Artificial Neural Networks for a Semantic Map of Variables in a Music Listening-Based Study
Abstract
:1. Introduction
2. Materials and Methods
- Timbre: indicating the instrument’s name;
- Pitch range: representing the lowest and highest notes achievable within the instrument’s range (spanning from C0 to B7);
- Time signature: denoting the rhythm with options like 2/4, 3/4, 4/4, 3/8, 6/8, 12/8, and other supported signatures;
- Key: specified with the tonic’s name, along with the minus or plus symbol to indicate minor or major scales, and the corresponding notes of the scale in scientific pitch notation (A to G, with sharps or flats where applicable). If a note refers to a specific octave, its octave number is also indicated;
- Tempo: measured in beats per minute (bpm), equivalent to adagio, andante, allegro, etc.;
- Intervals: indicating the allowable pitch differences between notes (e.g., 2–3, 2–4);
- Rhythm: representing the density of note durations, expressed as probabilities for each duration;
- Dynamics: indicated by terms like “piano” (p) or “mezzoforte” (mf);
- Duration: specifying the overall length of the fragment in seconds.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raglio, A.; Oasi, O. Music and health: What interventions for what results? Front. Psychol. 2015, 6, 230. [Google Scholar] [CrossRef] [PubMed]
- Mc Ferran, K.; Grocke, D. Receptive Music Therapy. Techniques Clinical Applications and New Perspectives, 2nd ed.; Jessica Kingsley Publishers: London, UK, 2022. [Google Scholar]
- Raglio, A. Therapeutic music listening as telehealth intervention. Complement. Ther. Clin. Pract. 2020, 41, 101245. [Google Scholar] [CrossRef]
- Hole, J.; Hirsch, M.; Ball, E.; Meads, C. Music as an aid for postoperative recovery in adults: A systematic review and meta-analysis. Lancet 2015, 386, 1659–1671. [Google Scholar] [CrossRef] [PubMed]
- Guétin, S.; Portet, F.; Picot, M.C.; Pommié, C.; Messaoudi, M.; Djabelkir, L.; Olsen, A.L.; Cano, M.M.; Lecourt, E.; Touchon, J. Effect of music therapy on anxiety and depression in patients with Alzheimer’s type dementia: Randomised, controlled study. Dement. Geriatr. Cogn. Disord. 2009, 28, 36–46. [Google Scholar] [CrossRef]
- de Witte, M.; Pinho, A.D.S.; Stams, G.J.; Moonen, X.; Bos, A.E.; van Hooren, S. Music therapy for stress reduction: A systematic review and meta-analysis. Health Psychol. Rev. 2022, 16, 134–159. [Google Scholar] [CrossRef]
- Raglio, A.; Bellandi, D.; Gianotti, M.; Zanacchi, E.; Gnesi, M.; Monti, M.C.; Montomoli, C.; Vico, F.; Imbriani, C.; Giorgi, I.; et al. Daily music listening to reduce work-related stress: A randomized controlled pilot trial. J. Public Health 2020, 42, e81–e87. [Google Scholar] [CrossRef] [PubMed]
- Linnemann, A.; Ditzen, B.; Strahler, J.; Doerr, J.M.; Nater, U.M. Music listening as a means of stress reduction in daily life. Psychoneuroendocrinology 2015, 60, 82–90. [Google Scholar] [CrossRef]
- Colebaugh, C.A.; Wilson, J.M.; Flowers, K.M.; Overstreet, D.; Wang, D.; Edwards, R.R.; Chai, P.R.; Schreiber, K.L. The Impact of Varied Music Applications on Pain Perception and Situational Pain Catastrophizing. J. Pain 2023, 14, 1181–1192. [Google Scholar] [CrossRef]
- Chai, P.R.; Gale, J.Y.; Patton, M.E.; Schwartz, E.; Jambaulikar, G.D.; Wade Taylor, S.; Edwards, R.R.; Boyer, E.W.; Schreiber, K.L. The Impact of Music on Nociceptive Processing. Pain Med. 2020, 21, 3047–3054. [Google Scholar] [CrossRef]
- Martin-Saavedra, J.S.; Vergara-Mendez, L.D.; Pradilla, I.; Velez-van-Meerbeke, A.; Talero-Gutierrez, C. Standardizing music characteristics for the management of pain: A systematic review and meta-analysis of clinical trials. Complement. Ther. Med. 2018, 41, 81–89. [Google Scholar] [CrossRef]
- Lee, J.H. The Effects of Music on Pain: A Meta-Analysis. J. Music Ther. 2016, 3, 430–477, Erratum in J. Music. Ther. 2021, 58, 372. [Google Scholar] [CrossRef]
- McCrary, J.M.; Altenmüller, E.; Kretschmer, C.; Scholz, D.S. Association of Music Interventions with Health-Related Quality of Life: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e223236. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.T.; Xiao, J.; Chan, D.N.S.; Zhang, M.; Chan, C.W. Effects of music intervention on anxiety, depression, and quality of life of cancer patients receiving chemotherapy: A systematic review and meta-analysis. Support Care Cancer 2022, 30, 5615–5626. [Google Scholar] [CrossRef]
