Effects of Hydrolysates from Silkworms Fed Cudrania tricuspidata Leaves on Improvement of Memory in Rats with Impaired Memory Induced by Scopolamine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.3. Animal Studies
2.4. Barnes Maze Test
2.5. Novel Object Recognition Test (NORT)
2.6. Y-Maze Test
2.7. ACh Content
2.8. AChE Activity
2.9. Statistical Analysis
3. Results
3.1. SDS-PAGE
3.2. Organ Weight
3.3. Barnes Maze
3.4. NORT
3.5. Y-Maze
3.6. ACh Content
3.7. AChE Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, E.J.; Lee, K.H. Knowledge, attitude, and performance of nurses in a tertiary hospital toward older adults. J. Korean Gerontol. Nurs. 2020, 22, 165–173. [Google Scholar] [CrossRef]
- Hwang, S.J. Population aging and generational conflict: Intergenerational equity over resource allocation. J. Soc. Sci. 2022, 33, 149–172. [Google Scholar] [CrossRef]
- Han, G.S.; Yan, E.J. Status of health and nutritional intake of the elderly in long-term care facilities: Focus on Gwangju Metropolitan City. J. Nutr. Health 2020, 53, 27–38. [Google Scholar] [CrossRef]
- Kim, Y.E.; Park, J.H. A study on risk factors for the prevalence of dementia: Geographically weighted regression. JKAIS 2021, 22, 662–670. [Google Scholar] [CrossRef]
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Latimer, C.S.; Keene, C.D.; Flanagan, M.E.; Hemmy, L.S.; Lim, K.O.; White, L.R.; Montine, K.S.; Montine, T.J. Resistance to Alzheimer disease neuropathologic changes and apparent cognitive resilience in the Nun and Honolulu-Asia Aging Studies. J. Neuropathol. Exp. Neurol. 2017, 76, 458–466. [Google Scholar] [CrossRef]
- Fiest, K.M.; Roberts, J.I.; Maxwell, C.J.; Hogan, D.B.; Smith, E.E.; Frolkis, A.; Cohen, A.; Kirk, A.; Pearson, D.; Pringsheim, T.; et al. The prevalence and incidence of dementia due to Alzheimer’s disease: A systematic review and meta-analysis. Can. J. Neurol. Sci. 2016, 43, S51–S82. [Google Scholar] [CrossRef]
- Verma, S.; Kumar, A.; Tripathi, T.; Kumar, A. Muscarinic and nicotinic acetylcholine receptor agonists: Current scenario in Alzheimer’s disease therapy. J. Pharm. Pharmacol. 2018, 70, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Decker, A.L.; Duncan, K. Acetylcholine and the complex interdependence of memory and attention. Curr. Opin. Behav. Sci. 2020, 32, 21–28. [Google Scholar] [CrossRef]
- Hasselmo, M.E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 2006, 16, 710–715. [Google Scholar] [CrossRef]
- Choi, M.R.; Lee, M.Y.; Kim, J.E.; Hong, J.E.; Jang, K.H.; Lee, J.Y.; Chun, J.W.; Kim, T.H.; Shin, H.K.; Kim, E.J. Rubus Coreanus Miquel Improves on Impairment of Memory in Senescence-Accelerated Mouse (SAM). J. Korean Soc. Food Sci. Nutr. 2022, 41, 1253–1258. [Google Scholar] [CrossRef]
- Rastegar-Moghaddam, S.H.; Hosseini, M.; Alipour, F.; Rajabian, A.; Bideskan, A.E. The effects of vitamin D on learning and memory of hypothyroid juvenile rats and brain tissue acetylcholinesterase activity and oxidative stress indicators. Naunyn Schmiedebergs Arch. Pharmacol. 2022, 395, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y. Past and Future of Drug Treatments for Alzheimer’s Disease. J. Korean Neuropsychiatr. Assoc. 2018, 57, 30–42. [Google Scholar] [CrossRef]
- Cagnin, A.; Brooks, D.J.; Kennedy, A.M.; Gunn, R.N.; Myers, R.; Turkheimer, F.E.; Jones, T.; Banati, D.R.B. In-vivo measurement of activated microglia in dementia. Lancet 2001, 358, 461–467. [Google Scholar] [CrossRef]
