Research on the Influence of Different Warm-Mix Modifiers on Pavement Performance of Bitumen and Its Mixture
Abstract
:1. Introduction
2. Materials and Testing Program
2.1. Materials
2.2. Testing Program
2.2.1. Conventional Performance Tests
2.2.2. Brookfield Rotational Viscosity Test
2.2.3. Dynamic Shear Rheological Test
2.2.4. Marshall Stability Test
2.2.5. High-Temperature Rutting Test
2.2.6. Water Stability Test
2.2.7. Low-Temperature Crack Resistance Test
2.2.8. Fatigue Test
2.2.9. Compaction Performance Tests
2.3. Preparation of Modified Bitumen
2.4. Modified Bitumen Mix Ratio Design
3. Results and Analysis
3.1. Results and Analysis of Basic Performance Test of Modified Bitumen
3.1.1. Penetration Test
3.1.2. Softening Point Test
3.1.3. Ductility Test
3.1.4. Aging Test
3.2. Results and Analysis of Superpave Evaluation Index of Modified Bitumen
3.2.1. Brookfield Rotational Viscosity Test
3.2.2. Dynamic Shear Rheological Test
3.3. Results and Analysis of Modified Bitumen Mixture Test
3.3.1. Marshall Stability Test
3.3.2. High-Temperature Rutting Test
3.3.3. Water Stability Test
3.3.4. Low-Temperature Crack Resistance Test
3.3.5. Fatigue Test
3.3.6. Results and Analysis of Compaction Performance of Modified Bitumen Mixtures
Effect of Compaction Temperature
Effect of the Number of Compactions
4. Conclusions
- (1)
- Sasobit modifiers can enhance the resistance to deformation, high-temperature stability, and anti-aging properties of bitumen; however, they can reduce its low-temperature ductility. After mixing with XT-W3 and Evotherm modifiers, there is a reduction in its deformation resistance and high-temperature stability and improvement in its aging resistance and low-temperature ductility.
- (2)
- Brookfield rotational viscosity tests indicated that incorporating Sasobit, XT-W3, and Evotherm modifiers can effectively reduce the high-temperature viscosity of bitumen and improve its construction and ease.
- (3)
- The dynamic shear rheology test of Sasobit, XT-W3, and Evotherm-modified bitumen indicated that the elastic component in the bitumen increases after incorporating modifiers, improving the high-temperature rutting resistance of bitumen with Sasobit-modified bitumen having the strongest high-temperature rutting resistance.
- (4)
- Incorporating Sasobit, XT-W3, and Evotherm modifiers into bitumen mixtures can enhance the compressive properties, high-temperature rutting resistance, water stability, and fatigue resistance of bitumen mixtures. However, Evotherm modifiers reduce the deformation resistance of bitumen mixtures. XT-W3 and Evotherm modifiers can effectively improve the low-temperature crack resistance, but the Sasobit modifier has a negative impact.
- (5)
- The compaction performance of the modified bitumen mixtures demonstrated that the gross bulk density of the bitumen mixture Marshall specimens and the compaction degree increased linearly with the increase in compaction temperature and exponentially as a function of the increase in the number of compactions. If the same compaction degree is achieved, the number of compaction times and temperatures required for the Sasobit-modified, XT-W3-modified, and Evotherm-modified bitumen mixtures are reduced by about 10 °C–30 °C compared with the virgin and SBS-modified bitumen mixtures.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shu, X.; Huang, B.; Vukosavljevic, D. Laboratory evaluation of fatigue characteristics of recycled asphalt mixture. Constr. Build. Mater. 2008, 22, 1323–1330. [Google Scholar] [CrossRef]
