Unlocking the Power of Reconfigurable Intelligent Surfaces: From Wireless Communication to Energy Efficiency and Beyond
Abstract
:1. Introduction
- In the late 1990s and early 2000s, researchers began investigating the concept of metamaterials, artificially engineered materials that can manipulate electromagnetic waves in unique ways [13]. Metamaterials are composed of structures smaller than the wavelength of the electromagnetic waves they manipulate, allowing them to bend, refract, and even absorb these waves in unusual ways [14]. The earliest form of RIS was the electromagnetic bandgap (EBG) structure, designed to reflect specific frequencies of electromagnetic waves and mainly used to reduce electromagnetic interference in electronic devices [15].
- Around 2012, researchers proposed the concept of using “smart walls” composed of metamaterials to improve wireless communication systems [16,17,18]. These smart walls could be programmed to selectively block or allow certain frequencies of electromagnetic waves, effectively creating a wireless network with minimal interference [19].
- In 2019, researchers proposed the concept of using reconfigurable surfaces to improve wireless communication in indoor environments [20]. They showed that by using RISs, it was possible to create multiple virtual channels between a transmitter and receiver, effectively increasing the capacity of wireless networks [21].
- Since then, the research on RISs has expanded rapidly, with many researchers investigating different aspects of RIS design, fabrication, and application [22]. Today, RISs are being investigated as a potential technology for improving wireless communication, increasing the efficiency of energy harvesting, and even enhancing imaging and sensing technologies [23,24].
2. Principles of RISs
3. RIS Modeling and Simulation
4. RIS Implementation
5. RIS Applications
6. Challenges and Future Directions
7. Conclusions
Funding
Conflicts of Interest
References
- Albreem, M.A. 5G wireless communication systems: Vision and challenges. In Proceedings of the 2015 International Conference on Computer, Communications, and Control Technology (I4CT), Kuching, Malaysia, 21–23 April 2015; pp. 493–497. [Google Scholar]
- Basharat, S.; Hassan, S.A.; Pervaiz, H.; Mahmood, A.; Ding, Z.; Gidlund, M. Reconfigurable intelligent surfaces: Potentials, applications, and challenges for 6G wireless networks. IEEE Wirel. Commun. 2021, 28, 184–191. [Google Scholar] [CrossRef]
- Sharma, T.; Chehri, A.; Fortier, P. Reconfigurable intelligent surfaces for 5G and beyond wireless communications: A comprehensive survey. Energies 2021, 14, 8219. [Google Scholar] [CrossRef]
- Peng, Z.; Zhou, G.; Pan, C.; Ren, H.; Swindlehurst, A.L.; Popovski, P.; Wu, G. Channel estimation for RIS-aided multi-user mmWave systems with uniform planar arrays. IEEE Trans. Commun. 2022, 70, 8105–8122. [Google Scholar] [CrossRef]
- Luo, X. Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron. 2015, 58, 1–18. [Google Scholar] [CrossRef]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.S.; Zhang, R. Wireless communications through reconfigurable intelligent surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Alsabah, M.; Naser, M.A.; Mahmmod, B.M.; Abdulhussain, S.H.; Eissa, M.R.; Al-Baidhani, A.; Noordin, N.K.; Sait, S.M.; Al-Utaibi, K.A.; Hashim, F. 6G wireless communications networks: A comprehensive survey. IEEE Access 2021, 9, 148191–148243. [Google Scholar] [CrossRef]
- Pan, C.; Ren, H.; Wang, K.; Elkashlan, M.; Nallanathan, A.; Wang, J.; Hanzo, L. Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer. IEEE J. Sel. Areas Commun. 2020, 38, 1719–1734. [Google Scholar] [CrossRef]