- Sano, M.; Bell, K.L.; Galasko, D.; Galvin, J.E.; Thomas, R.G.; van Dyck, C.H.; Aisen, P.S. A randomized, double-blind, placebo-controlled trial of simvastatin to treat Alzheimer disease. Neurology 2011, 77, 556–563. [Google Scholar] [CrossRef]
- Feldman, H.H.; Doody, R.S.; Kivipelto, M.; Sparks, D.L.; Waters, D.D.; Jones, R.W.; Schwam, E.; Schindler, R.; Hey-Hadavi, J.; Demicco, D.A.; et al. Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology 2010, 74, 956–964. [Google Scholar] [CrossRef]
- Bentham, P.; Gray, R.; Sellwood, E.; Hills, R.; Crome, P.; Raftery, J. Aspirin in Alzheimer’s disease (AD2000): A randomised open-label trial. Lancet Neurol. 2008, 7, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Jaturapatporn, D.; Isaac, M.G.; McCleery, J.; Tabet, N. Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease. Cochrane Database Syst. Rev. 2012, 15, CD006378. [Google Scholar] [CrossRef]
- Banday, M.T.; Adil, S.; Sheikh, I.U.; Hamadani, H.; Qadri, F.I.; Sahfi, M.E.; Sait, H.S.A.W.; Abd El-Mageed, T.A.; Salem, H.M.; Taha, A.E.; et al. The use of silkworm pupae (Bombyx mori) meal as an alternative protein source for poultry. Worlds Poult. Sci. J. 2023, 79, 119–134. [Google Scholar] [CrossRef]
- Cermeno, M.; Bascon, C.; Amigo-Benavent, M.; Felix, M.; FitzGerald, R.J. Identification of peptides from edible silkworm pupae (Bombyx mori) protein hydrolysates with antioxidant activity. J. Funct. Foods 2022, 92, 105052. [Google Scholar] [CrossRef]
- Yoon, J.W.; Rhee, S.K.; Lee, K.B. Effects of Silkworm Extract Powder on Plasma Lipids and Glucose in Rats. J. Korean Soc. Food Sci. Nutr. 2005, 18, 140–145. [Google Scholar]
- Ji, S.D.; Shin, K.H.; Ahn, D.K.; Cho, S.Y. The mass production technology and pharmaceutical effect of silkworm cordyceps (Peacilomyces tenuipes). Food Sci. Ind. 2003, 36, 38–48. [Google Scholar] [CrossRef]
- Hu, Y.; Shi, Q.; Ying, S.; Zhu, D.; Chen, H.; Yang, X.; Xu, J.; Xu, F.; Tao, F.; Xu, B. Effects of compound Caoshi silkworm granules on stable COPD patients and their relationship with gut microbiota. A randomized controlled trial. Medicine 2020, 99, e20511. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.Y.; Li, F.Y.; Kim, J.H.; Ahn, C.W.; Kim, H.J.; Kim, M.R. Protein hydrolysate of silkworm pupa prevents memory impairment induced by oxidative stress in scopolamine-induced mice via modulating the cholinergic nervous system and antioxidant defense system. Prev. Nutr. Food Sci. 2020, 25, 389–399. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, S.; Duan, H.; Wang, H.; Yan, W. Silkworm pupae: A functional food with health benefits for humans. Foods 2022, 11, 1594. [Google Scholar] [CrossRef]
- Lee, Y.S.; Rho, J.O. A study on quality characteristics of Kimchi with added mulberry leaves extracts. J. East Asian Soc. Diet. Life 2014, 24, 827–836. [Google Scholar] [CrossRef]
- Son, H.K.; Han, J.H.; Lee, J.J. Anti-diabetic effect of the mixture of mulberry leaf and green tea powder in rats with streptozotocin-induced diabetes. Korean J. Food Preserv. 2014, 21, 549–559. [Google Scholar] [CrossRef]
- Yamamoto, K.; Yamada, N.; Endo, S.; Kurogi, K.; Sakakibara, Y.; Suiko, M. Novel silkworm (Bombyx mori) sulfotransferase SWSULT ST3 is involved in metabolism of polyphenols from mulberry leaves. PLoS ONE 2022, 17, e0270804. [Google Scholar] [CrossRef]
- Do, G.P.; Lee, H.J.; Do, J.R.; Kim, H.K. Inhibition of adipogenesis in 3T3-L1 adipocytes with water and ethanol extracts of Cudrania tricuspidata Leaves. Korean J. Food Preserv. 2011, 18, 244–249. [Google Scholar] [CrossRef]