- Schell, A.; Wassmer, F.; Zaubitzer, L.; Kramer, B.; Sadick, H.; Rotter, N.; Häussler, D. The effect of complementary music intervention on the patients’ quality of life after septoplasty and rhinoplasty. BMC Complement. Med. Ther. 2022, 22, 282. [Google Scholar] [CrossRef] [PubMed]
- van der Steen, J.T.; van Soest-Poortvliet, M.C.; van der Wouden, J.C.; Bruinsma, M.S.; Scholten, R.J.; Vink, A.C. Music-based therapeutic interventions for people with dementia. Cochrane Database Syst. Rev. 2018, 7, CD003477. [Google Scholar] [CrossRef]
- Raglio, A.; Vico, F. Music and Technology: The Curative Algorithm. Front. Psychol. 2017, 8, 2055. [Google Scholar] [CrossRef]
- Raglio, A.; Baiardi, P.; Vizzari, G.; Imbriani, M.; Castelli, M.; Manzoni, S.; Vico, F.; Manzoni, L. Algorithmic Music for Therapy: Effectiveness and Perspectives. Appl. Sci. 2021, 11, 8833. [Google Scholar] [CrossRef]
- Requena, G.; Sánchez, C.; Corzo-Higueras, J.L.; Reyes-Alvarado, S.; Rivas-Ruiz, F.; Vico, F.; Raglio, A. Melomics music medicine (M3) to lessen pain perception during pediatric prick test procedure. Pediatr. Allergy Immunol. 2014, 25, 721–724. [Google Scholar] [CrossRef]
- Raglio, A.; Bettaglio, R.; Manera, M.R.; Aiello, E.N.; Gontero, G.; Imbriani, C.; Brischigiaro, L.; Bonezzi, C.; Demartini, L. Feasibility of therapeutic music listening in fibromyalgia: A randomised controlled pilot study. Neurol. Sci. 2023, 44, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Raglio, A.; Oddone, E.; Meaglia, I.; Monti, M.C.; Gnesi, M.; Gontero, G.; Imbriani, C.; Ivaldi, G.B. Conventional and Algorithmic Music Listening before Radiotherapy Treatment: A Randomized Controlled Pilot Study. Brain Sci. 2021, 11, 1618. [Google Scholar] [CrossRef]
- Raglio, A.; Maestri, R.; Robbi, E.; Pierobon, A.; La Rovere, M.T.; Pinna, G.D. Effect of Algorithmic Music Listening on Cardiac Autonomic Nervous System Activity: An Exploratory, Randomized Crossover Study. J. Clin. Med. 2022, 11, 5738. [Google Scholar] [CrossRef] [PubMed]
- Raglio, A.; Imbriani, M.; Imbriani, C.; Baiardi, P.; Manzoni, S.; Gianotti, M.; Castelli, M.; Vanneschi, L.; Vico, F.; Manzoni, L. Machine learning techniques to predict the effectiveness of music therapy: A randomized controlled trial. Comput. Methods Programs Biomed. 2020, 185, 10516. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1989. [Google Scholar]
- Kruskal, J.B. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Proced. Am. Math. Soc. 1956, 7, 3. [Google Scholar] [CrossRef]
- Buscema, M.; Grossi, E. The semantic connectivity map: An adapting self-organising knowledge discovery method in data bases. Experience in gastro-oesophageal reflux disease. Int. J. Data Min. Bioinform. 2008, 2, 362–404. [Google Scholar] [CrossRef]
- Buscema, M.; Grossi, E.; Snowdon, D.; Antuono, P. Auto-contractive maps: An artificial adaptive system for data mining. An application to Alzheimer Disease. Curr. Alzheimer Res. 2008, 5, 481–498. [Google Scholar] [CrossRef]
- Licastro, F.; Porcellini, E.; Chiappelli, M.; Forti, P.; Buscema, M.; Ravaglia, G.; Grossi, E. Multivariable network associated with cognitive decline and dementia. Neurobiol. Aging 2010, 31, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Raglio, A. A novel music-based therapeutic approach: The Therapeutic Music Listening. Front. Hum. Neurosci. 2023, 17, 1204593. [Google Scholar] [CrossRef]
- Zatorre, R.J. Why do we love music? In Cerebrum: The Dana Forum on Brain Science; Dana Foundation: New York, NY, USA, 2018; Volume 2018, pp. 16–18. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raglio, A.; Grossi, E.; Manzoni, L. Artificial Neural Networks for a Semantic Map of Variables in a Music Listening-Based Study. Appl. Sci. 2023, 13, 11811. https://doi.org/10.3390/app132111811
Raglio A, Grossi E, Manzoni L. Artificial Neural Networks for a Semantic Map of Variables in a Music Listening-Based Study. Applied Sciences. 2023; 13(21):11811. https://doi.org/10.3390/app132111811
Chicago/Turabian StyleRaglio, Alfredo, Enzo Grossi, and Luca Manzoni. 2023. "Artificial Neural Networks for a Semantic Map of Variables in a Music Listening-Based Study" Applied Sciences 13, no. 21: 11811. https://doi.org/10.3390/app132111811
APA StyleRaglio, A., Grossi, E., & Manzoni, L. (2023). Artificial Neural Networks for a Semantic Map of Variables in a Music Listening-Based Study. Applied Sciences, 13(21), 11811. https://doi.org/10.3390/app132111811