- Wang, J.; Yu, H. RF energy harvesting schemes for intelligent reflecting surface-aided cognitive radio sensor networks. Sci. Rep. 2022, 12, 22462. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Z.; Huang, C.; Chen, X.; Zhong, C. Intelligent Reflecting Surface Aided Computational Imaging Exploiting Reed-Muller Sequences. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, OK, USA, 27–30 September 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Di Renzo, M.; Ntontin, K.; Song, J.; Danufane, F.H.; Qian, X.; Lazarakis, F.; De Rosny, J.; Phan-Huy, D.T.; Simeone, O.; Zhang, R.; et al. Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison. IEEE Open J. Commun. Soc. 2020, 1, 798–807. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, T.; Zhang, T.; Zhang, J.; Yu, S.; Zhou, W. Security and privacy in 6G networks: New areas and new challenges. Digit. Commun. Netw. 2020, 6, 281–291. [Google Scholar] [CrossRef]
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966. [Google Scholar] [CrossRef]
- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C. Metamaterials and negative refractive index. Science 2004, 305, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Sievenpiper, D.; Zhang, L.; Broas, R.; Alexopolous, N.; Yablonovitch, E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 1999, 47, 2059–2074. [Google Scholar] [CrossRef]
- Fu, Y.H.; Liu, A.Q.; Zhu, W.M.; Zhang, X.M.; Tsai, D.P.; Zhang, J.B.; Mei, T.; Tao, J.F.; Guo, H.C.; Zhang, X.H.; et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators. Adv. Funct. Mater. 2011, 21, 3589–3594. [Google Scholar] [CrossRef]
- Subrt, L.; Pechac, P. Controlling propagation environments using intelligent walls. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 1–5. [Google Scholar]
- Dunna, M.; Zhang, C.; Sievenpiper, D.; Bharadia, D. ScatterMIMO: Enabling Virtual MIMO with Smart Surfaces. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, MobiCom ’20, New York, NY, USA, 21–25 September 2020. [Google Scholar] [CrossRef]
- Long, W.; Chen, R.; Moretti, M.; Zhang, W.; Li, J. A promising technology for 6G wireless networks: Intelligent reflecting surface. J. Commun. Inf. Netw. 2021, 6, 1–16. [Google Scholar] [CrossRef]
- Renzo, M.D.; Debbah, M.; Phan-Huy, D.T.; Zappone, A.; Alouini, M.S.; Yuen, C.; Sciancalepore, V.; Alexandropoulos, G.C.; Hoydis, J.; Gacanin, H.; et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 129. [Google Scholar] [CrossRef]
- Liaskos, C.; Nie, S.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I. A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag. 2018, 56, 162–169. [Google Scholar] [CrossRef]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Large intelligent surfaces for energy efficiency in wireless communication. arXiv 2018, arXiv:1810.06934. [Google Scholar]
- Alexandropoulos, G.C.; Lerosey, G.; Debbah, M.; Fink, M. Reconfigurable intelligent surfaces and metamaterials: The potential of wave propagation control for 6G wireless communications. arXiv 2020, arXiv:2006.11136. [Google Scholar]
- ElMossallamy, M.A.; Zhang, H.; Song, L.; Seddik, K.G.; Han, Z.; Li, G.Y. Reconfigurable intelligent surfaces for wireless communications: Principles, challenges, and opportunities. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 990–1002. [Google Scholar] [CrossRef]
- Kelly, J.R.; Kokkinos, T.; Feresidis, A.P. Modelling and Design of Sub-wavelength Metamaterial Resonant Cavity Antennas. In Proceedings of the First International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Rome, Italy, 22–26 October 2007; p. 231. [Google Scholar]