- Lee, H.J.; Do, J.R.; Kwon, J.H.; Kim, H.K. Physiological activities of extracts from different parts of Cudrania tricuspidata. J. Korean Soc. Food Sci. Nutr. 2011, 40, 942–948. [Google Scholar] [CrossRef]
- Cuong, T.V.; Chin, K.B. Evaluation of Cudrania tricuspidata leaves on antioxidant activities and physicochemical properties of pork patties. Korean J. Food Sci. Anim. Resour. 2018, 38, 889–900. [Google Scholar] [CrossRef]
- Choi, J.H.; Nam, M.J.; Ryu, G.H.; Jeon, J.W.; Yun, S.S. Quantitative analysis of chemical components of hydrolysate from silkworm fed with Cudrania tricuspidata Leaves. Biomed. Sci. Lett. 2022, 28, 322–326. [Google Scholar] [CrossRef]
- Azm, N.A.E.; Fleita, D.; Rifaat, D.; Mpingirika, E.Z.; Amleh, A.; El-Sayed, M.M.H. Production of bioactive compounds from the sulfated polysaccharides extracts of ulva lactuca: Post-extraction enzymatic hydrolysis followed by ion-exchange chromatographic fractionation. Molecules 2019, 24, 2132. [Google Scholar] [CrossRef]
- You, L.; Zhao, M.; Cui, C.; Zhao, H.; Yang, B. Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innov. Food Sci. Emerg. Technol. 2009, 10, 235–240. [Google Scholar] [CrossRef]
- Kim, D.W.; Park, K.; Ha, G.; Jung, J.R.; Chang, O.; Ham, J.S.; Jeong, S.G.; Park, B.Y.; Song, J.; Jang, A.R. Anti-oxidative and neuroprotective activities of pig skin gelatin hydrolysates. Korean J. Food Sci. Anim. Resour. 2013, 33, 258–267. [Google Scholar] [CrossRef]
- Kuhl, D.E.; Koeppe, R.A.; Minoshima, S.; Snyder, S.E.; Ficaro, E.P.; Foster, N.L.; Frey, K.A.; Kilbourn, M.R. In vivo mapping od cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 1999, 52, 691–699. [Google Scholar] [CrossRef]
- Kasa, P.; Papp, H.; Kasa, P.; Torok, I. Donepezil dose dependently inhibits acetylcholinesterase activity in various areas and in the presynaptic cholinergic and the postsynaptic cholinoceptive enzyme-positive structures in the human and rat brain. Neuroscience 2000, 101, 89–100. [Google Scholar] [CrossRef]
- Bartus, R.T. On neurodegenerative diseases, models, and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol. 2000, 163, 495–529. [Google Scholar] [CrossRef]
- Ebert, U.; Kirch, W. Scopolamine model of dementia: Electroencephalogram findings and cognitive performance. Eur. J. Clin. Investig. 1998, 28, 944–949. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Noh, B.W.; Pang, Q.Q.; Lee, S.H.; Kim, J.H.; Cho, E.J. Protective mechanism of cirsium japonicum var. maackii against scopolamine-induced cognitive impairment. J. Agric. Life Environ. Sci. 2022, 34, 73–87. [Google Scholar] [CrossRef]
- Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 1984, 11, 47–60. [Google Scholar] [CrossRef]
- Sun, N.; Wang, H.; Wang, X.Y.; Yu, Q.; Han, J.Y.; Huang, Y.; Zhou, W.X. Deletion of AhR attenuates fear memory leaving other types of memory intact. Behav. Brain Res. 2023, 451, 114505. [Google Scholar] [CrossRef] [PubMed]
- Gawei, K.; Gibula, E.; Marszalek-Grabska, M.; Fliarowska, J.; Kotlinska, J.H. Assessment of spatial learning and memory in the Barnes maze task in rodents—Methodological consideration. Naunyn. Schmiedebergs Arch. Pharmacol. 2018, 392, 1–18. [Google Scholar] [CrossRef]
- Mihaylova, A.; Doncheva, N.; Zlatanova, H.; Delev, D.; Ivanovska, M.; Koeva, Y.; Murdjeva, M.; Kostadinov, L. Dopaminergic agonist pramipexole improves memory and increases IL-10 production in LPS-challenged rats. Iran. J. Basic Med. Sci. 2021, 24, 577–585. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, S.H.; Lee, C.H.; Kim, H.J.; Jung, C.J.; Beik, G.Y.; Shin, J.G.; Jung, J.W. Investigating the effect of Crataegus pinnatifida, a functional food, on cognition and memory deficit. Korean J. Food Preserv. 2019, 26, 238–245. [Google Scholar] [CrossRef]