- Behera, H.; Giri, D.; Das, S. Modification of Bitumen Using Sustainable Materials for Pavement Design. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Odisha, India, 2020; Volume 970, p. 012022. [Google Scholar] [CrossRef]
- Caputo, P.; Abe, A.A.; Loise, V.; Porto, M.; Calandra, P.; Angelico, R.; Oliviero Rossi, C. The Role of Additives in Warm Mix Asphalt Technology: An Insight into Their Mechanisms of Improving an Emerging Technology. Nanomaterials 2020, 10, 1202. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; You, Z.P.; Yang, X. A comprehensive review of theory, development, and implementation of warm mix asphalt using foaming techniques. Constr. Build. Mater. 2017, 152, 115–133. [Google Scholar] [CrossRef]
- Cheraghian, G.; Falchetto, A.C.; You, Z.; Chen, S.; Kim, Y.S.; Westerhoff, J.; Wistuba, M.P. Warm mix asphalt technology: An up to date review. J. Clean. Prod. 2020, 268, 122128. [Google Scholar] [CrossRef]
- Kheradmand, B.; Muniandy, R.; Hua, L.T.; Yunus, R.B.; Solouki, A. An overview of the emerging warm mix asphalt technology. Int. J. Pavement Eng. 2014, 15, 79–94. [Google Scholar] [CrossRef]
- Sharma, A.; Mir, M.S.; Farooq, M.A. Performance of WMA additives under freeze-thaw action. Road Mater. Pavement Des. 2019, 20, 1468–1480. [Google Scholar] [CrossRef]
- Zhang, S.W.; Wang, D.Y.; Guo, F.; Deng, Y.; Feng, F.; Wu, Q.; Li, Y. Properties investigation of the SBS modified asphalt with a compound warm mix asphalt (WMA) fashion using the chemical additive and foaming procedure. J. Clean. Prod. 2021, 319, 128789. [Google Scholar] [CrossRef]
- Gao, J.; Yan, K.; He, W.; Yang, S.; You, L. High temperature performance of asphalt modified with Sasobit and Deurex. Constr. Build. Mater. 2018, 164, 783–791. [Google Scholar] [CrossRef]
- Saberi, F.K.; Fakhri, M.; Azami, A. Evaluation of warm mix asphalt mixtures containing reclaimed asphalt pavement and crumb rubber. J. Clean. Prod. 2017, 165, 1125–1132. [Google Scholar] [CrossRef]
- Kataware, A.V.; Singh, D. Evaluating effectiveness of WMA additives for SBS modified binder based on viscosity, Superpave PG, rutting and fatigue performance. Constr. Build. Mater. 2017, 146, 436–444. [Google Scholar] [CrossRef]
- Ghuzlan, K.; Al-Assi, M. Sasobit-Modified Asphalt Binder Rheology. J. Mater. Civ. Eng. 2017, 29, 04017142. [Google Scholar] [CrossRef]
- Julaganti, A.; Choudhary, R.; Kumar, A. Rheology of modified binders under varying doses of WMA additive-Sasobit. Pet. Sci. Technol. 2017, 35, 975–982. [Google Scholar] [CrossRef]
- Liang, X.M.; Yu, X.; Chen, C.; Ding, G.; Huang, J. Towards the low-energy usage of high viscosity asphalt in porous asphalt pavements: A case study of warm-mix asphalt additives. Case Stud. Constr. Mater. 2022, 16, e00914. [Google Scholar] [CrossRef]
- Shi, J.; Fan, W.; Zhao, P.; Ouyang, J. Effect of Sasobit on rheological properties of high viscosity asphalt. Journal of China University of Petroleum. Ed. Natrual Sci. 2020, 44, 141–148. [Google Scholar] [CrossRef]