- Khan, M.I.; Fraz, Q.; Tahir, F.A. Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle. J. Appl. Phys. 2017, 121, 045103. [Google Scholar] [CrossRef]
- Materón, E.; Filgueiras, H.; Vilas Boas, E.; Gómez, F.; Cavalcanti, F.; Silva, Y.; Cerqueira S, A.; de Figueiredo, F.; Mendes, L.; Oliveira, O.N.; et al. Flexible metasurfaces as sub-6 GHz frequency selective surfaces for 5G applications. J. Appl. Phys. 2023, 134, 145304. [Google Scholar] [CrossRef]
- Di Renzo, M.; Danufane, F.H.; Tretyakov, S. Communication models for reconfigurable intelligent surfaces: From surface electromagnetics to wireless networks optimization. Proc. IEEE 2022, 110, 1164–1209. [Google Scholar] [CrossRef]
- Björnson, E.; Özdogan, Ö.; Larsson, E.G. Reconfigurable intelligent surfaces: Three myths and two critical questions. IEEE Commun. Mag. 2020, 58, 90–96. [Google Scholar] [CrossRef]
- Garcia, J.C.B.; Sibille, A.; Kamoun, M. Reconfigurable intelligent surfaces: Bridging the gap between scattering and reflection. IEEE J. Sel. Areas Commun. 2020, 38, 2538–2547. [Google Scholar] [CrossRef]
- Alexandropoulos, G.C.; Shlezinger, N.; Alamzadeh, I.; Imani, M.F.; Zhang, H.; Eldar, Y.C. Hybrid reconfigurable intelligent metasurfaces: Enabling simultaneous tunable reflections and sensing for 6G wireless communications. arXiv 2021, arXiv:2104.04690. [Google Scholar]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef]
- Björnson, E.; Wymeersch, H.; Matthiesen, B.; Popovski, P.; Sanguinetti, L.; de Carvalho, E. Reconfigurable intelligent surfaces: A signal processing perspective with wireless applications. IEEE Signal Process. Mag. 2022, 39, 135–158. [Google Scholar] [CrossRef]
- Pei, X.; Yin, H.; Tan, L.; Cao, L.; Li, Z.; Wang, K.; Zhang, K.; Björnson, E. RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials. IEEE Trans. Commun. 2021, 69, 8627–8640. [Google Scholar] [CrossRef]
- Alexandropoulos, G.C.; Shlezinger, N.; Del Hougne, P. Reconfigurable intelligent surfaces for rich scattering wireless communications: Recent experiments, challenges, and opportunities. IEEE Commun. Mag. 2021, 59, 28–34. [Google Scholar] [CrossRef]
- Grout, V.; Akinsolu, M.O.; Liu, B.; Lazaridis, P.I.; Mistry, K.K.; Zaharis, Z.D. Software solutions for antenna design exploration: A comparison of packages, tools, techniques, and algorithms for various design challenges. IEEE Antennas Propag. Mag. 2019, 61, 48–59. [Google Scholar] [CrossRef]
- Gies, D.; Rahmat-Samii, Y. Particle swarm optimization for reconfigurable phase-differentiated array design. Microw. Opt. Technol. Lett. 2003, 38, 168–175. [Google Scholar] [CrossRef]
- Yun, Z.; Iskander, M.F. Ray tracing for radio propagation modeling: Principles and applications. IEEE Access 2015, 3, 1089–1100. [Google Scholar] [CrossRef]
- Nye, W.; Riley, D.C.; Sangiovanni-Vincentelli, A.; Tits, A.L. DELIGHT. SPICE: An optimization-based system for the design of integrated circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 1988, 7, 501–519. [Google Scholar] [CrossRef]
- Özdogan, Ö.; Björnson, E.; Larsson, E.G. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling. IEEE Wirel. Commun. Lett. 2019, 9, 581–585. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, Y.; Mu, X.; Zhang, X.; Liu, Y.; Yuen, C. Machine Learning in RIS-assisted NOMA IoT Networks. IEEE Internet Things J. 2023. [Google Scholar] [CrossRef]
- Agarwal, K.; Alphones, A. RIS-based compact circularly polarized microstrip antennas. IEEE Trans. Antennas Propag. 2012, 61, 547–554. [Google Scholar] [CrossRef]
- Chopra, A.; Thornburg, A.; Kanhere, O.; Termos, A.; Ghassemzadeh, S.S.; Rappaport, T.S. Real-time millimeter wave omnidirectional channel sounder using phased array antennas. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–7. [Google Scholar]