- Farlow, M.R.; Salloway, S.; Tariot, P.N.; Yardley, J.; Moline, M.L.; Wang, Q.; Brand-Schieber, E.; Zou, H.; Hsu, T.; Satlin, A. Effectiveness and tolerability of high-dose (23 mg/d) versus standard dose (10 mg/d) donepezil in moderate to severe Alzheimer’s disease: A 24-week, randomized, double-blind study. Clin. Ther. 2010, 32, 1234–1251. [Google Scholar] [CrossRef]
- Youn, H.C.; Jeong, H.G. Pharmacotherapy for dementia. J. Korean Med. Assoc. 2018, 61, 758–764. [Google Scholar] [CrossRef]
- Lee, S.E.; Park, S.B.; Kweon, H.Y.; Park, J.Y.; Lee, J.Y.; Jo, Y.Y.; Lee, J.H.; Jang, G.Y.; Choi, S.J.; Kim, D.H. Cognition improving effect of the compositions prepared with extracts of Wongam, Sorghum bicolor (L.) Moench and pupae of Bombyx mori L. Korean J. Food Preserv. 2021, 28, 989–999. [Google Scholar] [CrossRef]
- Prieur, E.A.K.; Jadavii, N.M. Assessing spatial working memory using the spontaneous alternation Y-maze test in aged male mice. Bio Protoc. 2019, 9, e3162. [Google Scholar] [CrossRef]
- Botton, P.H.; Costa, M.S.; Ardais, A.P.; Mioranzza, S.; Souza, D.O.; da Rocha, J.B.T.; Porciuncula, L.O. Caffeine prevents disruption of memory consolidation in the inhibitory avoidance and novel object recognition tasks by scopolamine in adult mice. Behav. Brain Res. 2010, 214, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Pisani, S.; Mueller, C.; Huntley, J.; Aarsland, D.; Kempton, M.J. A meta-analysis of randomised controlled trials of physical activity in people with Alzheimer’s disease and mild cognitive impairment with a comparison to donepezil. Int. J. Geriatr. Psychiatry 2021, 36, 1471–1487. [Google Scholar] [CrossRef] [PubMed]
Organ | Group (1) | p-Value | |||
---|---|---|---|---|---|
Control | Scopolamine | HSCT | Donepezil | ||
Brain | 1.80 ± 0.11 (2) | 1.83 ± 0.03 | 1.88 ± 0.03 | 1.87 ± 0.04 | NS (3) |
Heart | 1.62 ± 0.05 | 1.59 ± 0.03 | 1.58 ± 0.04 | 1.58 ± 0.04 | |
Liver | 11.93 ± 0.46 | 11.37 ± 0.25 | 11.54 ± 0.40 | 11.40 ± 0.53 | |
Kidney | 3.06 ± 0.10 | 2.95 ± 0.08 | 3.10 ± 0.11 | 2.93 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, G.-M.; Jung, T.-H.; Yun, S.-S.; Choi, J.-H.; Nam, M.-J.; Han, K.-S. Effects of Hydrolysates from Silkworms Fed Cudrania tricuspidata Leaves on Improvement of Memory in Rats with Impaired Memory Induced by Scopolamine. Appl. Sci. 2023, 13, 11656. https://doi.org/10.3390/app132111656
An G-M, Jung T-H, Yun S-S, Choi J-H, Nam M-J, Han K-S. Effects of Hydrolysates from Silkworms Fed Cudrania tricuspidata Leaves on Improvement of Memory in Rats with Impaired Memory Induced by Scopolamine. Applied Sciences. 2023; 13(21):11656. https://doi.org/10.3390/app132111656
Chicago/Turabian StyleAn, Gyu-Mi, Tae-Hwan Jung, Sung-Seob Yun, Jae-Hwan Choi, Min-Ji Nam, and Kyoung-Sik Han. 2023. "Effects of Hydrolysates from Silkworms Fed Cudrania tricuspidata Leaves on Improvement of Memory in Rats with Impaired Memory Induced by Scopolamine" Applied Sciences 13, no. 21: 11656. https://doi.org/10.3390/app132111656
APA StyleAn, G. -M., Jung, T. -H., Yun, S. -S., Choi, J. -H., Nam, M. -J., & Han, K. -S. (2023). Effects of Hydrolysates from Silkworms Fed Cudrania tricuspidata Leaves on Improvement of Memory in Rats with Impaired Memory Induced by Scopolamine. Applied Sciences, 13(21), 11656. https://doi.org/10.3390/app132111656