The Reaction–Diffusion Models in Biomedicine: Highly Accurate Calculations via a Hybrid Matrix Collocation Algorithm
Abstract
:1. Introduction
2. A Review of a New Class of Polynomials
2.1. The Chatterjea Polynomials
2.2. Convergent of ChPs in the Sense of
3. Description of QLM–ChPs Matrix Approach
3.1. The Essence of QLM
3.2. The Main Algorithm
3.3. Theoretical Upper Bound for QLM–ChPs Approach
3.4. Error Measurement via REF Method
3.5. The RC Methodology
4. Numerical Calculations
4.1. Case Study I: Planar Particle ()
4.2. Case Study II: Spherical Particle ()
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scheller, F.; Schubeert, F. Biosensor; Elsevier: Amsterdam, The Netherlands, 1988; Volume 7. [Google Scholar]
- Wollenberger, U.; Lisdat, F.; Scheller, F.W. Enzymatic Substrate Recycling Electrodes. Frontiers in Biosensorics. B and II, Practical Applications; Birkhauser Verlag: Basel, Switzerland, 1997; pp. 45–70. [Google Scholar]
- Aris, R. Mathematical Modeling: A Chemical Engineer’s Perspective; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Michaelis, L.; Menten, M. Die kinetic der invertinwirkung. Biochem. Z. 1913, 79, 333–369. [Google Scholar]
- Lin, S.H. Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. J. Theoret. Biol. 1976, 60, 449–457. [Google Scholar] [CrossRef] [PubMed]
- McElwain, D.L.S. A Re-examination of oxygen diffusion in a spherical cell with Michaelis–Menten oxygen uptake kinetics. J. Theoret. Biol. 1978, 7, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Manimozhi, P.; Subbiah, A.; Rajendran, L. Solution of steady-state substrate concentration in the action of biosensor response at mixed enzyme kinetics. Sens. Actuators B Chem. 2010, 14, 290–297. [Google Scholar] [CrossRef]
- Indira, K.; Rajendran, L. Analytical expression of the concentration of substrates and product in phenol-polypheneol oxidase system immobilized in laponite hydrogels Michaelis-Menten formalism in homogeneous medium. Electrochim. Acta 2011, 56, 6411–6419. [Google Scholar] [CrossRef]
- Merchant, T.R. Cubic autocatalysis with Michaelis-Menten kinetics: Semi-analytical solutions for the reaction-diffusion cell. J. Chem. Eng. Sci. 2004, 59, 3433–3440. [Google Scholar] [CrossRef]
- Devi, M.R.; Sevukaperumal, S.; Rajendran, L. Non-linear reaction diffusion equation with Michaelis-Menten kinetics and Adomian decomposition method. Appl. Math. 2015, 5, 21–32. [Google Scholar]
- Mahalakshmi, M.; Hariharan, G.; Brindha, G.R. An efficient wavelet-based optimization algorithm for the solutions of reaction-diffusion equations in biomedicine. Comput. Methods Progams Biomed. 2021, 186, 105218. [Google Scholar] [CrossRef]
- Tosaka, N.; Miyale, S. Analysis of a nonlinear diffusion problem with Michaelis Menten kinetics by an integral equation method. Bull. Math. Biol. 1982, 44, 841–849. [Google Scholar] [CrossRef]
- Simpson, M.J.; Ellery, A.J. An analytical solution for diffusion and nonlinear uptake of oxygen in a spherical cell. Appl. Math. Model. 2012, 36, 3329–3334. [Google Scholar] [CrossRef]
- Selvi, M.S.M.; Seethalakshmi, R.; Rajendran, L. An analytical solution for diffusion and nonlinear uptake of oxygen in a planar, cylindrical and spherical cell using wavelet method. J. Crit. Rev. 2020, 7, 9729–9744. [Google Scholar]
- Singh, R.; Wazwaz, A.M. Optimal homotopy analysis method for oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. MATCH Commun. Math. Comput. Chem. 2018, 80, 369–382. [Google Scholar]
- Hadhoud, A.R.; Ali, K.K.; Shaalan, M.A. A septic B-spline collocation method for solving nonlinear singular boundary value problems arising in physiological models. Sci. Iran. 2020, 27, 1674–1874. [Google Scholar]
- Roul, P. A new mixed MADM-collocation approach for solving a class of Lane–Emden singular boundary value problems. J. Math. Chem. 2019, 57, 945–969. [Google Scholar] [CrossRef]
- Tripathi, V.M.; Srivastava, H.M.; Singh, H.; Swarup, C.; Aggarwal, S. Mathematical analysis of non-isothermal reaction-diffusion models arising in spherical catalyst and spherical biocatalyst. Appl. Sci. 2021, 11, 10423. [Google Scholar] [CrossRef]
- Jamal, B.; Khuri, S.A. Non-isothermal reaction-diffusion model equations in a spherical biocatalyst: Green’s function and fixed point iteration approach. Int. J. Appl. Comput. Math. 2019, 5, 120. [Google Scholar] [CrossRef]
- Abuasbeh, K.; Qureshi, S.; Soomro, A.; Awadalla, M. An optimal family of block techniques to solve models of infectious diseases: Fixed and adaptive stepsize strategies. Mathematics 2023, 11, 1135. [Google Scholar] [CrossRef]
- Qureshi, S.; Ramos, H. L-stable explicit nonlinear method with constant and variable step-size formulation for solving initial value problems. Int. J. Nonlinear Sci. Numer. Simul. 2018, 19, 741–751. [Google Scholar] [CrossRef]
- Aydinlik, S. An efficient method for oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. Int. J. Biomath. 2022, 15, 2250019. [Google Scholar] [CrossRef]