- Shaikh, F.K.; Zeadally, S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 55, 1041–1054. [Google Scholar] [CrossRef]
- Alamzadeh, I.; Alexandropoulos, G.C.; Shlezinger, N.; Imani, M.F. A reconfigurable intelligent surface with integrated sensing capability. Sci. Rep. 2021, 11, 20737. [Google Scholar] [CrossRef]
- Mohammad, M.A.; Muhammad, M.; Dew, S.K.; Stepanova, M. Fundamentals of electron beam exposure and development. In Nanofabrication: Techniques and Principles; Springer: Berlin/Heidelberg, Germany, 2011; pp. 11–41. [Google Scholar]
- Walia, S.; Shah, C.M.; Gutruf, P.; Nili, H.; Chowdhury, D.R.; Withayachumnankul, W.; Bhaskaran, M.; Sriram, S. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales. Appl. Phys. Rev. 2015, 2, 011303. [Google Scholar] [CrossRef]
- Chen, X.; Tian, Z.; Lu, Y.; Xu, Y.; Zhang, X.; Ouyang, C.; Gu, J.; Han, J.; Zhang, W. Electrically tunable perfect terahertz absorber based on a graphene salisbury screen hybrid metasurface. Adv. Opt. Mater. 2020, 8, 1900660. [Google Scholar] [CrossRef]
- Devlin, R.C.; Khorasaninejad, M.; Chen, W.T.; Oh, J.; Capasso, F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl. Acad. Sci. USA 2016, 113, 10473–10478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jin, Q.; Mertens, A.; Rainer, C.; Huber, R.; Fessler, J.; Hernandez-Sosa, G.; Lemmer, U. Fabrication of Bragg mirrors by multilayer inkjet printing. Adv. Mater. 2022, 34, 2201348. [Google Scholar] [CrossRef] [PubMed]
- Molero, C.; Palomares-Caballero, Á.; Alex-Amor, A.; Parellada-Serrano, I.; Gamiz, F.; Padilla, P.; Valenzuela-Valdés, J.F. Metamaterial-based reconfigurable intelligent surface: 3D meta-atoms controlled by graphene structures. IEEE Commun. Mag. 2021, 59, 42–48. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2019, 58, 106–112. [Google Scholar] [CrossRef]
- Sarieddeen, H.; Saeed, N.; Al-Naffouri, T.Y.; Alouini, M.S. Next generation terahertz communications: A rendezvous of sensing, imaging, and localization. IEEE Commun. Mag. 2020, 58, 69–75. [Google Scholar] [CrossRef]
- Wang, Z.; Du, Y.; Wei, K.; Han, K.; Xu, X.; Wei, G.; Tong, W.; Zhu, P.; Ma, J.; Wang, J.; et al. Vision, application scenarios, and key technology trends for 6G mobile communications. Sci. China Inf. Sci. 2022, 65, 151301. [Google Scholar] [CrossRef]
- Wang, J.; Tang, W.; Han, Y.; Jin, S.; Li, X.; Wen, C.K.; Cheng, Q.; Cui, T.J. Interplay between RIS and AI in wireless communications: Fundamentals, architectures, applications, and open research problems. IEEE J. Sel. Areas Commun. 2021, 39, 2271–2288. [Google Scholar] [CrossRef]
- Ojukwu, H.; Seet, B.C.; Rehman, S.U. Metasurface-aided wireless power transfer and energy harvesting for future wireless networks. IEEE Access 2022, 10, 52431–52450. [Google Scholar] [CrossRef]
- Naeem, F.; Ali, M.; Kaddoum, G.; Huang, C.; Yuen, C. Security and Privacy for Reconfigurable Intelligent Surface in 6G: A Review of Prospective Applications and Challenges. IEEE Open J. Commun. Soc. 2023, 4, 1196–1217. [Google Scholar] [CrossRef]
- Aubry, A.; De Maio, A.; Rosamilia, M. Reconfigurable intelligent surfaces for N-LOS radar surveillance. IEEE Trans. Veh. Technol. 2021, 70, 10735–10749. [Google Scholar] [CrossRef]
- Das, S.K.; Benkhelifa, F.; Sun, Y.; Abumarshoud, H.; Abbasi, Q.H.; Imran, M.A.; Mohjazi, L. Comprehensive review on ML-based RIS-enhanced IoT systems: Basics, research progress and future challenges. Comput. Netw. 2023, 224, 109581. [Google Scholar] [CrossRef]
