Mater. Sci. Eng. A 2014, 611, 212–222. [Google Scholar] [CrossRef]
- Wei, K.; Wang, Z.; Zeng, X. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg–Zn–Zr components. Mater. Lett. 2015, 156, 187–190. [Google Scholar] [CrossRef]
- Knezović, N.; Topić, A. Wire and arc additive manufacturing (WAAM)—A new advance in manufacturing. In International Conference “New Technologies, Development and Applications”; Springer: Berlin/Heidelberg, Germany, 2018; pp. 65–71. [Google Scholar]
- Guo, J.; Zhou, Y.; Liu, C.; Wu, Q.; Chen, X.; Lu, J. Wire arc additive manufacturing of az31 magnesium alloy: Grain refinement by adjusting pulse frequency. Materials 2016, 9, 823. [Google Scholar] [CrossRef] [Green Version]
- Takagi, H.; Sasahara, H.; Abe, T.; Sannomiya, H.; Nishiyama, S.; Ohta, S.; Nakamura, K. Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing. Addit. Manuf. 2018, 24, 498–507. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.; Wang, Z.; Lin, X.; Liu, F.; Huang, W.; Liang, E. Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process. Mater. Sci. Eng. A 2020, 774, 138942. [Google Scholar] [CrossRef]
- Gao, M.; Zeng, X.; Yan, J.; Hu, Q. Microstructure characteristics of laser–MIG hybrid welded mild steel. Appl. Surf. Sci. 2008, 254, 5715–5721. [Google Scholar] [CrossRef]
- Qian, Y.P.; Huang, J.H.; Zhang, H.O.; Wang, G.L. Direct rapid high-temperature alloy prototyping by hybrid plasma-laser technology. J. Mater. Process. Technol. 2008, 208, 99–104. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, C.; Xu, X.; Liu, L. Surface quality and forming characteristics of thin-wall aluminium alloy parts manufactured by laser assisted MIG arc additive manufacturing. Int. J. Lightweight Mater. Manuf. 2018, 1, 89–95. [Google Scholar] [CrossRef]
- Zhang, L.J.; Ning, J.; Zhang, X.J.; Zhang, G.F.; Zhang, J.X. Single pass hybrid laser–MIG welding of 4-mm thick copper without preheating. Mater. Des. 2015, 74, 1–18. [Google Scholar] [CrossRef]
- Seto, N.; Katayama, S.; Matsunawa, A. Porosity formation mechanism and suppression procedure in laser welding of aluminium alloys. Weld. Int. 2001, 15, 191–202. [Google Scholar] [CrossRef]
- Gong, M.; Meng, Y.; Zhang, S.; Zhang, Y.; Zeng, X.; Gao, M. Laser-arc hybrid additive manufacturing of stainless steel with beam oscillation. Addit. Manuf. 2020, 33, 101180. [Google Scholar] [CrossRef]
- Lorenzin, G.; Rutili, G. The innovative use of low heat input in welding: Experiences on ‘cladding’and brazing using the CMT process. Weld. Int. 2009, 23, 622–632. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, H.; Wang, Z.; Liang, Y.; Liu, Y. The arc characteristics of cold metal transfer welding with AZ31 magnesium alloy wire. J. Manuf. Process. 2016, 24, 298–306. [Google Scholar] [CrossRef]
- Tu, Y.F.; Chen, J.Y.; Zhang, B.P.; Li, P.X.; Suzuki, H.G. Phases and microstructure of as-cast AZ 31 magnesium alloy. Foundry 2006, 55, 509–512. [Google Scholar]
- Gao, M.; Zeng, X.Y.; Tan, B.; Feng, J.C. Study of laser MIG hybrid welded AZ31 magnesium alloy. Sci. Technol. Weld. Join. 2013, 14, 274–281. [Google Scholar] [CrossRef]
- Hagenlocher, C.; Sommer, M.; Fetzer, F.; Weber, R.; Graf, T. Optimization of the solidification conditions by means of beam oscillation during laser beam welding of aluminum. Mater. Des. 2018, 160, 1178–1185. [Google Scholar] [CrossRef]
