Investigation of Angle Measurement Based on Direct Third Harmonic Generation in Centrosymmetric Crystals
Abstract
:1. Introduction
2. The Principle of Angle Measurement Based on Direct THG
2.1. The Basic Principle of Angle Dependence of Direct THG in Centrosymmetric Crystal
2.2. The Angle Measurement Methods Based on Direct THG with a Femtosecond Laser
3. Simulation Results and Discussion
3.1. The Investigated Centrosymmetric Crystals
3.2. The Sensitivity Investigation of Angle Measurement Based on Direct THG
3.3. The Focusing Parameter’s Effects on Angle Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shimizu, Y.; Matsukuma, H.; Gao, W. Optical Angle Sensor Technology Based on the Optical Frequency Comb Laser. Appl. Sci. 2020, 10, 4047. [Google Scholar] [CrossRef]
- Dai, G.; Hu, X. Correction of Interferometric High-Order Nonlinearity Error in Metrological Atomic Force Microscopy. Nanomanuf. Metrol. 2022, 5, 412–422. [Google Scholar] [CrossRef]
- Gao, W.; Kim, S.W.; Bosse, H.; Haitjema, H.; Chen, Y.L.; Lu, X.D.; Knapp, W.; Weckenmann, A.; Estler, W.T.; Kunzmann, H. Measurement Technologies for Precision Positioning. CIRP Ann. 2015, 64, 773–796. [Google Scholar] [CrossRef]
- Fu, P.; Jiang, Y.; Zhou, L.; Wang, Y.; Cao, Q.; Zhang, Q.; Zhang, F. Measurement of Spindle Tilt Error Based on Interference Fringe. Int. J. Precis. Eng. Manuf. 2019, 20, 701–709. [Google Scholar] [CrossRef]
- Shimizu, Y.; Tan, S.L.; Murata, D.; Maruyama, T.; Ito, S.; Chen, Y.-L.; Gao, W. Ultra-Sensitive Angle Sensor Based on Laser Autocollimation for Measurement of Stage Tilt Motions. Opt. Express 2016, 24, 2788. [Google Scholar] [CrossRef]
- Matsukuma, H.; Asumi, Y.; Nagaoka, M.; Shimizu, Y.; Gao, W. An Autocollimator with a Mid-Infrared Laser for Angular Measurement of Rough Surfaces. Precis. Eng. 2021, 67, 89–99. [Google Scholar] [CrossRef]
- Hsieh, H.-L.; Pan, S.-W. Development of a Grating-Based Interferometer for Six-Degree-of-Freedom Displacement and Angle Measurements. Opt. Express 2015, 23, 2451. [Google Scholar] [CrossRef]
- Shimizu, Y.; Kudo, Y.; Chen, Y.-L.; Ito, S.; Gao, W. An Optical Lever by Using a Mode-Locked Laser for Angle Measurement. Precis. Eng. 2017, 47, 72–80. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Shimizu, Y.; Kudo, Y.; Ito, S.; Gao, W. Mode-Locked Laser Autocollimator with an Expanded Measurement Range. Opt. Express 2016, 24, 15554–15570. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Shimizu, Y.; Tamada, J.; Nakamura, K.; Matsukuma, H.; Chen, X.; Gao, W. Laser Autocollimation Based on an Optical Frequency Comb for Absolute Angular Position Measurement. Precis. Eng. 2018, 54, 284–293. [Google Scholar] [CrossRef]
- Franken, P.A.; Ward, J.F. Optical Harmonics and Nonlinear Phenomena. Rev. Mod. Phys. 1963, 35, 23–39. [Google Scholar] [CrossRef]