- Syed, M.S.B.; Attaullah, H.M.; Ali, S.; Aslam, M.I. Wireless Communications beyond Antennas: The Role of Reconfigurable Intelligent Surfaces. Eng. Proc. 2023, 32, 10. [Google Scholar]
- Wu, Q.; Zhang, S.; Zheng, B.; You, C.; Zhang, R. Intelligent reflecting surface-aided wireless communications: A tutorial. IEEE Trans. Commun. 2021, 69, 3313–3351. [Google Scholar] [CrossRef]
- Ozcan, Y.U.; Ozdemir, O.; Kurt, G.K. Reconfigurable intelligent surfaces for the connectivity of autonomous vehicles. IEEE Trans. Veh. Technol. 2021, 70, 2508–2513. [Google Scholar] [CrossRef]
- Tagliaferri, D.; Mizmizi, M.; Ayoubi, R.A.; Gentili, G.G.; Spagnolini, U. Conformal Intelligent Reflecting Surfaces for 6G V2V Communications. In Proceedings of the 2022 1st International Conference on 6G Networking (6GNet), Paris, France, 6–8 July 2022; pp. 1–8. [Google Scholar]
- Zhang, F.; Zhang, Y.; Lu, W.; Gao, Y.; Gong, Y.; Cao, J. 6G-Enabled Smart Agriculture: A Review and Prospect. Electronics 2022, 11, 2845. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.; Du, B.; Shu, L.; Han, G. Rethinking sustainable sensing in agricultural Internet of Things: From power supply perspective. IEEE Wirel. Commun. 2022, 29, 102–109. [Google Scholar] [CrossRef]
- Khan, W.U.; Lagunas, E.; Mahmood, A.; ElHalawany, B.M.; Chatzinotas, S.; Ottersten, B. When RIS meets GEO satellite communications: A new sustainable optimization framework in 6G. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–6. [Google Scholar]
- Chen, R.; Liu, M.; Hui, Y.; Cheng, N.; Li, J. Reconfigurable intelligent surfaces for 6G IoT wireless positioning: A contemporary survey. IEEE Internet Things J. 2022, 9, 23570–23582. [Google Scholar] [CrossRef]
- Kisseleff, S.; Chatzinotas, S.; Ottersten, B. Reconfigurable intelligent surfaces in challenging environments: Underwater, underground, industrial and disaster. IEEE Access 2021, 9, 150214–150233. [Google Scholar] [CrossRef]
- Pan, C.; Ren, H.; Wang, K.; Kolb, J.F.; Elkashlan, M.; Chen, M.; Di Renzo, M.; Hao, Y.; Wang, J.; Swindlehurst, A.L.; et al. Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions. IEEE Commun. Mag. 2021, 59, 14–20. [Google Scholar] [CrossRef]
- Liu, X.; Deng, Y.; Han, C.; Di Renzo, M. Learning-based prediction, rendering and transmission for interactive virtual reality in RIS-assisted terahertz networks. IEEE J. Sel. Areas Commun. 2021, 40, 710–724. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Guo, H.; Dai, R.; Gerstacker, W. Mulsemedia communication research challenges for metaverse in 6G wireless systems. arXiv 2023, arXiv:2306.16359. [Google Scholar]
- Kitayama, D.; Hama, Y.; Goto, K.; Miyachi, K.; Motegi, T.; Kagaya, O. Transparent dynamic metasurface for a visually unaffected reconfigurable intelligent surface: Controlling transmission/reflection and making a window into an RF lens. Opt. Express 2021, 29, 29292–29307. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Di Renzo, M.; Al-Dhahir, N. Reconfigurable intelligent surfaces: Principles and opportunities. IEEE Commun. Surv. Tutor. 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- Rana, B.; Cho, S.S.; Hong, I.P. Review paper on hardware of reconfigurable intelligent surfaces. IEEE Access 2023, 11, 29614–29634. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, Y.J.A.; Shi, Y.; Yan, W.; Liu, H. Reconfigurable-intelligent-surface empowered wireless communications: Challenges and opportunities. IEEE Wirel. Commun. 2021, 28, 136–143. [Google Scholar] [CrossRef]
- Sejan, M.A.S.; Rahman, M.H.; Shin, B.S.; Oh, J.H.; You, Y.H.; Song, H.K. Machine Learning for Intelligent-Reflecting-Surface-Based Wireless Communication towards 6G: A Review. Sensors 2022, 22, 5405. [Google Scholar] [CrossRef]