- Izadi, M.; Yüzbası, S.; Cattani, C. Approximating solutions to fractional-order Bagley-Torvik equation via generalized Bessel polynomial on large domains. Ricerche Mat. 2023, 72, 235–261. [Google Scholar] [CrossRef]
- Yüzbası, S.; Yildirim, G. A Laguerre approach for solving of the systems of linear differential equations and residual improvement. Comput. Methods Differ. Equ. 2021, 9, 553–576. [Google Scholar]
- Abd-Elkawy, M.A.; Alqahtani, R.T. Shifted Jacobi spectral collocation method for solving two-sided fractional water wave models. Europ. Phys J. Plus 2017, 132, 50. [Google Scholar] [CrossRef]
- Youssri, Y.H.; Hafez, R.M. Exponential Jacobi spectral method for hyperbolic partial differential equations. Math. Sci. 2019, 13, 347–354. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Al-Harbi, M.S.; Amin, A.K.; Ahmed, H.M. Spectral treatment of high-order Emden-Fowler equations based on modified Chebyshev polynomials. Axioms 2023, 12, 99. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Izadi, M. The Rothe-Newton approach to simulate the variable coefficient convection-diffusion equations. J. Mahani Math. Res. 2022, 11, 141–157. [Google Scholar]
- Yadav, P.; Jahan, S.; Nisar, K.S. Solving fractional Bagley-Torvik equation by fractional order Fibonacci wavelet arising in fluid mechanics. Ain Shams Eng. J. 2023, 14, 102299. [Google Scholar] [CrossRef]
- Izadi, M.; Zeidan, D. A convergent hybrid numerical scheme for a class of nonlinear diffusion equations. Comp. Appl. Math. 2022, 41, 318. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Adel, W.; Izadi, M.; El-Sayed, A.A. Solving some physics problems involving fractional-order differential equations with the Morgan-Voyce polynomials. Fractal Fract. 2023, 7, 331. [Google Scholar] [CrossRef]
- Krall, H.L.; Frink, O. A new class of orthogonal polynomials: The Bessel polynomials. Trans. Amer. Math. Soc. 1949, 65, 100–115. [Google Scholar] [CrossRef]
- Chatterjea, S.K. New class of polynomials. Ann. Mat. Pura Appl. 1964, 65, 35–48. [Google Scholar] [CrossRef]
- Izadi, M.; Srivastava, H.M.; Adel, W. An effective approximation algorithm for second-order singular functional differential equations. Axioms 2022, 11, 133. [Google Scholar] [CrossRef]
- Izadi, M.; Roul, P. Spectral semi-discretization algorithm for a class of nonlinear parabolic PDEs with applications. Appl. Math. Comput. 2022, 429, 127226. [Google Scholar] [CrossRef]
- Izadi, M.; Srivastava, H.M. Applications of modified Bessel polynomials to solve a nonlinear chaotic fractional-order system in the financial market: Domain-splitting collocation techniques. Computation 2023, 11, 130. [Google Scholar] [CrossRef]
- Srivastava, H.M. An introductory overview of Bessel polynomials, the generalized Bessel polynomials and the q-Bessel polynomials. Symmetry 2023, 15, 822. [Google Scholar] [CrossRef]
- Izadi, M. A combined approximation method for nonlinear foam drainage equation. Sci. Iran. 2022, 29, 70–78. [Google Scholar]
- Aznam, S.M.; Ghani, N.A.; Chowdhury, M.S. A numerical solution for nonlinear heat transfer of fin problems using the Haar wavelet quasilinearization method. Results Phys. 2019, 14, 102393. [Google Scholar] [CrossRef]
- Izadi, M.; Srivastava, H.M. Robust QLM-SCFTK matrix approach applied to a biological population model of fractional order considering the carrying capacity. Discrete Contin. Dyn. Syst. Ser. S 2023, 2023, 1–23. [Google Scholar] [CrossRef]
Parameter | Description | Unit |
---|---|---|
Substrate concentration | mol/cm3 | |
Dimensionless substrate concentration () | - | |
Bulk-substrate concentration | mol/cm3 | |
Effective diffusivity inside the particle | cm3/s | |
Maximum reaction rate | mol/s cm3 | |
Michaelis constant | mol/cm3 | |
External mass-transfer coefficient | mol/cm3 | |
Spatial variable | cm | |
Thiele modulus | - | |
Dimensionless Michaelis constant | - | |
Half length of the particle | cm | |
Modified Sherwood number | - |
x | ||||
---|---|---|---|---|
x | ||||||
---|---|---|---|---|---|---|
2 | − | − | − | − | ||||
4 | ||||||||
8 | ||||||||
16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izadi, M.; Srivastava, H.M. The Reaction–Diffusion Models in Biomedicine: Highly Accurate Calculations via a Hybrid Matrix Collocation Algorithm. Appl. Sci. 2023, 13, 11672. https://doi.org/10.3390/app132111672
Izadi M, Srivastava HM. The Reaction–Diffusion Models in Biomedicine: Highly Accurate Calculations via a Hybrid Matrix Collocation Algorithm. Applied Sciences. 2023; 13(21):11672. https://doi.org/10.3390/app132111672
Chicago/Turabian StyleIzadi, Mohammad, and Hari M. Srivastava. 2023. "The Reaction–Diffusion Models in Biomedicine: Highly Accurate Calculations via a Hybrid Matrix Collocation Algorithm" Applied Sciences 13, no. 21: 11672. https://doi.org/10.3390/app132111672
APA StyleIzadi, M., & Srivastava, H. M. (2023). The Reaction–Diffusion Models in Biomedicine: Highly Accurate Calculations via a Hybrid Matrix Collocation Algorithm. Applied Sciences, 13(21), 11672. https://doi.org/10.3390/app132111672