- Matsukuma, H.; Madokoro, S.; Astuti, W.D.; Shimizu, Y.; Gao, W. A New Optical Angle Measurement Method Based on Second Harmonic Generation with a Mode-Locked Femtosecond Laser. Nanomanuf. Metrol. 2019, 2, 187–198. [Google Scholar] [CrossRef]
- Dwi Astuti, W.; Matsukuma, H.; Nakao, M.; Li, K.; Shimizu, Y.; Gao, W. An Optical Frequency Domain Angle Measurement Method Based on Second Harmonic Generation. Sensors 2021, 21, 670–683. [Google Scholar] [CrossRef] [PubMed]
- Astuti, W.D.; Li, K.; Sato, R.; Matsukuma, H.; Shimizu, Y.; Gao, W. A Second Harmonic Wave Angle Sensor with a Collimated Beam of Femtosecond Laser. Appl. Sci. 2022, 12, 5211–5224. [Google Scholar] [CrossRef]
- Schienbein, R.; Fern, F.; Theska, R.; Supreeti, S.; Füßl, R.; Manske, E. Fundamental Investigations in the Design of Five-Axis Nanopositioning Machines for Measurement and Fabrication Purposes. Nanomanuf. Metrol. 2021, 4, 156–164. [Google Scholar] [CrossRef]
- Li, R.; Wang, L.; Mu, X.; Chen, M.; Sun, M. Nonlinear Optical Characterization of Porous Carbon Materials by CARS, SHG and TPEF. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 214, 58–66. [Google Scholar] [CrossRef]
- Powers, P.E.; Haus, J.W. Fundamentals of Nonlinear Optics, 2nd. ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-4987-3683-1. [Google Scholar]
- Xie, S.; Yang, X.; Jia, W.; Chen, Y. Phase Matched Third-Harmonic Generation in Biaxial Crystals. Opt. Commun. 1995, 118, 648–656. [Google Scholar] [CrossRef]
- Mani, S.E.; Jang, J.I.; Ketterson, J.B. Large Third-Order Susceptibility and Third-Harmonic Generation in Centrosymmetric Cu2O Crystal. Opt. Lett. 2009, 34, 2817. [Google Scholar] [CrossRef]
- Timurdogan, E.; Poulton, C.V.; Byrd, M.J.; Watts, M.R. Electric Field-Induced Second-Order Nonlinear Optical Effects in Silicon Waveguides. Nat. Photon 2017, 11, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Kulyk, B.; Kapustianyk, V.; Burak, Y.; Adamiv, V.; Sahraoui, B. Third Harmonic Generation in LiKB4O7 Single Crystal. Mater. Chem. Phys. 2010, 120, 114–117. [Google Scholar] [CrossRef]
- Ionin, A.A.; Kudryashov, S.I.; Seleznev, L.V.; Sinitsyn, D.V.; Sunchugasheva, E.S.; Fedorov, V.Y. Third Harmonic Generation by Ultrashort Laser Pulses Tightly Focused in Air. Laser Phys. 2011, 21, 500–504. [Google Scholar] [CrossRef]
- Ren, H.-K.; Qi, H.-W.; Wang, Z.-P.; Wu, Z.-X.; Wang, M.-X.; Sun, Y.-X.; Sun, X.; Xu, X.-G. β-BaB2O4 with Special Cut-Angle Applied to Single Crystal Cascaded Third-Harmonic Generation. Chin. Phys. B 2018, 27, 114202. [Google Scholar] [CrossRef]
- Ning, T.; Hyvärinen, O.; Pietarinen, H.; Kaplas, T.; Kauranen, M.; Genty, G. Third-Harmonic UV Generation in Silicon Nitride Nanostructures. Opt. Express 2013, 21, 2012. [Google Scholar] [CrossRef] [PubMed]
- Penzkofer, A.; Ossig, F.; Qiu, P. Picosecond Third-Harmonic Light Generation in Calcite. Appl. Phys. B 1988, 47, 71–81. [Google Scholar] [CrossRef]