- Rayna, T.; Striukova, L. From rapid prototyping to home fabrication: How 3D printing is changing business model innovation. Technol. Forecast. Soc. Chang. 2016, 102, 214–224. [Google Scholar] [CrossRef]
- Iftekar, S.F.; Aabid, A.; Amir, A.; Baig, M. Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers 2023, 15, 2519. [Google Scholar] [CrossRef]
- Rossoni, A.L.; de Vasconcellos, E.P.G.; de Castilho Rossoni, R.L. Barriers and facilitators of university-industry collaboration for research, development, and innovation: A systematic review. Manag. Rev. Q. 2023, 1–37. [Google Scholar] [CrossRef]
- Boghani, A.; Jonash, R. The Role of Government in Fostering Innovation; Arthur D Little: Brussel, Belgium, 1993. [Google Scholar]
- Khaleel, S.A.; Hamad, E.K.I.; Parchin, N.O.; Saleh, M.B. Programmable Beam-Steering Capabilities Based on Graphene Plasmonic THz MIMO Antenna via Reconfigurable Intelligent Surfaces (RIS) for IoT Applications. Electronics 2023, 12, 164. [Google Scholar] [CrossRef]
- Wang, W.; Ni, W.; Tian, H.; Al-Dhahir, N. Multi-Functional RIS: An Integration of Reflection, Amplification, and Energy Harvesting. In Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Huang, C.; Yang, Z.; Alexandropoulos, G.C.; Xiong, K.; Wei, L.; Yuen, C.; Zhang, Z.; Debbah, M. Multi-Hop RIS-Empowered Terahertz Communications: A DRL-Based Hybrid Beamforming Design. IEEE J. Sel. Areas Commun. 2021, 39, 1663–1677. [Google Scholar] [CrossRef]
- Yang, F.; Pitchappa, P.; Wang, N. Terahertz Reconfigurable Intelligent Surfaces (RISs) for 6G Communication Links. Micromachines 2022, 13, 285. [Google Scholar] [CrossRef] [PubMed]
- Tekbıyık, K.; Kurt, G.K.; Ekti, A.R.; Yanikomeroglu, H. Reconfigurable Intelligent Surfaces in Action for Nonterrestrial Networks. IEEE Veh. Technol. Mag. 2022, 17, 45–53. [Google Scholar] [CrossRef]
- Zhao, Y.; He, J. RISTA—Reconfigurable Intelligent Surface Technology White Paper. 2023. Available online: http://www.risalliance.com/RISTA-Reconfigurable%20Intelligent%20Surface%20Technology%20White%20Paper%282023%29.pdf (accessed on 20 July 2023). [CrossRef]
- Kisseleff, S.; Martins, W.A.; Al-Hraishawi, H.; Chatzinotas, S.; Ottersten, B. Reconfigurable Intelligent Surfaces for Smart Cities: Research Challenges and Opportunities. IEEE Open J. Commun. Soc. 2020, 1, 1781–1797. [Google Scholar] [CrossRef]
- Zhang, S.; Wong, C.L.; Zeng, S.; Bi, R.; Tai, K.; Dholakia, K.; Olivo, M. Metasurfaces for biomedical applications: Imaging and sensing from a nanophotonics perspective. Nanophotonics 2021, 10, 259–293. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Recent Development in Metasurfaces: A Focus on Sensing Applications. Nanomaterials 2023, 13, 118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
P. de Figueiredo, F.A. Unlocking the Power of Reconfigurable Intelligent Surfaces: From Wireless Communication to Energy Efficiency and Beyond. Appl. Sci. 2023, 13, 11750. https://doi.org/10.3390/app132111750
P. de Figueiredo FA. Unlocking the Power of Reconfigurable Intelligent Surfaces: From Wireless Communication to Energy Efficiency and Beyond. Applied Sciences. 2023; 13(21):11750. https://doi.org/10.3390/app132111750
Chicago/Turabian StyleP. de Figueiredo, Felipe A. 2023. "Unlocking the Power of Reconfigurable Intelligent Surfaces: From Wireless Communication to Energy Efficiency and Beyond" Applied Sciences 13, no. 21: 11750. https://doi.org/10.3390/app132111750
APA StyleP. de Figueiredo, F. A. (2023). Unlocking the Power of Reconfigurable Intelligent Surfaces: From Wireless Communication to Energy Efficiency and Beyond. Applied Sciences, 13(21), 11750. https://doi.org/10.3390/app132111750