- Sinnott, R.K.; Coulson, J.M.; Richardson, J.F. Chemical Engineering Design; Elsevier Butter-worth-Heinemann: Oxford, UK, 2005; Volume 6, p. 4. [Google Scholar]
- Culpin, M. The viscosity of liquid magnesium and liquid calcium. Proc. Phys. Soc. Sect. B 1957, 70, 1079. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Weckman, D.C.; Johnson, D.A. Predicting onset of high speed gas metal arc weld bead defects using dimensional analysis techniques. Sci. Technol. Weld. Join. 2007, 12, 634–648. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Weckman, D.C.; Johnson, D.A.; Kerr, H.W. The humping phenomenon during high speed gas metal arc welding. Sci. Technol. Weld. Join. 2013, 10, 447–459. [Google Scholar] [CrossRef]
- Katayama, S.; Nagayama, H.; Mizutani, M.; Kawahito, Y. Fibre laser welding of aluminium alloy. Weld. Int. 2009, 23, 744–752. [Google Scholar] [CrossRef]
- Fetzer, F.; Sommer, M.; Weber, R.; Weberpals, J.P.; Graf, T. Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi. Opt. Lasers Eng. 2018, 108, 68–77. [Google Scholar] [CrossRef]
- Wang, L.; Gao, M.; Zhang, C.; Zeng, X. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy. Mater. Des. 2016, 108, 707–717. [Google Scholar] [CrossRef]
- Cen, L.; Du, W.; Gong, M.; Lu, Y.; Zhang, C.; Gao, M. Effect of high-frequency beam oscillation on microstructures and cracks in laser cladding of Al-Cu-Mg alloys. Surf. Coat. Technol. 2022, 447, 128852. [Google Scholar] [CrossRef]
- Wang, F.; Williams, S.; Rush, M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy. Int. J. Adv. Manuf. Technol. 2011, 57, 597–603. [Google Scholar] [CrossRef]
Elements (wt.%) | Al | Zn | Mn | Si | Fe | Cu | Ni | Mg |
---|---|---|---|---|---|---|---|---|
The base | 2.5–3.5 | 0.5–1.5 | 0.2–0.6 | ≤0.1 | ≤0.005 | ≤0.05 | ≤0.005 | Bal. |
The wire | 3.0–4.0 | 0.2–0.8 | 0.15–0.5 | ≤0.1 | ≤0.005 | ≤0.05 | ≤0.005 | Bal. |
Parameters | Value |
---|---|
Laser power, P (W) | 1000 |
Oscillating frequency, f (Hz) | 0/100/200/300 |
Wire feed speed, V (m/min) | 5.5 |
Deposition speed, Vd (m/min) | 0.6 |
Current, I(A)/Voltage, U (V) | 85/13 |
The laser-arc distance, Dd (mm) | 2 |
Defocusing distance, Δh (mm) | 0 |
Element (At/%) | Mg K | Al K | Mn K | Zn L |
---|---|---|---|---|
Dark substrate (α-Al) | 60.09 | 23.05 | 15.26 | 1.06 |
Large precipitates (Al8Mn5) | 63.66 | 25.72 | --- | 10.61 |
Small precipitates (Mg17Al12) | 96.66 | 3.34 | --- | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Cen, L.; Jiang, L.; Zhao, S.; Gong, M. Oscillating Laser-Arc Hybrid Additive Manufacturing of AZ31 Magnesium Alloy. Appl. Sci. 2023, 13, 897. https://doi.org/10.3390/app13020897
Gao M, Cen L, Jiang L, Zhao S, Gong M. Oscillating Laser-Arc Hybrid Additive Manufacturing of AZ31 Magnesium Alloy. Applied Sciences. 2023; 13(2):897. https://doi.org/10.3390/app13020897
Chicago/Turabian StyleGao, Ming, Ling Cen, Laihege Jiang, Suning Zhao, and Mengcheng Gong. 2023. "Oscillating Laser-Arc Hybrid Additive Manufacturing of AZ31 Magnesium Alloy" Applied Sciences 13, no. 2: 897. https://doi.org/10.3390/app13020897
APA StyleGao, M., Cen, L., Jiang, L., Zhao, S., & Gong, M. (2023). Oscillating Laser-Arc Hybrid Additive Manufacturing of AZ31 Magnesium Alloy. Applied Sciences, 13(2), 897. https://doi.org/10.3390/app13020897