- Shi, M.; Zhang, G.; Li, B.; Li, R.; Yan, T.; Luo, M.; Ye, N. Efficient Frequency Conversion for Cubic Harmonic Generation at 266 Nm in Centrosymmetric α-BBO Crystal. Opt. Lett. 2018, 43, 1734. [Google Scholar] [CrossRef] [PubMed]
- Levy, U.; Silberberg, Y. Second and Third Harmonic Waves Excited by Focused Gaussian Beams. Opt. Express 2015, 23, 27795. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 4th ed.; Academic Press: San Diego, CA, USA, 2019; ISBN 978-0-12-811002-7. [Google Scholar]
- Long, H.; Chen, A.; Yang, G.; Li, Y.; Lu, P. Third-Order Optical Nonlinearities in Anatase and Rutile TiO2 Thin Films. Thin Solid Film. 2009, 517, 5601–5604. [Google Scholar] [CrossRef]
- Shi, M.; Li, R.; Li, B.; Liu, H.; Pan, J.; Lin, W.; Zhang, G.; Ye, N. Third-Order Nonlinear Optical Properties of Calcite Crystal in UV Region. Optik 2019, 182, 664–670. [Google Scholar] [CrossRef]
- Ghosh, G. Dispersion-Equation Coefficients for the Refractive Index and Birefringence of Calcite and Quartz Crystals. Opt. Commun. 1999, 163, 95–102. [Google Scholar] [CrossRef]
- Hashimoto, T.; Yoko, T. Phase Matching of Rutile Single Crystal. Appl. Phys. Lett. 1996, 68, 2478–2479. [Google Scholar] [CrossRef]
- Li, K.; Astuti, W.D.; Sato, R.; Matsukuma, H.; Gao, W. Theoretical Investigation for Angle Measurement Based on Femtosecond Maker Fringe. Appl. Sci. 2022, 12, 3702–3718. [Google Scholar] [CrossRef]
Nonlinear Crystal | A | B | C | D | E |
---|---|---|---|---|---|
α-BBO | |||||
No | 2.7471 | 0.01878 μm2 | 0.01822 μm2 | 0.01354 μm−2 | |
Ne | 2.3715 | 0.01224 μm2 | 0.01667 μm2 | 0.01516 μm−2 | |
Calcite | |||||
No | 1.7335 | 0.96464 μm−2 | 1.94325 μm2 | 1.8283 μm−2 | 120 μm2 |
Ne | 1.3585 | 0.82427 μm−2 | 1.06689 μm2 | 0.1442 μm−2 | 120 μm2 |
Rutile | |||||
No | 5.913 | 2.441 × 105 μm−2 | 0.803 × 105 μm2 | ||
Ne | 7.197 | 3.322 × 105μm−2 | 0.843 × 105μm2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Lin, J.; Zhang, Z.; Sato, R.; Shimizu, H.; Matsukuma, H.; Gao, W. Investigation of Angle Measurement Based on Direct Third Harmonic Generation in Centrosymmetric Crystals. Appl. Sci. 2023, 13, 996. https://doi.org/10.3390/app13020996
Li K, Lin J, Zhang Z, Sato R, Shimizu H, Matsukuma H, Gao W. Investigation of Angle Measurement Based on Direct Third Harmonic Generation in Centrosymmetric Crystals. Applied Sciences. 2023; 13(2):996. https://doi.org/10.3390/app13020996
Chicago/Turabian StyleLi, Kuangyi, Jiahui Lin, Zhiyang Zhang, Ryo Sato, Hiroki Shimizu, Hiraku Matsukuma, and Wei Gao. 2023. "Investigation of Angle Measurement Based on Direct Third Harmonic Generation in Centrosymmetric Crystals" Applied Sciences 13, no. 2: 996. https://doi.org/10.3390/app13020996
APA StyleLi, K., Lin, J., Zhang, Z., Sato, R., Shimizu, H., Matsukuma, H., & Gao, W. (2023). Investigation of Angle Measurement Based on Direct Third Harmonic Generation in Centrosymmetric Crystals. Applied Sciences, 13(2), 996. https://doi.org/10.3390/app13020996