- Luo, J.H.; Yang, Y.Z.; Huang, W.R.; Xie, C.; Chen, J.; Liu, H.; Huang, X. Physical, Rheological, And Microsurface Characteristics of High-Viscosity Binder Modified with WMA Agents. Adv. Mater. Sci. Eng. 2022, 5098250, 1–12. [Google Scholar] [CrossRef]
- Ji, J.; Dong, Y.; Yang, Y.; Suo, Z.; Zheng, W. Effect of different warm additives on rubber asphalt performance. J. China Univ. Petroleum Ed. Natrual Sci. 2020, 44, 133–140. [Google Scholar]
- Roja, K.L.; Padmarekha, A.; Krishnan, J.M. Rheological Investigations on Warm Mix Asphalt Binders at High and Intermediate Temperature Ranges. J. Mater. Civ. Eng. 2018, 30, 04018038. [Google Scholar] [CrossRef]
- Song, Y.; Ding, N.; Liu, H.; Lin, M.; Cheng, H. Effect of warm mix agents type and dosage on rheological property of different asphalt. Acta Mater. Compos. Sin. 2018, 35, 451–459. [Google Scholar] [CrossRef]
- Yu, H.Y.; Leng, Z.; Zhou, Z.Y.; Shih, K.; Xiao, F.; Gao, Z. Optimization of preparation procedure of liquid warm mix additive modified asphalt rubber. J. Clean. Prod. 2017, 141, 336–345. [Google Scholar] [CrossRef]
- Yu, H.Y.; Leng, Z.; Dong, Z.J.; Tan, Z.; Guo, F.; Yan, J. Workability and mechanical property characterization of asphalt rubber mixtures modified with various warm mix asphalt additives. Constr. Build. Mater. 2018, 175, 392–401. [Google Scholar] [CrossRef]
- Julaganti, A.; Choudhary, R.; Kumar, A. Moisture susceptibility of WMA mixes with modified bituminous binders. Pet. Sci. Technol. 2017, 35, 1014–1021. [Google Scholar] [CrossRef]
- PRC National Standard. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering (JTG E20-2011); China Communications Press: Beijing, China, 2011. [Google Scholar]
- PRC National Standard. The Implementation Manual of Technical Specification for Highway Asphalt Pavement Construction (JTG F40-2004); China Communications Press: Beijing, China, 2004. [Google Scholar]
Property | Units | Testing Value | Technical Requirements | |
---|---|---|---|---|
Penetration (100 g, 5 s) | 15 °C | 0.1 mm | 24.2 | - |
25 °C | 0.1 mm | 68 | 60~80 | |
30 °C | 0.1 mm | 104.6 | - | |
Penetration Index(PI) | - | −0.4 | −1.5~1.0 | |
T800 | °C | 50.5 | - | |
T1.2 | °C | −15.7 | - | |
Ductility | 15 °C | mm | 1451 | - |
5 °C | mm | 133.5 | - | |
Softening Point | °C | 49.8 | ≥45 |
Property | Melting Point/°C | Flashing Point/°C | Viscosity at 135 °C/(Pa·s) | Viscosity at 150 °C/(Pa·s) | Penetration at 25 °C/0.1 mm | Penetration at 60 °C /0.1 mm |
---|---|---|---|---|---|---|
Testing Value | 100 | 290 | 5.47 × 10−3 | 3.26 × 10−3 | 1 | 8 |
Property | Technical Requirements | Testing Value |
---|---|---|
Appearance | White powder solid | White powder solid |
Heap Weight (g/mL) | 0.40–0.48 | 0.46 |
Grain Size (μm) | 2–4 | 3 |
Crystalline Water Content (%/wt) | ≥18 | 19.8 |
Property | Testing Value | Lower Limit | Upper Limit |
---|---|---|---|
Amine Value | 176 | 165 | 185 |
Solid Content (%) | 74 | 67 | - |
PH | 8.9 | 6.5 | 11 |
Property | Testing Value | Units |
---|---|---|
Oil Content | 0.71 | % |
Total Ash | 0.23 | ≤% |
Volatility | 1.08 | ≤% |
S/B Ratio | 30/70 | - |
Tensile Strength | 18.0 | ≥MPa |
Bitumen Mixture | MS (KN) | FL (mm) |
---|---|---|
Virgin Bitumen | 13.52 | 2.34 |
3% Sasobit | 16.72 | 2.25 |
5% XT-W3 | 14.26 | 2.31 |
0.6% Evotherm | 15.86 | 3.15 |
SBS | 14.73 | 2.10 |
Bitumen Mixture | DS/Time/mm | |
---|---|---|
Testing Value | Technical Requirements | |
Virgin Bitumen | 1204 | ≥1000 |
3% Sasobit | 2870 | |
5% XT-W3 | 2294 | |
0.6% Evotherm | 2571 | |
SBS | 5012 |
Bitumen Mixture | Marshall Stability/KN | MS0/% | Technical Requirements/% | |
---|---|---|---|---|
MS | 48 h MS1 | |||
Virgin Bitumen | 10.46 | 8.78 | 83.94 | ≥75 |
3% Sasobit | 16.83 | 16.31 | 96.91 | ≥85 |
5% XT-W3 | 13.64 | 12.01 | 88.05 | ≥85 |
0.6% Evotherm | 14.21 | 12.42 | 87.40 | ≥85 |
SBS | 14.73 | 13.16 | 89.31 | ≥85 |
Bitumen Mixture | RT1/MPa | RT2/MPa | TSR/% | Technical Requirements/% |
---|---|---|---|---|
Virgin Bitumen | 0.947 | 0.786 | 83.00 | ≥70 |
3% Sasobit | 1.005 | 0.844 | 83.98 | ≥80 |
5% XT-W3 | 0.985 | 0.854 | 86.70 | ≥80 |
0.6% Evotherm | 0.846 | 0.739 | 87.35 | ≥80 |
SBS | 1.184 | 1.054 | 89.03 | ≥80 |
Bitumen Mixture | RB/MPa | SB/MPa | |
---|---|---|---|
Virgin Bitumen | 11.85 | 3062.9 | 3868.88 |
3% Sasobit | 13.11 | 2989.66 | 4385.11 |
5% XT-W3 | 12.42 | 3114.54 | 3987.75 |
0.6% Evotherm | 10.84 | 3189.17 | 3399.00 |
SBS | 13.48 | 3364.49 | 4006.55 |
Bitumen Mixture | Stress Ratio | Stress Level/MPa | Logarithmic Value of Stress Level | Fatigue Life | Logarithmic Value of Fatigue Life | Regression Equation |
Virgin Bitumen | 0.3 | 1.77 | 0.2480 | 18,891 | 4.2763 | K = 199,986 n = 3.9743 R2 = 0.9914 |
0.4 | 2.36 | 0.3729 | 7715 | 3.8873 | ||
0.5 | 2.95 | 0.4698 | 2694 | 3.4304 | ||
0.6 | 3.54 | 0.5490 | 1239 | 3.0931 | ||
3% Sasobit | 0.3 | 1.95 | 0.2900 | 23,879 | 4.3780 | K = 295,461 n = 3.6818 R2 = 0.9961 |
0.4 | 2.60 | 0.4150 | 9541 | 3.9796 | ||
0.5 | 3.25 | 0.5119 | 3958 | 3.5975 | ||
0.6 | 3.90 | 0.5911 | 1864 | 3.2704 | ||
5% XT-W3 | 0.3 | 1.83 | 0.2625 | 22,148 | 4.3453 | K = 223,924 n = 3.7675 R2 = 0.9971 |
0.4 | 2.44 | 0.3874 | 8469 | 3.9278 | ||
0.5 | 3.05 | 0.4843 | 3189 | 3.5037 | ||
0.6 | 3.66 | 0.5635 | 1690 | 3.2279 | ||
0.6% Evotherm | 0.3 | 1.89 | 0.2765 | 23,116 | 4.3639 | K = 251,826 n = 3.7081 R2 = 0.9917 |
0.4 | 2.52 | 0.4014 | 8046 | 3.9056 | ||
0.5 | 3.15 | 0.4983 | 4121 | 3.6150 | ||
0.6 | 3.78 | 0.5775 | 1649 | 3.2172 | ||
SBS | 0.3 | 2.02 | 0.3058 | 24,059 | 4.3813 | K = 316,446 n = 3.5099 R2 = 0.9834 |
0.4 | 2.70 | 0.4307 | 11,896 | 4.0754 | ||
0.5 | 3.37 | 0.5276 | 4259 | 3.6293 | ||
0.6 | 4.04 | 0.6068 | 2231 | 3.3485 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Shao, N.; Yue, J.; Liang, B. Research on the Influence of Different Warm-Mix Modifiers on Pavement Performance of Bitumen and Its Mixture. Appl. Sci. 2023, 13, 955. https://doi.org/10.3390/app13020955
Li R, Shao N, Yue J, Liang B. Research on the Influence of Different Warm-Mix Modifiers on Pavement Performance of Bitumen and Its Mixture. Applied Sciences. 2023; 13(2):955. https://doi.org/10.3390/app13020955
Chicago/Turabian StyleLi, Ruixia, Na Shao, Jinchao Yue, and Baojun Liang. 2023. "Research on the Influence of Different Warm-Mix Modifiers on Pavement Performance of Bitumen and Its Mixture" Applied Sciences 13, no. 2: 955. https://doi.org/10.3390/app13020955
APA StyleLi, R., Shao, N., Yue, J., & Liang, B. (2023). Research on the Influence of Different Warm-Mix Modifiers on Pavement Performance of Bitumen and Its Mixture. Applied Sciences, 13(2), 955. https://doi.org/10.3390/app13020955